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Preface

This is a comprehensive textbook for first-year Ph.D. courses in macroeconomics that con-
tains the modeling and analytical tools of macroeconomic analysis and applies them to the
main topics within the field. A key feature is that it makes explicit connection with data
throughout the book, and the macroeconomic theory is then used to interpret the data. It
also emphasizes both strengths and weaknesses of our understanding of the field, making
clear that research is still ongoing. The text has the rigor of a Ph.D. course but is pre-
sented in an accessible way, making it suitable to a wide range of students, including those
in master’s or even advanced undergraduate courses.

The foundational chapters (Part I) have been written by the core authors (Azzimonti,
Krusell, McKay, and Mukoyama). The remaining chapters (Part II) cover topics. These
topics chapters have separate author configurations but are not stand-alone survey articles;
rather, they are fully integrated parts of the overall text, with clear references to other
chapters so as to avoid unnecessary repetition of basic concepts and derivations. The topics
authors are leading subject matter experts and their chapters have been written in consulta-
tion, coordination, and in several cases coauthorships with the core authors. The book thus
brings together a set of researchers who have been selected for their communication skills as
well as their world-class knowledge of the field. We are immensely grateful to them for their
contributions.

From a teaching perspective, the idea is for the text to work as a basic textbook where the
chapters can be read in order. Clearly, though, there is more material than can be covered
in a first-year course. However, since we hope that the book will be used in a variety of
contexts and places around the world, we have included chapters that would not ordinarily
be considered first-year material. For example, we have two chapters on international macro,
one on sustainability and climate change, and one on inequality. Appendix material will be
provided online, as well as computer software for solving macro models numerically.
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Chapter 1

The subject matter

This chapter has two main goals. One is to introduce some of the central questions that
macroeconomists are interested in. The second is to emphasize a central theme in the text:
how our field very fundamentally is an empirical one and that measurement—the ongoing
construction and improvement of data sets—and theories addressing the resulting data are
intertwined and have evolved in tandem. The chapter also serves to introduce and motivate
the empirical and theoretical methods that we use throughout the text.

There are several ways to define the field of macroeconomics, and there is a point to all
of them, but they each also come with caveats. One definition is that the field is the study of
aggregates. Here an important caveat is that macroeconomics, at least nowadays, is greatly
concerned with the distribution of income, the distribution of wealth, and so on, which
are not traditionally thought of as aggregates. A second definition is based on methods:
macroeconomics is the quantitative study of general equilibrium. Then again, a full general-
equilibrium analysis is often not necessary for analyzing many of our core issues. One example
illustrating this statement is that most national economies, and even the U.S., are very
dependent on the global economy, thus always making the study of a single economy partial
to some extent. In addition, a more general point is that, very often, the key component of
general-equilibrium analysis turns out to be the characterization of behavior—of consumers
and firms—given prices, with the market-clearing mechanism playing a subordinate role. A
third definition also emphasizes methods: macroeconomics is the study of the dynamics of
the economy, for example by its emphasis on investment and on the role of expectations.
However, as we will illustrate in this text, often a static analysis can shed major light
on macroeconomic issues. Less of a definition but of equal importance is the fact that
macroeconomics tracks current events: the field tends to follow what is perceived as the
major issues for our economies at any point in time, whatever they might be. For example,
the Great Recession of 2007–2009 appeared to have its roots in problems in the housing and
financial markets, and since then these “topics” have become central to the field and attracted
interest from a large number of researchers. During the unprecedented COVID-19 pandemic,
many macroeconomists put their tools to use to examine its impact on the economy and
possible interventions aimed at reducing externalities from social interactions. This involved
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combining standard dynamic macroeconomic models with epidemiological models of virus
spread.

The list of definitions of the field is not exhaustive and we think it is useful to use all
these perspectives, in addition to the fact that a driver behind macroeconomic research is
not only to understand but also to fix problems, if possible, through government policy. For
now, the present chapter will be organized around the last point above: the idea is to take
you through some of important events in the development of our field. This is by no means
meant as an attempt to write a doctrine history; rather, the main, and really only, purpose is
to illustrate the continuous development of measurement and theory to, precisely, respond to
the major needs of our times. Also, we hope that the discussion will illustrate how the focus of
macroeconomics keeps moving and touching base with—and, most of all, borrowing insights
from—various other subfields of economics, such as labor economics, finance, microeconomic
theory, and public economics.

1.1 A random walk along our macroeconomic history

We will now highlight some of the key questions in macroeconomics, along with the need for
measurement and theory, and bring them up in the context of some real-world events. The
focus, especially when it comes to measurement and where data is collected, is on the U.S.;
for what it is worth, there is no deep motivation behind this choice, other than a practical
one: most of macroeconomic frontier research has addressed U.S. data. At the same time, it
is important to recognize that macroeconomic analysis typically does need to be adapted to
the country under study—institutions differ, the role of foreign trade differs, the availability
of data differs, and so on. In particular, perhaps, countries further from the development
frontier face different macroeconomic problems and we will touch on these in Chapters 11
and 22. Generally, however, we very much encourage you to make comparisons to other
countries—both in terms of events and measurement—as you go through the text.

1.1.1 The Great Depression: what is going on?

About one hundred years ago, there were macroeconomists—in the sense of economists
who had thought long and carefully about the performance of the economy as a whole—
but these macroeconomists had virtually no systematic data to relate to; there were only
scattered accounts of some production figures and some prices. What we now know as the
national income and product accounts began to be developed in the 1920s and these efforts
were made much more urgent by the need for systematic measures of just how badly the
economy was doing in and around the Great Depression. The emerging systematic measures
allowed macroeconomists to obtain partial answers to the simple question “What is going
on?” The newly available data therefore helped John Maynard Keynes, and many others
following in his footsteps, in their analysis of the macroeconomy and of how there might be
ways to use government policy actively to combat recessions. In contrast to the thinking
at the time, Keynes emphasized market imperfections, in particular the sluggish adjustment
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of wages and prices to changes in market conditions, leaving room for a decline in the
demand for consumption and investment to affect production. Simple theories connecting
our now-observable main aggregates—output, consumption, and investment, private and
public—were thus constructed and they are influential still today.

Constructing our aggregate data is not an easy task, however, and many of these early
measurement efforts were major research achievements with important contributions from
Colin Clark, Simon Kuznets, and Richard Stone. Let us now briefly describe some of the
results of this work.

What do we measure?

The main purpose of national income accounts is to measure “what is really going on” in
terms of quantities of goods and services produced. To aggregate many type of goods, we
use their nominal values so the national accounts are most directly measured in nominal
(current dollar) terms rather than real terms. An important question was how to compare
national aggregates across time. At a general level, the answer is straightforward: we must
develop a measure of the general level of prices, a price index, to separate nominal changes
into quantities and prices. Once we adjust for the change in the general price level we obtain
measures of real production.

Price index construction

A price index is, generally speaking, a weighted average of prices with weights corre-
sponding to the importance of different goods as measured by the share of total expen-
diture spent on them. In constructing a price index, one must make some choices: the
weighted average could, for example, be arithmetic or geometric and the expenditure
shares could be taken from a base year or could be evolving over time.a These choices
are often guided by microeconomic theory. For example, in Chapter 6 we will derive a
price index for a consumer with a constant elasticity of substitution between goods. In
that context, the price index is inversely related to the utility a consumer obtains from
a given level of total expenditure.

aE.g., they could be straight averages of the current and last year’s shares, as in the Törnqvist index.

Gross domestic product (GDP) is not a welfare measure; rather, it is a measure of
how much the market economy is producing. GDP does not take many relevant sources of
utility into account as they are not market-produced goods and services. Leisure, along with
many environmental amenities and illegal transactions are not counted. That difficulty with
incorporating these non-market activities is that it is very hard to know how to value them.
In contrast, market activities have values measured in common units (dollars).
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National income and product accounts

The accounts follow double-entry methods: they measure both expenditures and income.
That is, someone’s expenditure is always someone else’s income, thus allowing double-
checking. GDP can thus be seen either as the sum of all final expenditures (private and
public consumption and investment plus net exports or as the sum of all incomes. It can
also be calculated as the sum of values added by all firms. A firm’s value added is its revenue
from sales less its expenditure on intermediate inputs bought from other firms. The reason
for not including intermediates is to avoid double counting: if one firm produces a fully
equipped car, except for its exterior paint, and the second firm buys the car, paints it, and
sells it, a sum of these two transactions would be close to twice the final value of the car and,
thus, not be a good measure of the economy’s car output. As a firm’s value added measures
its production, GDP is also equal to the market value of all production.

The two broad categories for income are labor income and capital income: wages and
salaries and profits, interests, and dividends, respectively. Note here that profits for firms
that, say, extract and sell oil, are counted in full; the resulting decline in the stock of natural
resources is not deducted. For this reason, GDP is sometimes reported with a deduction for
“natural-resource rents.”

Capital (equipment or structures) is an intermediate good in some sense—it is bought as
an investment good by a firm and used as an input in future production—but expenditures on
capital are treated as final expenditures and thus counted in GDP. This observation actually
suggests that when GDP is measured for longer time periods, it should perhaps treat capital
differently. Capital income should, then, be a smaller share of total income, and GDP would
be correspondingly smaller since it would count some of the investments—at least those that
depreciate fully within the now longer period—as intermediate goods instead.1 With this
perspective, over longer time periods, GDP averages should perhaps receive less focus than
average consumption.

The pandemic: what is going on?

A parallel to what occurred during the Great Depression—another what’s going on question—
occurred during the COVID-19 pandemic when economies underwent massive changes overnight.
Economists sought new high-frequency measures of activity in order to measure the economy
in real time. These efforts often made use of transaction and commercial data gathered by
companies in the normal course of business. For example, credit card companies can mea-
sure the spending patterns of their customers nearly in real time and the resulting data have
made there way into macroeconomic analysis.

1Conceptually, it should thus be the depreciation rate of capital goods that is key and that, at any
frequency of sampling, determines whether it is to be regarded as capital or an intermediate good. In the
1990s, the national accounts started treating “software” as investment, as opposed to an intermediate good;
the line between these two categories is sometimes quite thin.
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1.1.2 Keeping track of long-run growth

By the mid-1950s, the economy was more or less back on its track and now there was a
sufficient amount of aggregate data that it was possible to analyze its growth performance.
Robert Solow’s 1956 paper—the basic neoclassical growth model—and his 1957 paper on
growth accounting became the impetus for a burgeoning literature on economic growth that
was both empirical and theoretical. The idea in Solow’s growth-accounting paper is that
one could use measures of output and inputs, along with the prices of inputs, and a basic
theory of production to break down aggregate growth into the contributions of each input
and, finally, a residual, which could be thought of as technical change: the Solow residual.
It was thus due to the systematic measurement of quantities and prices that this kind of
analysis could now be performed.

Which factors, then, accounted for most of U.S. growth? Solow found technical
change to be of great, and direct, importance. However, in accordance with his 1956 the-
ory, capital accumulation was an indirect result of technological change. This theory, thus,
went beyond accounting and concluded that technological progress is the one (and only)
fundamental reason why growth in output keeps going, and going, and going.

One reaction to the empirical finding was that whereas it was plausible that technological
change is key to growth, its importance may have been overstated; after all, it was measured
as a residual, and if input growth rates were underestimated, the role for technological
change would not be as large. A particularly likely reason for this was that workers’ skills
were improving; there was an ongoing trend of increased schooling and work experience—
“on-the-job learning”—was thought to contribute to worker productivity as well. In 1958,
labor economist Jacob Mincer wrote his influential paper relating individual wages to years
of schooling and experience and found very strong regularities in the data that have been
imported and used in constructing better measures of labor input: “human capital.” The
so-called Mincer equation, which can be derived based on a simple opportunity cost-based
theory, says in its estimated form that one more year of schooling adds a little below 10 per-
cent to your wage. Another important measurement development in the growth-accounting
literature was the notion of a firm’s user cost of capital; firms buy capital and often own it
until it gets scrapped, so how should one measure the “year-by-year price” of this input?
Hall and Jorgenson (1967) developed an answer that was consistent with microeconomic
theory and has been used ever since.

The growth-accounting literature developed virtually into an industry, where produc-
tivity performance was computed and accounted for on a disaggregated level. A natural
accompanying project was to construct similar data series across countries and compare
them. In 1978, Kravis, Summers, and Heston published a paper with comparable data se-
ries for 100 countries, an effort that was later continued and today takes the form of the
Penn World Tables, a crucial data source for students of economic growth. In a related
effort, Maddison (1995) used various sources of data to estimate GDP levels for a range of
countries going back into the early nineteenth century. Harmonizing data across countries
is challenging, and comparing real output too: should nominal outputs be compared in real
terms by use of nominal exchange rates? Because the purchasing power of different monies
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vary by country, as it does within countries too, a so-called PPP adjustment gradually arose
as a new standard; we discuss it and its implications in the growth chapter.

As a result of the multi-country data sets, new light could now be shed on the process of
growth; in particular, what made some countries grow so fast and others stagnate?.
The endogenous-growth literature of the late 1980s and 1990s thus asked these questions,
which were partly phrased as challenges to the Solow model. The endogenous nature of
technological change—in particular how it is driven by incentives to innovate—as well as of
human capital accumulation came into focus, first theoretically and later empirically. Today,
for example, we have access to large patent data sets that are currently under the magnifying
glasses of hordes of researchers. Some of these data sets contain information on individuals
so questions such as Who becomes an inventor? now occupy many macroeconomists.

An aspect of economic growth is structural change. Structural change typically refers
to how some sectors shrink over time and others grow; roughly speaking, a typical path is one
where countries gradually build their income—and “develop”—starting with agriculture as a
dominant activity, gradually then moving into manufacturing, and finally growing the service
sector. Today, agriculture only employs a percent or so of the total workforce in the U.S.,
whereas in the poorest countries in the world the number is 80 percent; manufacturing has
furthermore been overtaken by services. Today, many macroeconomists worry about another
expression of structural change: how information technology (IT) changes the workplace. In
particular, what are the implications of automation, for macroeconomic performance,
for inequality, and for competition across firms?

Another element of structural change is women’s labor-market participation, which has
risen steadily and significantly in the U.S. over the whole postwar period and stands at a
very high level today (not quite as high as that for men, but close). In contrast, it is much
lower in many other developed countries, though it is also high in a number of countries at a
lower level of development. The government sector—its size and role—can also be depicted
as part of a process of structural change, as international trade can be, both for a given
country and for the global economy. An important ambition of macroeconomists studying
medium- to long-run issues is thus to analyze the sources of these changes as well as their
effects. An element they have in common is that they are slow-moving and never causes of
immediate media attention, but nevertheless crucial for our economic welfare.

In sum, research on economic growth appears to have come in waves, where theory and
measurement interact in very central and mutually reinforcing ways.

1.1.3 The 1970s: an oops, with stagflation, high unemployment,
and more

The period up to the early 1970s was generally perceived as one of steady growth and
increased prosperity. As for macroeconomic policy, the Keynesian recipes were adopted in
most countries in the form of regular interventions to stabilize the economy; the term fine
tuning was often used. Then came an “oops”: the sharp recession in 1973, along with a
number of severe macroeconomic problems that ended up being quite persistent. Although

22



the cause-and-effect question is still debated, many interpret the events as a result of the oil-
price hike orchestrated by OPEC in October of 1973, and the challenging era that followed
was not specific to the U.S. but shared by most of the western world. Two primary difficulties
involved lackluster GDP performance—along with a slowdown in productivity that at the
time appeared permanent to many (the “productivity slowdown” period)—and sharply rising
inequality. The effects on inequality in the labor market had different expressions in different
countries: in the U.S. and the U.K., wage inequality rose sharply, while in many other EU
countries unemployment rose to very high levels and stayed high for many years.

Interestingly, a new development in theory, that would turn out to have a large impact
on macroeconomics, occurred in the early 1970s, before the drastic downturns in aggregate
activity occurred: the development of search models in labor economics (McCall, 1970, and
Mortensen, 1972). This was to become one of the cornerstones of a theory of unemployment
that later was adopted in macroeconomics as we discuss in Chapter 18. The measurement
of the concept of being “unemployed” goes back in time much further, to the late 1930s; the
new search theory in the 1970s thus benefited immediately from available data. However,
the interest of macroeconomists in the topic rose sharply during the productivity slowdown
period and generated further data needs. Today, a central part of our analyses of unem-
ployment includes detailed data both on individuals and on firms, most of it in survey form.
Moreover, keeping track of inequality trends, such as the average wage gap between skilled
and unskilled labor that took off beginning in the second half of the 1970s, has become a
central activity for macroeconomists.

Labor-market data

Much of our information on the labor market comes from surveys. Total labor income
is available from NIPA but how it breaks down into employment, hours worked, and
wages/salaries for different workers is all based on how individuals answer questions
in questionnaires. A key source is the Current Population Survey, conducted monthly
by the BLS in collaboration with the Census Bureau. The CPS has a (limited) panel
feature, i.e., it interviews the same people at more than one point in time. The CPS also
measures unemployment, i.e., it asks people if they are not working and looking actively
for a job, thus in line with search theory. An important source of data on individual
labor-market outcomes is the Panel Study of Income Dynamics (PSID), conducted by
the University of Michigan, started in 1968: it follows individuals over a significant
amount of time and has data on a number of individual variables, all self-reported. The
breakdown of labor earnings into hours worked and a wage per hour in these data sets is
based on individual reporting on how many hours they work. Other panel data sets on
individuals include the National Longitudinal Survey (NLS, conducted by the BLS) and
Survey of Income and Program Participation (SIPP, conducted by the Census Bureau).a

Firms are also surveyed and report work hours for their employees (e.g., in the Annual
Survey of Manufactures from the Census Bureau), but then the same workers may have
multiple jobs so measures of how much an individual works in total still rely on asking
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the individual. Around the turn of the millenium, and in part as a result of the new
developments in the field of macro labor, where search frictions for firms and workers
are in focus, BLS also started to collect micro data, published from 2002 and on: the
Job Openings and Labor Turnover Survey (JOLTS). This data set has since become
invaluable in the evaluation of further developments of our theories.b

How individuals spend their total amount of time is also measured. Since 2003, the
BLS has produced the American Time Use Study (ATUS), a survey documenting daily
activities in great detail, including how much time is leisure versus various forms of
“work at home.” Using ATUS, it is also possible to find out not only whether people
searched for jobs, but how much time they spent on this activity.

aA longitudinal survey is a panel, i.e., a study that follows the same individuals over time.
bToday, data from labor markets—e.g., recent trends, particular skills in demand—are also pro-

vided commercially, often with real-time information from the internet, and used by human resource
departments and head-hunting agencies.

Governments attempted to stabilize the fall in GDP, in particular with expansionary
monetary policy, i.e., by cutting interest rates. However, there was very limited success;
rather, the 1970s was also a period of unusually high inflation (with annual rates in the
10–20 percent range in many countries, and even higher for some). The combination of stag-
nation and inflation was dubbed stagflation. The Keynesian paradigm came under increasing
scrutiny and a number of economists focused on weaknesses in the Keynesian theory itself.
A particularly powerful point was the “Lucas critique,” which explained how reduced-form
relationships between aggregates—a cornerstone in the applied Keynesian apparatus—could
break down if policy changed. The Phillips curve—the negative relationship between the
inflation rate and the unemployment rate—was a particular case in point: in a paper that
actually predated the oil crisis and stagflation, Lucas (1972) advanced a theory showing how
attempts to exploit this seeming trade-off with monetary policy would make the relationship
itself break down. When the relationship did break down, Lucas’s sharp critique gained
added force and, in hindsight, marked a clear break in the development of macroeconomics.

Curiously, today—as of writing this text—we are experiencing events that are reminiscent
of those during the 1970s: a sharp rise in inflation, in part due to higher energy prices (now
due to the Ukraine war and other world events), and fears of a new stagflation period.
Undoubtedly, macroeconomists are better equipped today in confronting this episode, but
every challenge seems to have its unique properties.

1.1.4 Kydland and Prescott: a way forward

Lucas’s critique was not just destructive, in pointing to weaknesses in the Keynesian the-
ory approach, but he suggested, at least conceptually, how an alternative framework could
be built up. The idea was to build explicitly on microeconomic theory, and with Kydland
and Prescott’s 1982 paper it became clear just how to do this in a way that also allowed
systematic comparison with data: they offered quantitative theory. This paper suggested
basing the microeconomics on empirical studies in applied fields, such as labor economics
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and consumption studies, not just in terms of the structure but also by importing parameter
values from the empirical microeconomic literatures. Kydland and Prescott’s paper, which
led to an explosion in macroeconomic studies, also added another important aspect of mea-
surement: that often, data needs to be detrended, or “filtered,” in order to be ready for
analysis, in their case in examining the sources of business cycles.

Filtering

When macroeconomic models are built and compared to data, the data are almost
always filtered first. To understand what filtering means, you need to see macroeconomic
models as dynamic systems, i.e., as some form of vector difference equations, that contain
random variables. Thus, macroeconomic models in fact define a stochastic process. Such
a process could thus be simulated by the researcher and, in principle, compared to
data. However, the idea is rarely that the theory is constructed to explain everything.
Kydland and Prescott, for example, were interested in recessions and booms, which are
movements upward and downward in macroeconomic aggregates around some overall
trend, but this trend was not the subject of their study. In order to compare theory
and data, most researchers therefore use filters to extract the aspect of the data they
are interested in analyzing. To do this, theory comes in handy: stochastic processes
can, quite generally, be thought of as sums of sub-processes, each one with a different
frequency, i.e., periodicity. For business cycles, one thinks of periodicities of between
1.5 and 8 years perhaps, and so-called band-pass filters offer can be used to take any
data series and remove any frequency outside a specified range. In contrast, studies of
medium- to long-term movements in variables require removing high frequencies and
retaining low to medium frequencies.a In financial economics, when day-to-day, or
minute-to-minute changes in stock prices are analyzed, all but the very high frequencies
are removed before the data can be analyzed.

aKydland and Prescott (1982) used a specific filter: the so-called Hodrick-Prescott filter, which is
an intuitive way of extracting data. It has very wide-spread use in macroeconomics.

Kydland and Prescott’s theory of the business cycle was quite stylized and stripped
down—among other things, it was phrased entirely in real terms and had no role for monetary
policy—and the literature that followed enriched their framework in a multitude of directions.
A key point here is that the first wave of models had perfectly working markets; later, a
number of frictions were added and today, virtually no macroeconomic model that is used in
practice is free of market imperfections. A key friction that was added was price stickiness:
firms setting dollar prices of products face costs in doing so, and therefore only adjust prices
infrequently. This makes monetary policy have direct effects on the economy, something
it might otherwise not have. Thus, the “New Keynesian” framework was built up, where
monetary policy is in focus. Again, the new theory led to measurement efforts. In particular,
studies such as Bils and Klenow (2004) looked at the survey data available underlying the
CPI and recorded the frequency of price adjustments; their work allowed researchers to
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parameterize the microeconomic structure for adjustment costs assumed in the models.

1.1.5 Different waves of macroeconometrics

The comparison between models and data has also undergone waves. As with much of
economics, it is challenging to discern causal relationships in the historical data given to us.
As more and more data have become available, however, more and more thinking has been
devoted to the development of different statistical methods for doing this. A central question
has thus been the purely methodological one of how historical macroeconomic data can be
used to make inferences.

Macroeconomic models are all simplifications of a highly complex system and therefore
there is little point in “testing a model” by assessing whether it can be the true data gen-
erating process. As the saying goes, all models are wrong but some can be useful. A useful
model allows us to answer an important question in a convincing way and the model must
be consistent with the relevant data we can observe in order to be convincing. Of course, if
the answer to our question can be directly observed then there is no point using a model.
So a useful model allows us to bridge the gap from the data we observe to the questions we
want to answer. Knowing which data are important to match in order for the answer to be
convincing is often argued to be an art. But art, too, can be taught.

The empirical implementation of Keynesian theory involved estimating large systems of
(usually linear) relationships, often with ad-hoc specifications of short-run dynamics, i.e.,
with lags of variables added so as to provide a better fit. Sometimes instrumental variables
were used, but that was more uncommon. The critique that came in the 1970s forced
macroeconomists back to the drawing board. One approach was to estimate the new, now
microeconomics-based, structural models that rapidly developed using a classical statistical
methods. A literature using maximum-likelihood and Bayesian techniques for estimation
was developed; a related development involved use of the generalized method of moments,
which could be applied to a subset of the model’s equations.

Another theory-based path, labeled calibration, was the method favored by Kydland and
Prescott in their work. The calibration approach is very common in current macroeconomic
research and can be used to derive quantitative conclusions from a theoretical model. For
example, in their work on business cycles, Kydland and Prescott wanted to know to what
extent movements in technology could generate fluctuations in aggregates that resemble
those in the data. The spirit of calibration is to select the model’s parameter values based
on other moments of the data than those in focus in the study. For example, Kydland and
Prescott based their parameter choices on two kinds of data: (i) micro data, e.g., for people’s
attitudes toward risk and intertemporal substitution; and (ii) long-run facts (that is, low-
frequency data not in focus for their high-frequency interests). Once the model parameters
have been selected, one can then derive the model’s predictions for the phenomenon of
interest. For example, Kydland and Prescott calculated the variances and correlations of
aggregate variables to assess whether the model could generate business cycles that resembled
those observed in the data. The sentiment of “all models are wrong” may explain the wide use
of calibration within macroeconomics. Calibration does offer discipline in the sense described
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above—parameters are not to be chosen to match the moments the researcher wants to
explain—but, at the same time, does not lend itself to hypothesis testing.2 Relatedly, as all
models are wrong we are more interested in the broad patterns they predict: can the model at
all account for the phenomenon under study, or are the magnitudes severely off? If the model
can generate patterns similar to those in the data, it is typically judged “potentially useful”
and elaborated on further, possibly adding detail and examining auxiliary implications. This
is how “technology shocks” entered our vocabulary and are, still today, considered relevant
for (but far from alone in) explaining business cycles.

A much less structural approach was proposed in Sims (1980): vector autoregressions
(VARs). Sims’s focus was much more on the identification of causal effects in aggregate
data, and the core of his methods involved ways to observe plausibly exogenous shocks, such
as an unexpected increase in the Fed funds rate, and then trace out the effects of the shocks
on macroeconomic variables, including the effects on the subsequent movements in the rate.
In its simplest form, a VAR is a linear system of variables including lags, thus containing
both intra- and intertemporal relationships, and a shock to each variable at each point in
time. A literature also evolved that took structural models and derived their linearized
VAR approximations, which could then be compared to the estimated VARs as well as offer
some structural interpretations of some the coefficients in the VAR. VAR analysis is a very
common tool in macroeconomics.

Another approach to identifying causal effects is to use natural experiments. Increasingly,
macroeconomists use information from natural experiments to identify the strength of causal
relationships at the microeconomic level and use these moments as targets when calibrating a
macroeconomic model. An important example is measuring the marginal propensity to con-
sume out of wealth. In 2001, the U.S. government paid tax rebates to most households and
randomly gave some households their payments sooner than others. Johnson, Parker, and
Souleles (2005) used the random timing of the payments to measure how strongly consump-
tion spending responds to additional income. This type of information is now an important
calibration target for many macroeconomic studies as the marginal propensity to consume
is important for understanding the effects of certain government policies. In this case, the
natural experiment occurs at the level of the household as some households are paid earlier
than others. Natural experiments at the level of an entire economy are more rare but there
are some examples. One type of application is exemplified by Acemoglu, Johnson, Robin-
son (2001), who used excerpts of historical records from the colonial era to make causal
statements about the effects of institutions on long-run economic growth and well-being.
Another example is the “narrative” approach to the evaluation of monetary policy, where
minutes from Federal Reserve meetings are analyzed to identify exogenous events affecting
Federal Reserve policy (Romer and Romer, 1989). The Romer and Romer study is an ex-
ample of another phenomenon, which is to use text analysis (e.g., words used in media) in
macroeconomic contexts; the wave of big-data tools has thus also entered our field.

2The lack of hypothesis testing is shared with Bayesian analysis. Of course, in Bayesian analysis, the
parameter selection is informed by the data under study; in calibration it is not: all the weight is on the
prior.
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1.1.6 Models: intuition vs. quantitative use

Kydland and Prescott’s work was a game changer also in how macroeconomists approach
model building, which previously had been largely oriented toward building an intuitive
understanding of mechanisms—such as Lucas’s 1972 Phillips-curve paper. Of course, there
are a huge number of different mechanisms at play, so how does a macroeconomist oriented
toward giving policy advice choose which mechanism(s) to focus on? Kydland and Prescott’s
answer was to move away from building models aimed at intuition in favor of larger models
that could be parameterized and calibrated to deliver quantitative output. This quantitative
output would then, within a single model, aggregate across the many mechanisms inherent
in the model. The analysis of larger, nonlinear, models is much harder and, with sufficient
complexity, impossible to undertake with “pencil and paper.” Thus a new sub-field of
macroeconomics developed rapidly: that focusing on solving dynamic models with numerical
techniques. Nowadays, the most common approach in applied macroeconomics is arguably
to formulate rich models allowing several mechanisms believed to play a role, solve the
models numerically, and then simulate them to study model output and compare different
mechanisms quantitatively. This approach has not replaced the need to formulate much
smaller models to build intuition, but the aim is to ultimately be equipped not only with an
intuitive understanding of what goes into building the macroeconomic equivalent of a bridge
but also with quantitative assessments that allow us to cross the bridge without fear.

1.1.7 Macroeconomics and inequality

As already mentioned, the late 1970s saw sharply rising wage inequality, a phenomenon that
has continued, though with different intensity, and hit different groups differently, during
different decades. What explains these developments? Technological change, increased
exposure to trade, or changes in unionization? Many macroeconomists have turned their
attention to this question. They have developed theory and examined how different theories
match the data, thus making the overlap with labor economics a particularly vibrant one.
Here, data on individuals has been a key input. Again, most of this data is taken from
surveys, but it is increasingly common for researchers to make use of administrative data,
i.e., data on the whole population.

Administrative data

The basis for taxation of individuals and firms is reports on incomes and transfers
(including bequests). Here, employers report wages and salaries paid out for all taxable
individuals, and individuals complement these data. For example, the self-employed
report their own earnings. Similarly, firms and government agencies report transfers
made, such as social security payments, and these are based on earnings. Tax authorities
also have records of capital income for all individuals—dividends, interest, and capital
gains—but the specific assets are not recorded. Relatedly, there is no administrative
data on wealth in the U.S., since it is not taxed, but some countries do employ wealth
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taxes and, therefore, administrative data on wealth can, in principle, be accessed there.
Thus, all the underlying data is registered and potentially a source for researchers to
use. Access is restrictive, but can be granted. The Internal Revenue Service (IRS) and
the Social Security Administration (SSA), for example, have been employed to provide
detailed account of the distribution of incomes for the full population.

Of course, tax records and other administrative data is not freely available and,
depending on the particular data set, may be more or less difficult to obtain permission
to use. In all cases, the data the researcher is given is made anonymous: individuals’
identities are never revealed. A particularly interesting possibility for researchers is to
link different data sets (whether a administrative data set or not) but this is rarely
allowed.a

aThe reason is the risk of inadvertently compromising anonymity. There are exceptions. For exam-
ple, in Sweden, local researchers can cross-link administrative data sets; applications to do this require
careful descriptions of the purpose of the study, the methods employed, and involve various ethical
considerations.

In one strand of the literature, the focus has been on data sets that contain detailed
information both on firms and on their employees, hence shedding light on what kinds of
firms “match” with what kinds of workers and how wages are then set and vary over time.
Although the share of total income paid to labor has been remarkably stable during the post-
war period in the U.S., it has had a recent trend downward over the last decades, a trend
that can be observed also in many other countries. Hence, macroeconomic researchers are
examining various hypotheses for this phenomenon, such as structural change and techno-
logical change, possibly along with changes in the degree of competition are being examined.
To this end, access to data on firms is critical, and the overlap with the field of industrial
organization is evident.

Firm data

Various firm-level (and establishment-level) data sets are provided by both governmen-
tal institutions and commercial vendors.a In the U.S., the Census Bureau and the BLS
provide data from administrative sources and from surveys. We can thus obtain infor-
mation about (among other things) entry, exit, and employment dynamics of firms and
establishments at annual and quarterly frequencies. Although micro-level data are often
confidential, many useful summary statistics are publicly available.

Some of the data sets include information about inputs and outputs on the firm level.
Among other things, these can be of use for estimating firms’ marginal costs, which are
never directly observable; their movements over time are important for understanding
macroeconomic phenomena. Relatedly, innovative activity can be measured based on
firms’ R&D expenditures, and the patents generated can be accessed from the patent of-
fice. As patents build on earlier inventions, the number of times a patent is subsequently
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referenced by later patents gives a measure of its impact.

aCommonly used commercial vendors include Compustat, Orbis, and NETS.

Over the last two decades, we have also observed a sharp increase in macroeconomists’
interests in wealth inequality. Just like during the Great Depression, a common perception
has been that of increasing gaps between “rich” and “poor,” along with various forms of
polarization, but what does the data—to the extent we even have it—really say about
wealth inequality? There are (at least) two reasons for macroeconomists to care about this
question, and about the underlying trends driving wealth inequality to change over time.
One is an intrinsic interest in inequality as a key aggregate phenomenon: the view that it is
an undesirable feature in society and should be taken into account even if it is in conflict with
other goals. An additional intrinsic reason is political stability: as expressed in Piketty’s
2013 book, one may worry that democracy is threatened if inequalities rise above certain
levels. As a final example, one dimension of inequality of relevance in macroeconomics is that
between women and men and across racial and ethnic groups; we are now seeing an increasing
number of contributions documenting and analyzing, in particular, how the relative wages
and the relative hours worked across groups have evolved over time.

A second reason for macroeconomists to care about inequality is that it captures hetero-
geneity that is important to take into account when examining the workings of the macroe-
conomy. When, for example, a tax rebate is implemented with the purpose of stimulating
consumer spending, we have reasons to think that cash-constrained, poorer households would
spend a large fraction of the rebate whereas richer households will save most, if not all, of it.
Thus, distributional data on wealth appears as a determinant of the efficacy of many policy
interventions. The development of so-called heterogeneous-agent models, which began in the
1990s and has generated a very large literature, is a response to both these reasons to keep
track of, and understand, wealth inequality.

Measuring individual wealth

In the U.S., since wealth is not taxed, there is no direct administrative data on it.a The
Survey of Consumer Finances (SCF), also conducted by the Federal Reserve Board, is
available every three years since 1983 and has data on individual assets; it is a key source
of information about the wealth distribution. Unlike some of the surveys mentioned
above (such as the ASM), this survey is voluntary, but efforts are made to make it
representative. The IRS administrative data has capital income, so it is possible to
estimate wealth by observing the annual income it generates—if one is willing to assume
a rate of return on the wealth. This is called the capitalization method.

aA small set of countries have taxed wealth over various periods in time and therefore have admin-
istrative data on it.

As it turns out, the various different sources used by different researchers do indicate a
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rather significant increase in wealth inequality in the U.S. beginning in the late 1970s. Similar
trends have also been documented in a number of other countries. In sum, macroeconomics
today, including at the level of policy making, is concerned with a much broader view of
inequality than in the past. A comprehensive database on inequality in income and wealth
across countries is the World Inequality Database (https://wid.world/).

1.1.8 Taxes and government activities

Many western countries, including the U.S., have experienced slow, long-run increases in
the role of government, both when it comes to its total share of GDP and employment and
in terms of transfers, such as social security and welfare systems more generally. Thus,
the nature, determinants, and effects of taxation have become a central theme for
macroeconomists. In the U.S., marginal tax rates were increasing and peaked shortly before
Ronald Reagan took office and thereafter the degree of progressivity was lowered significantly,
and has stayed at a historically low level since. The taxation of corporate profits has also
changed over time. How have these changes affected hours worked, economic activity, and
inequality? These questions preoccupy many macroeconomists.

Aside from these changes over time, an overall key question, aside from the degree of
progressivity of the tax code, has centered around the choice between different tax bases:
taxes on capital income, taxes on labor income, corporate taxes, indirect taxes (such as sales
taxes), seignorage, property taxes, and so on. That is, macroeconomics and public finance
intersect in important ways.

When it comes to the efficiency features of different tax rules, there is also an important
overlap with economic theory. For example, it may be tempting to use tax and transfer
schemes to fill in where private insurance markets appear to be missing—thus improving the
economic situation of those experiencing unexpected adverse events. However, if the private
markets are imperfect because of fundamental information asymmetries—leading to problems
of moral hazard and adverse selection—it is important to think about potentially negative
incentive consequences of government interventions. Such questions have been examined by
theorists (e.g., Mirrlees, 1971) and a relatively recent subarea of macroeconomics has applied
and further developed their contributions. There are also other impediments in the pursuit
of efficient government policy. One, which has been a major issue in macroeconomic research
at least since the 1970s, is the fundamental inability of governments to commit to its future
policy choices. For example, basic public finance theory says that it is efficient to levy taxes
on already installed capital—since it is not distorting any choices—but, if firms/investors
know in advance that their capital will be taxed in the future, current investment is distorted.
Thus, the government would like to say that it will not tax capital in the future, but, ex
post, change its mind. This kind of time inconsistency of policy choice has been held as
a key explanation for how central banks, including the U.S. Fed, failed to stabilize the
economy in the 1970s: they acted on short-run incentives to raise inflation, but to the
extent market participants predicted these actions in advance they simply adjusted prices
and wages upward, leading to stagflation: no improvement in output, and higher inflation.
This reasoning was a key argument behind why many central banks were given significant
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independence in many countries around the world (including the U.S.): with statutes focusing
more on long-run goals, there would be less room for time inconsistencies. The tensions
inherent in differences between a government’s optimal plans and their ex-post temptations
to change them has generated another vibrant area of research with significant components
of economic theory.

Related to the lack of commitment to future policy choices, there is another challenge.
One might imagine that, armed with well-researched insights about how policy decisions can
best be made to achieve a given set of goals—be they about efficiency or redistribution—it
is straightforward to approach policymakers with proposals, who would then turn around
and implement them. Unfortunately, in practice, such a direct influence rarely materializes.
One reason for this is what is usually labeled “political constraints”; i.e., for policy changes
to be implementable in practice, political support is necessary. For this reason, the politi-
cal economy of macroeconomic policymaking is another subject of a significant amount of
research. One goal of this research is to simply try to understand what policies tend to
be chosen, and why; a second, and ultimately more ambitious goal, is to take a norma-
tive perspective on institutions and evaluate how different features (ranging from basic
rules for how governments are chosen to details in their decision-making processes) lead to
different policy outcomes. On the positive side, one might note that research can have sig-
nificant influence also in this arena. One example is the politico-economic reform in Sweden
in the early 1990s that came as a result of the work of the so-called Lindbeck Commission.
The commission was appointed after a deep recession and lackluster economic performance
during a period of time. Its proposals to change key features of the political system—even
involving the frequency of elections and key rules surrounding how the government could use
its budget—in order to improve outcomes were actually implemented in full.

1.1.9 The Great Recession: another oops

In 1979, in an effort to end the high-inflation era, the new Fed chairman Paul Volcker an-
nounced, and implemented, a period of very tight monetary policy. Most macroeconomists
attribute the ensuing recessions in the early 1980s to this change in monetary policy stance.
Inflation did come down, and it did so also in most other western countries; the stagfla-
tion period had been a worldwide phenomenon. In Europe, steps were gradually taken
toward tighter monetary policies as well and a currency union was eventually created: in
1999, ten national currencies ceased to exist and the euro took their place. This was a
period of financial integration not only among European countries, but also between devel-
oped and emerging economies. Restrictions to the movement of financial assets, goods, and
services were loosened, triggering a “globalization” process that generated great interdepen-
dence among economies. From the mid-1980s and for over two decades, until 2008, the U.S.
economy experienced recessions but they were minor and the overall aggregate performance
was viewed to be very satisfactory. In 2002, macroeconometricians James Stock and Mark
Watson dubbed this era the Great Moderation: a period of time when the macroeconomic
aggregates displayed healthy growth and very low volatility. By some, the Great Modera-
tion was attributed to the new and transparent policies followed by the independent Fed.
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Researchers also advanced other hypotheses that were more structural, such as changes in
the nature of technological change. Furthermore, the stabilization frameworks used at many
central banks now relied on the New-Keynesian macroeconomic model: a setting based on
microfoundations and including a number of frictions, most importantly sticky prices and
sticky wages. A prescription from these models was for the central bank to systematically
counteract macroeconomic shocks so as to lower volatility and improve our welfare.

Whatever may have caused the Great Moderation, there is no doubt that few expected the
events that surprised the world in 2007: a severe economic downturn that was worldwide as
well. The recession was nowhere near as deep as the Great Depression, but it was nevertheless
a very problematic period: unemployment rose sharply and only fell back very slowly in
a manner that was uncharacteristic, compared at the very least to recent experience. The
crisis immediately hit Europe as well, and in 2009 a multi-year debt crisis, sometimes labeled
the eurozone crisis, was set off. A number of European countries thus suffered from high
national debt levels and difficulties in rolling over their debt; this period was one of significant
uncertainty. The uncertainty partly involved what paths government policy would take, and
there was ample speculation that some countries would leave the currency union. In the
end, they did not, but the crisis was long and painful, as were the macroeconomic and
political debates about whether debts should be forgiven or not. The crisis highlighted the
potential problems of a globalized economy, triggering some countries to ‘close down.’ The
exit of Great Britain from the European Union, labeled “Brexit,” was the most notable
example. An important role in combating the crises was played by central banks, but now
with methods very different than those pursued during the previous decades.

A period of time of intense research followed. What were the deep causes of the
Great Recession? How could it have been avoided? Were our main theories flawed? This
research is still ongoing so it is hard to draw definite conclusions, but there is consensus that
a combination of excessive risk-taking in housing markets—arguably rooted both in private
and government decisions—and severe frictions in financial markets together slowly sowed
the seeds of the downturn. Indeed, the term Global Financial Crisis is equally often used to
refer to these developments.

As a result of the experiences during this period, massive research has gone into studying
the workings of financial markets and financial institutions and how government regulation
affects their performance. It reminded us how asset markets, debt buildups, and (excessive?)
risk-taking can be intricately intertwined with the workings of the macroeconomy. The
downward trend in the real interest rate is a related phenomenon. It is suggested to be
connected to more severe asset-price fluctuations, including the formation of price bubbles;
here the emergence of cryptocurrency is perhaps particularly noteworthy.

Financial data

One of the key questions in this part of macroeconomics is financial stability. In partic-
ular, if key financial actors have strong interdependencies in their asset portfolios and
liability structures, then domino effects can occur, whereby relatively minor shocks can
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have severe aggregate consequences. As an example, the house-price decline and the
resulting defaults on mortgages in the U.S. during the Great Recession were significant,
but their quantitative magnitudes were quite small compared to many other asset-price
movements throughout history that barely even generated recessions at all. The reason
why the small shock had major consequences was to be found in how mortgage liabilities
had been packaged and distributed among key financial actors, all of which was quite
opaque not just to policymakers but to market participants as well. Hence, the need
for data in this area is, and was, great, and a major challenge is that high-frequency
data on portfolios is proprietary information and, when it is available, can be hard to
interpret.

In its Flow of Funds section, the Federal Reserve Board produces the quarterly
Financial Accounts of the United States, a comprehensive set of accounts that includes
detail on the assets and liabilities of households, businesses, governments, and financial
institutions. These are aggregate data, allowing us to track, among other things, trends
in indebtedness—which was key in the analysis of the Great Recession, but also not
quite sufficient for detecting interdependencies among financial institutions. There are
also data on individual households and firms; the SCF is discussed above.a

Asset prices and returns for publicly traded firms are of course available from nu-
merous sources. Assessments of values for non-traded firms are much harder to come by,
and even many large firms are not publicly traded. In the past, a typical path from the
birth of a firm to an established, large company involved a mix of individually provided
funds, bank loans and possibly bond issues, with an eventual public offering and public
trading. Today, the path toward public trading of the firm’s equity often takes longer
and goes via risk-capital and private-equity financing.

How private individuals make portfolio decisions is another important input into how
the macroeconomy works, but raw data on this is much harder to come by; as discussed
above, data on wealth management is typically not available except in limited surveys.

aAn often-used financial database for firms is Compustat, a commercially provided service containing
information about publicly traded firms (also outside the U.S.). An even larger database is Orbis, which
also contains non-traded firms, including smaller businesses.

Though it seems clear by now that the basic macroeconomic framework was not aban-
doned as a result of the Great Recession, it is equally clear that it has been changed and
enriched in the direction of including financial frictions that play a prominent role. Macroe-
conomists are, perhaps painfully so, aware that the next recession will rarely have the same
characteristics as the most recent one, and as a result their theories grow richer and more
complex, rather than themselves undergoing cyclical fluctuations.3

3Voices were certainly raised suggesting that a return to classic Keynesian theory was called for.
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1.1.10 Climate change

The intersection between macroeconomics and environmental economics was close to empty
until it became clear toward the end of the 20th century that climate change, at least in
important part caused by human emission of carbon dioxide into the environment (primarily
by burning fossil fuels like oil, natural gas, and coal), was a potentially critical threat to
our welfare. Climate science itself is rather young part of the natural sciences and although
there was consensus about the mechanisms involved early on in the 20th century, it was not
until at the end of the century that consensus was built that a significant amount of global
warming—of a little under 1 degree Celsius—had occurred as a result of human economic
activity. The Intergovernmental Panel on Climate Change (IPCC) formed in 1988 and has
issued 6 comprehensive reports on the subject.

As a result of these developments, increasingly many economists have become engaged in
climate research and contributed importantly to our understanding of how climate change
interacts with economics. Here, clearly, collaboration with climate scientists has been im-
portant. Part of the economists’ research is about assessing the effects of global warming
on economic activity, on health, and more generally human welfare and it has engaged
many subdisciplines of economics. Macroeconomists have helped in damage measurement
by studying aggregates and how they react to weather as well as climate. But macroe-
conomists have also contributed by constructing global economic models aimed at integrated
assessment : examining how different economic policies would influence the world’s market
economies and jointly determine climate and economic outcomes, hence providing advice for
policymakers. This endeavor has led to an upsurge in quantitatively oriented modeling of
global interactions between the macroeconomy and the climate.

The focus on fossil fuels also directs the attention of macroeconomists to natural-resource
and energy economics, which attracted attention already in the 1970s as the oil shocks hit.
The questions now are similar to what they used to be, and they have been underscored by
recent events such as the war in Ukraine. In short: what is the nature of energy supply,
and what are the potentials for, and effects of, technological change in this area?
The climate-economy nexus is an area where research, along with communication of the
research results to policymakers, can turn out to be of extremely high value, especially in
the developing world which, by all estimates, are likely to be the most severely affected by
further warming. Quite fundamentally, limiting the use of fossil fuels will amount to the use
of government policy around the world to steer individuals and markets in a direction away
from these fuels. How this is best done is a matter of understanding economic decisions and
market interactions: it is a question for economists.

1.1.11 Where do we stand?

Clearly, our economies are constantly evolving as a result of a number of societal changes,
including technological developments and policy reforms. With these changes, we have indi-
cated how macroeconomics has changed course, sometimes abruptly and sometimes merely
by expanding on existing frameworks. We currently have a body of knowledge that allows
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for a more nuanced understanding of macroeconomic events and policies, and the macroe-
conomic models used in practice are accordingly much richer than in the past.

Do we lack sufficient self-criticism, however? One regularly hears arguments that macroe-
conomics never really admits that it is wrong, nor that it recognizes that it needs to change
course. In concrete terms, can we really say that we are in a better position today to meet
the next major macroeconomic challenge? Our perception, first, is that macroeconomists do
admit mistakes, as indicated by the number changes in our thinking that have been described
above. On some occasions, our theories simply have not incorporated all relevant features—
this would be “our” mistakes—and as a result we have tried to build these features in as
swiftly as possible. On other occasions, though, we have simply been surprised by events
that did not have economic origins and yet necessarily generated economic downturns that,
once we were informed of the “shock,” we could understand with existing models.

Our own firm belief is in fact instead that, guided by research, macroeconomic policy
has been increasingly successful over time. Not all recessions are alike, but they are not all
distinct either, and lessons from one will typically be useful in the future too. In particular, we
count the responses to the Great Recession and to the recent pandemic as having benefited in
major ways from macroeconomic research. At the same time, of course, not all governments
acted alike and there always remain differences in views on policy, especially since strong
views on economic policy tend to be linked to strong political views.

Thus, as different shocks hit our economies, we do not cycle back and forth between
models, each model emphasizing one type of shock and how to respond to it. Rather, we
strive to combine insights as they come and try to isolate how they add to, rather than erase,
our previous understanding of the economy. For illustration, consider Keynes’s core insights:
they were entirely new and crucial for building up an understanding of how stabilization
policy could be usefully conducted, and although the 1970s saw a definite break in the
foundational elements underlying macroeconomic models and a temporary return to very
stylized models, the Keynesian insights have since been added back into the newer models.
These models are simply more sophisticated today than before and are more clear on the
circumstances under which Keynes’s insights can be applied. The models keep developing;
for example, the reliance on rational expectations may develop, as we obtain more data on
how forecasts are actually made. Macroeconomists appear to be in agreement that frictions
in financial markets can be critical and even central in explaining some recessions, but how to
identify the key frictions and prevent them from playing out is still an open question; clearly,
a prohibition of all loans would by definition have prevented the mortgage market from
causing problems, but very clearly such restrictions are highly undesirable. Thus, research
on this issue today is trying to identify how we can reach a balance between stability and
business-as-usual market efficiency. Many challenges remain in macroeconomic research but
we are nevertheless optimistic that there will be fewer and fewer oopses in the future.

Finally, the construction of rich and complex models is of course not an end in itself and
especially for communication and in teaching—even at the graduate level—it is important
to simplify and abstract from many of the complexities. Therefore, IS-LM models can still
be useful in building an understanding of how the macroeconomy works, as can real business
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cycle models and simple models of debt crises. But beliefs that either of these models is
sufficient has been proven wrong many times over.

1.2 Looking ahead

This introductory chapter has sampled a number of important topics addressed by macroe-
conomists over the course of the last century. Many topics have been left largely without
comments, such as trade liberalization and immigration. This is not to suggest that they
are any less important: they remain very active research areas, some overlapping with fur-
ther sub-disciplines of economics such as international trade—and the main focus here has
instead been to illustrate the large variety of topics and methods.

The development of rich and complex models means that macroeconomics is not becoming
easier. This textbook is a living proof of this statement: although it makes a major effort
to mix data and historical episodes with theory, it does require new students of this area
to make serious investments in methods. In particular, the switch toward microeconomics-
based theory, with an accompanying aim to match the main historical facts—quantitative
theory—motivates many of the early chapters. The belief on which this text is based is that
this material is here to stay. One possibility is that the theory will be supplemented with
elements of behavioral economics, but there is little consensus yet on which features are key.
This regards both how we view the choices made by consumers and firms and how they form
expectations. For now, full rational optimization and expectations are viewed to be a very
reasonable starting point, and the insights from investments in these methods will also highly
likely be relevant as behavioral elements may be added. Thus, we try to view the methods
parts as fun, because they are, though they are never there for their own sake: their only aim
really is to help us understand the macroeconomy. This is the nature of macroeconomics; it
is challenging, but it is engaging.

The overall text has two basic parts. The first one introduces the main methods and
framework used to make sense of the core facts of macroeconomics. This part is core material
and should be read in advance of the rest of the text. The second part has applications.
The set of applications perhaps contains slightly more material than is covered in a typical
first-year PhD course, but only slightly; the recommendation is nevertheless to read the
chapters in order. In the first part, Chapter 2 is of particular importance since it is a
lead-in to the rest of the text. In particular, it dives into the macroeconomic data and, bit
by bit, introduces Solow’s way to make sense of this data: macroeconomic aggregates are
generated by the neoclassical growth framework. This framework is the core setting used in
macroeconomics. The framework is not an arbitrary one: as the chapter explains in some
detail, it is instead precisely motivated by a need to square our theory with some striking,
long-run facts that are very hard, if not impossible, to explain without this theory. The
chapter also moves beyond Solow’s treatment by arguing that some parameters he treated
as exogenous constants—saving rates and hours worked—are better described as conscious
choices of households in a market environment. The chapter concludes with a preview of
the remainder of the text, emphasizing that virtually every chapter thereafter, dealing with
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the main, applied topics in macro (growth, business cycles, asset prices, labor markets, etc.),
build directly on the market version of the neoclassical growth model.
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Chapter 2

A framework for macroeconomics

The purpose of this chapter is threefold. First, we go through the main macroeconomic time
series, focusing primarily on their historical properties. We mostly use U.S. data and thus
encourage the reader to examine the corresponding graphs for other countries.

The second, and key, purpose of the chapter is to gradually introduce the basic framework—
the macroeconomic model—that will constitute the core tool in the textbook. Thus, each
graph will be interpreted from the perspective of the proposed framework. An underlying
assertion is that it is hard, if not impossible, to account for the data except with the kind
of framework we use. This framework goes back to Solow’s growth model and then builds
in conscious choices, such as firms’ choices of inputs, consumers’ choices for saving and
hours worked, later on the purposeful development of human capital and technology, and
so on. The emphasis on explicit choices necessitates a microeconomic approach, not just in
terms of theory but also in terms of the data we will look at; nowadays, much macroeco-
nomic research directly studies cross-sectional data (for households, firms, etc.). There is no
presumption that markets work perfectly. Instead, much of the analysis, especially when it
comes to looking at macroeconomic policy, centers around pinpointing specific weaknesses in
the functioning of markets. Finally, a key feature of the core framework is that it is quantita-
tive: the aim is to formulate a model that can account for the magnitudes of macroeconomic
phenomena and not just their qualitatively features.

The third purpose of the chapter is to be a stepping-stone into the rest of the text. Thus,
this chapter will offer a brief description of the topics studied in later chapters.

2.1 The facts and interpretations: real aggregates

In this section we document some basic facts relevant for macroeconomic analysis. The facts
are presented in a stylized manner; for example, the unemployment series will be described
as “stationary” and this term should not be interpreted in a statistical sense but rather as
a series that does not have a marked trend (toward, say, zero or one). Of course, the swings
in the series will be pointed out, including rather persistent ones. The main facts we go over
in this section, moreover, emphasize the longer run; short-run facts are discussed in more
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detail later. The growth facts we will focus most on are from the United States, but we will
show some data from other countries as well. They are, for the most part, referred to as
the Kaldor facts, but there is no strict adherence here to the facts originally pointed to in
Kaldor (1957).

2.1.1 Output grows steadily

One of the most remarkable facts in economics is the steady growth of output over the last
centuries. The path for (the logarithm of) real U.S. output is shown in Figure 2.1.1 The
figure reveals almost constant growth over more than a century and the swings up and down
seem minor from a bird’s-eye perspective2. The notable exception is the Great Depression
episode and the rebound after that, but after that hick-up the economy lands on “the same”
growth path again. Thus, our regular business-cycle movements, including the most notable
recent recession (the Great Recession, 2007–2009), are barely visible.

Figure 2.1: GDP per-capita in the U.S.

Notes: The figure plots GDP per-capita in 2011 prices in the U.S. 1840-2018. Source:
Maddison project.

One of our key goals now is to try to “account” for output growth, i.e., to provide a
theory that offers a deeper understanding of the remarkable fact in Figure 2.1. We do so by

1As discussed in the measurement section, systematic measurement did not begin until about a third into
the twentieth century. The Maddison database goes much further back and then output estimates are based
on available time series for, e.g., production, employment, and prices.

2A linear fit suggests that the series is well approximated by a annual growth rate of 1.86 percent. (Such
a linear fit obtains an R2 of more then 0.98.)
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focusing on the production side, i.e., how the basic inputs into production have evolved over
time. We also look at their prices.

2.1.2 The basic resources behind output—and their prices

We begin by looking at capital.

Capital input

As we shall argue, the process of growth is driven, at least in part, by capital accumulation.
Figure 2.2 shows the capital-output ratio in the U.S. since the late 1920s. Apart from a
marked jaggedness early on—during the Great Depression especially—we also see clear sta-
bility at a value of around 3. The measure for capital here is the standard one: “accumulated
investments, minus depreciation.”

Figure 2.2: Capital-output ratio in the U.S., 1929-2022.

Source: FRED. Numerator: Current-Cost Net Stock of Fixed Assets and Consumer
Durable Goods (K1WTOTL1ES000), Annual, Not Seasonally Adjusted, converted to bil-
lions of dollars. Denominator: Nominal GDP (GDPA), Annual, Not Seasonally Adjusted,
reported in billions of dollars, The figure plots the ratio between fixed capital and consumer
durables relative to the GDP.

The focus here is capital as an input into production. It is nevertheless interesting to
note that a broader interpretation of capital is wealth, which would include the value of
land, housing, and so on. In Figure 2.3, we show the wealth-output data as computed in
Piketty (2014).3 We see marked stability again, though large changes in the composition of

3We use his data starting 1880.
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the capital stock, toward manufacturing capital and, especially, housing, and a total that is
4–5 rather than 3.

Figure 2.3: Wealth-output ratio in the U.S.

Source: Capital in the 21st century, Chapter 4, Figure 4.10. Data here.

The price paid for using capital

How expensive has it been for producers to use capital over time? Most commonly, firms
buy capital and use it until they scrap it, or sell it in market for used capital goods. It
has become increasingly common for firms to instead rent capital (such as machinery or
buildings), in which case the price paid for the use of capital is clearly the rent. But due
to lacking systematic historical data on rents, measures of the cost of capital are instead
constructed based on (a minimum of) theory. One way is thus to look at a measure of the
returns on investments: on the margin, under competitive markets, this return should equal
the marginal cost of the investment: the price we are looking for. Thus, we can look at
stock-market returns as one measure of capital’s price. Using binned data on stock-market
returns—a return to investments in the capital of firms whose shares are publicly traded—
from three long time-periods, Figure 2.4 shows no strong trends. If one were to look at
shorter time periods, the variations in the stock market returns are of course very noticeable
and large. These fluctuations are likely due to changes in asset valuations more than to
changes in costs, which is why longer-run averages seem more appropriate.

Alternatively, one can attempt to measure the cost side, but also using theory. The
“user cost of capital” is based on the foregone return to saving: by buying and owning
capital, a firm is losing the return it would have received by merely saving the money. This
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Figure 2.4: Return on capital.

Source: Online Data from Robert Shiller, “Irrational Exuberance.” Annual, geometrically
compounded returns to U.S. Stock Markets.

measure also takes into account depreciation: a part of the capital is lost by using it, or needs
maintenance to be kept in good shape. Moreover, it takes into account capital’s change in
value over time; computers, while not physically depreciating, lose value on the used market
since new computers always out-compete old computers. Thus, the user cost is, roughly
speaking, a market interest rate plus depreciation plus a the fall in value.4 The user cost is
also stationary, but of course also includes short-run swings

Labor input

The second major input into production is labor. Employment is one measure of input, but
it is often relevant to take into account how many hours each employee works given that
hours worked vary widely and many people have more than one job. Hence, a common
measure of labor input is hours worked (in the marketplace) per adult. Various measures
are available and we will show two here. First, Figure 2.5 shows that, since the beginning
of the last century, hours worked per week have fallen, from around 28 hours to around
23 hours. Looking more closely at the graph, we see that since the end of World War
II, hours look rather stable, without a net downward trend. This is a fact that is often
referred to—that U.S. hours are stationary—but actually only accurate over the postwar

4Other factors can appear in a user-cost formula, such as the role taxation plays for capital income an in
deductions for depreciation.
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period. Second, we see very large departures from trend in the figure; during the Great
Depression, extreme unemployment rates account for the low hours, with a subsequent war-
related upswing. In the U.S., unemployment movements, which are large, account for a big
share of the movements in hours.

Figure 2.5: Average weekly hours worked in the U.S (age 14+)

Source: Francis and Ramey (2009). Data here.

Figure 2.6 shows hours worked over a longer time period, along with average real wages.
Here, the downward trend in hours is even clearer (the graph depicts hours per employed,
so the numbers are overall higher and do not account for changes in participation). The
cumulative decline is almost 50%.

Wages

Figure 2.6 also shows real wages. Wages have risen at a remarkable average rate of around
(or even above) the rate of output, with an exception in the most recent period. The secular
increase is not surprising in some general sense: the standards of living have, slowly but
surely, risen steadily for most Americans, and the major source of this rise is coming from
higher and higher earnings. Given that hours are not showing an upward trend—in fact, the
opposite—it must be that real wages have risen steadily. There are also some movements
in how total output is divided up into capital and labor income; we will discuss these later,
but the first-order aspect here is that the shares have been quite stable.
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Figure 2.6: Average weekly hours worked in the U.S. (Manufacturing)

Source: Period 1830-1880: Whaples 1990, Table 2.1. Period 1890-1970: U.S. Census
Bureau, “Bicentennial Edition: Historical Statistics of the United States, Colonial Times to
1970,” Series 765 and 803. Period 1970-2023: FRED, monthly series AWHMAN, annualized.
Wage data source: Period 1830-1888: Williamson 1995, Table A1.1, (1900=100). Period
1890-2023: FRED, quarterly series LES1252881600Q, annualized (1982-84 CPI Adjusted
Dollars) Note: Converted wage index in 1982-84 dollars from FRED to 1900=100 index by
multiplying the FRED series by the ratio of wage index in 1983 from Williamson with wage
index in 1983 from the FRED.

2.1.3 Taking stock: a “neoclassical” picture emerges

The data on capital and output had puzzled economists; in particular, the constancy of the
capital-output ratio at a value around 3 suggested something quite stark—it suggested a
rigid technology structure where labor played no role and capital and output were always in
the same proportions—and this was hard to square with how we knew that production took
place in practice.

Solow (1956), however, took a less immediate production perspective on these facts. He
noted what you saw in the previous two sections: there has been a steady rise in output, an
equally steady rise in capital with stationary, or even declining, hours worked. At the same
time, the price of capital has been stationary while wages have had a significant upward
trend. These facts did not, by themselves, appear mysterious. Solow in particular noted
that it is natural that as the price of an input rises, the use of the input declines. More
precisely, from the perspective of production theory, at a higher relative input price, a firm
uses less of that input relative to other inputs. Labor has become more and more expensive
relative to capital, and its use has fallen, again relative to capital: the capital-labor ratio
has risen at the rate of output growth, or even slightly more.
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The other side of the coin, which was important to address, is about accounting for
these changes in relative input prices: what made labor more and more expensive relative to
capital? One natural explanation would have its roots in technological change. In particular,
suppose it is directed toward labor: labor becomes more productive over time per unit of hour
worked. If capital and labor are complementary, this factor would lead to an increased value
of capital on the margin. However, as we saw, the market return to capital has remained
stationary—it has not risen. Solow noted, however, that the stationarity could be explained
by neoclassical forces. A production function that has decreasing marginal returns to each
input is labeled neoclassical and with such a production function, as the relative amount
of capital—capital used per worker—rises, the marginal value of capital would fall. If firms
buy inputs in competitive input markets, moreover, this would be reflected directly in the
market return to capital. Thus, a story emerges where technological change directed toward
labor, along with neoclassical forces, can, at least potentially, account for the historical data
on relative input quantities and relative input prices.

The neoclassical features led Solow to describe aggregate output as being generated by
an aggregate production function, with aggregate capital and aggregate labor as inputs.
Solow also posited, along the lines above, that the production function likely changed nature
over time—that there was some technological progress—and built a model around these
ideas; we will briefly describe this model momentarily but let us first focus on how, given
Solow’s perspective, one could take the next natural step: accounting for the sources of
aggregate growth as coming from growth in inputs and growth in technology. This accounting
procedure, along with the development of Solow’s neoclassical growth model, would allow us
to obtain a much less mysterious, and in fact quite natural and operational, account of how
output grows over time. As a matter of microeconomic theory, the existence of an aggregate
production function, i.e., a functional mapping from the total (economy-wide) quantities of
inputs only into some measure of aggregate output, is not easy to establish in general and
has also, as the box below discusses, been subject to some controversy.

The existence of an aggregate production function

There are assumptions under which a functional relationship can be established between
input quantities and a price-independent output measure. However, these assumptions
are extremely specific, indeed knife-edge, cases. Think of a static economy producing two
goods, x1 and x2, both from capital and labor but with different production functions;
also imagine that there are no restrictions on how inputs can be allocated across the
two sectors. Then if a relative price between x1 and x2 is assumed—let us call it
p—it is straightforward to see that a competitive equilibrium will generate a mapping
between the total input quantities and the value of total output: perfectly competitive
markets would allocate, or a planner could equivalently allocate, capital and labor so
as to maximize output. As the total amounts of capital and labor would vary, total
output would change. Thus, we would obtain a mapping from inputs to output. But
this mapping would nontrivially involve p: it would not be a pure production-function
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relationship. Thus, one would need to add a demand side, thus endogenizing p, to obtain
a pure mapping from input quantities to a measure of output. But then preferences (or
whatever gives rise to demand) need to be described, and they will generally, as would
p in a direct sense, influence the mapping. Thus, a pure production mapping is hard to
imagine.a

The existence and usefulness of an aggregate production function was hotly debated
in the so-called Cambridge capital controversy during the 1950s. This controversy, which
had its two head quarters in the two well-known Cambridges (the University of Cam-
bridge, U.K., chiefly represented by Joan Robinson and Piero Sraffa, vs. Paul Samuelson
and Robert Solow at MIT, Cambridge, Mass., U.S.), also involved the notion of “ag-
gregate capital,” but in essence it focused on the aggregate production function. The
controversy on the existence conditions can be summarized as having been won by Cam-
bridge, England, whereas the usefulness controversy was arguably won by Cambridge,
Mass. With the tools of modern macroeconomics, one can solve large models and see to
what extent departures from aggregation play an important role quantitatively. Some
such endeavors have been undertaken and point to limited departures, but no fully
systematic analyses have been conducted yet.

aIf you assume that the two production functions have identical isoquants—one is a scalar multipli-
cation of the other—then it is possible to construct the mapping, as a relative price p is implied from
the production technologies alone. Try to show this as an exercise!

2.1.4 Growth accounting

Solow (1957) introduced “growth accounting” as a way to implement the notion that one
could break down aggregate output growth into sub-components. With the use of a rather
limited amount of theory, Solow was thus able to quantify the relative importance of different
sources of U.S. growth.

Solow’s growth accounting made the following assumptions: (i) aggregate output Yt is
generated from an aggregate production function Ft(Kt, Lt), where Kt is aggregate capital
input, Lt aggregate hours worked, and the subscript t denotes that technological change
may move the production function upwards over time; (ii) F has constant returns to scale
(CRS) and neoclassical properties; (iii) there is perfect competition for inputs and, hence,
firms maximize profits. The CRS assumption, we know from microeconomics, leads to
zero pure profits in a perfectly-competitive equilibrium, which Solow thought was a good
approximation and, besides, being able to replicate production would at least ensure that
if all inputs double, output would double, so less than constant returns to scale was not
thought of as reasonable.

Throughout the text (when not otherwise noted), we will use the convention that lower-
case letters are in per-capita real terms. Thus, in this chapter we use yt to denote per-capita
output, i.e., Yt divided by the size of the population; denoting population by Nt, we have
yt = Yt/Nt. Note that, since Ft is CRS, we can write yt = Ft(kt, `t), where k and ` are thus
capital and hours worked per-capita terms. Most of the time in this chapter, beginning here
and now, we will also abstract from population growth and simply consider a population of
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constant size (Nt = N). It is sometimes convenient to normalize the population size to 1 so
that we have yt = Yt.

Given differentiability, we can write the total differential of output (with time subscripts
suppressed) as

dy =
∂F

∂t
dt+

∂F

∂k
dk +

∂F

∂`
d` =

∂F

∂t
dt+

∂F

∂k
k
dk

k
+
∂F

∂`
`
d`

`
,

where all the partials are evaluated at (t, kt, `t); for the purpose of this derivation, we also
treat time as continuous. Dividing by output, using r and w to denote capital’s rental rate
and the wage (the prices, as well as the quantities, also depend on time but this dependence
is omitted for notational convenience), and then using firm profit maximization, we obtain

dy

y
=
∂F

∂t

dt

y
+
rk

y

dk

k
+
w`

y

d`

`
.

Here, r and w replaced the two marginal products: this is what follows from taking first-order
conditions of the profit maximization problem

max
k,`

Ft(k, `)− rk − w`.

We finally let 1 − α denote labor’s share of income, which we know from NIPA; α here of
course may depend on time. Then the CRS assumption gives us the capital share as α: total
input costs equal output, thus delivering zero profits. This equation allows us to obtain an
account of the sources of growth:

dy

y
=
∂F

∂t

dt

F
+ α

dk

k
+ (1− α)

d`

`
. (2.1)

The term ∂F
∂t

dt
F

is labeled the Solow residual, because it can be calculated as a residual of
the growth in output that cannot be accounted for by the growth in capital and labor (the
second and the third term of the right-hand side). We see that output growth is a weighted
sum (over small intervals in time, as we have used derivatives) of capital input growth and
labor input growth, where the weights are their respective income, or cost, shares, plus the
Solow residual, which is a measure of how the production possibility frontier has moved out
over time.

The Solow residual in (2.1) expresses the direct effect of time on production (in percent-
age terms). In general, this effect depends on at which input pair (k, `) Ft is evaluated. If
one makes further assumptions on how technology shifts the production function, it is how-
ever possible to derive specific series for technological change that are independent of the
economy’s current capital-labor mix. We will discuss two such assumptions because they are
commonly used; they are by no means the only ones imaginable, but especially the second
one will play a key role later.

One assumption is to let Ft(Kt, Lt) takes the form ztF (Kt, Lt), where F (Kt, Lt) is a
time-independent function. In this case, equation (2.1) can be expressed as

dy

y
=
dz

z
+ α

dk

k
+ (1− α)

d`

`
. (2.2)
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Here, z is TFP: total factor productivity. It can equivalently be thought of as a common,
“Hicks-neutral” factor multiplying both inputs.5

Alternatively, we can make the assumption that technology is labor-augmenting : we
define Ft(Kt, Lt) = F (Kt, ztLt), again with a time-independent function F . Now z has a
different meaning. In this case, since ∂F

∂t
= ∂F

∂`
`, we can write the original growth-accounting

equation (2.1) as

dy

y
= (1− α)

dz

z
+ α

dk

k
+ (1− α)

d`

`
, (2.3)

after having replaced ∂F
∂`

by w/z and recognized that w` = (1− α)F .6

We now show some results from growth accounting, implemented the way Solow came
up with it. In practice, it is important to take into account how the quality of the inputs
change over time; in particular, one may want to adjust labor input to account for human
capital accumulation, or else part of the Solow residual will reflect the increasing quality of
this input.

We first look at the traditional measure of productivity: labor productivity. Figure 2.7
shows an average growth rate of a little below two percent per year, with significant ups and
downs; currently, we are in a down period.

Figure 2.8 shows a full time series (along with those for some other countries) over a
longer time period. These series are smoothed.

We thus see stable, positive labor productivity growth, hovering around two and a half
percent per year. How about the growth in total factor productivity? Figure 2.9 gives the
answer from two sources, now in un-smoothed form. Here too, we see growth at a little
below two percent per year, with significant movements up and down that we will return to
later.

Figure 2.10 shows smoothed data for TFP growth over a longer time period. The patterns
are similar.

2.1.5 The dynamic system

We are now equipped with measures of output and input aggregates, as well as with a measure
of aggregate technology, in the form of TFP. Solow’s next step was to use his framework to
probe further into the mystery of the all but constant capital-output ratio.

Step one in this endeavor was to explicitly link time periods (years) by noting that
tomorrow’s capital aggregate stock is today’s stock, plus new investment minus the part of
capital that has depreciated.7 With a constant rate of capital depreciation δ, this yields

kt+1 = (1− δ)kt + it. (2.4)

5This is true since we have assumed that F is homogeneous of degree 1 in (k, `).
6Similarly, one could define a capital-augmenting technology series by letting the z multiply capital.
7A similar accumulation equation can be formulated for human capital. We delay this discussion until

our chapter on growth.
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Figure 2.7: Labor productivity in the U.S., sub-periods

Source: Period 1889-1948: U.S. Census Bureau, Historical Statistics of the United States,
Colonial Times to 1970, Part II, Series W 1, pp. 948, see here.here. Period 1948-2023: U.S.
Bureau of Labor Statistics and FRED Quarterly total economy hours worked (in billions of
hours) series are from BLS “Hours Worked in Total U.S. Economy and Subsectors”. Data
here. Quarterly real GDP (in billions of 2017 dollars) is from FRED Real gross domestic
product (GDPC1).
Note 1: Data constructed following Robert Gordon (2012). Gordon defines “labor produc-
tivity as real GDP divided by an unpublished quarterly BLS series on hours for the total
economy, including the private economy, government, and institutions.” Percentage loga-
rithmic growth rates are calculated between the first quarter of each of the listed years, e.g.,
1948:Q1 to 1972:Q1. To extend the series back from 1948 to 1891, annual NIPA data on
real GDP prior to 1929 are ratio-linked to the real GDP data of Balke-Gordon (1989), and
the BLS hours data prior to 1948 are ratio-linked to the man-hours data of Kendrick (1961,
pp. 330-32).” Note 2: Unlike Gordon (2012), to extend the series back from 1948, we used
Census Bureau Hisitorical Statistics. Then the series for both periods are then re-indexed
to 1948=100.

We see an equation that is consistent with the long-run data, if all the variables appearing
in it grow at a common rate. We can rewrite the above equation as

kt+1

yt+1

yt+1

yt
= (1− δ)kt

yt
+
it
yt

and denoting the (net) growth rate of output as γt, this equation can be expressed as

kt+1

yt+1

(1 + γt) = (1− δ)kt
yt

+
it
yt
.
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Figure 2.8: Labor productivity for a selection of countries

Source: Bergeaud, A., Cette, G. and Lecat, R. (2016) “Productivity Trends in Advanced
Countries between 1890 and 2012,” Review of Income and Wealth (see here). Hodrick-
Prescott-filtered annual growth of labor productivity per hours worked. Note: Bergeaud et
al. (2016) states: “In order to establish the stylized facts of productivity growth, we smooth
the annual productivity growth rate over the period using the Hodrick–Prescott filtration
(HP). Considering the very high volatility of our data, the choice of the lambda coefficient,
which sets the length of the cycle we capture, is of paramount importance. Setting too high
a value for lambda would tend to absorb smaller cycles, while setting too low a value would
result in major cyclical effects being considered to be trends, especially around WWII. We
decided to focus on 30-year cycles, which implies a value of 500 for lambda, according to
the HP filter transfer function.”

Clearly, if capital, investment, and output all grow at a same constant rate γ and it/yt is
equal to a constant value s, then this equation is consistent with capital-output ratio that
does not change over time:

kt
yt

=
s

γ + δ

for all t. The investment-output ratio is not constant over time; in particular, it fluctuates
significantly. The consumption-output ratio for the U.S. is plotted in Figure 2.11; here,
consumption is defined as private plus government. One minus this measure is close to the
ratio of investment (again, private plus government) to output, since net exports are near
zero in the U.S. as a fraction of GDP.8 We see significant movements in s early in the 20th
century and thereafter small movements, possibly with a slight downward trend. But the
overall assumption of a constant investment, or saving, rate appears to be a good one.

8This comes from the national accounting identity Y = C+ I+NX, where C and I both contain private
as well as government expenditures.
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Figure 2.9: TFP in the U.S., two measures

Sources: Series 1: FRED, “Total Factor Productivity at Constant National Prices for
United States (RTFPNAUSA632NRUG),” reported by Penn World Tables. Available for
1955-2019 Series 2: Utilization-adjusted quarterly TFP series for the US Business Sector,
1948-2022 John G. Fernald, “A Quarterly, Utilization-Adjusted Series on Total Factor Pro-
ductivity.” FRBSF Working Paper 2012-19 (updated March 2014).

The above discussion allows a mechanical account of how one can interpret the capital-
labor ratio: it is a simple function of the rate of saving, the economy’s growth rate, and the
rate of depreciation of capital, along what has been labeled the balanced growth path. The
numerical values can be squared, too: with a depreciation rate of around 0.08 and a net
growth rate of around 0.02, a saving rate of 0.30 delivers a capital-output ratio of 3.

However, this account still does not give an answer to the question why: why is the
economy always (almost) at this value? That is, it explains if the capital-output ratio is 3 at
some point in time, it will remain 3. But why is it 3 to start with? Solow found an answer.

Solow considered the following dynamic system, which is the logical implication of the
above reasoning:

kt+1 = sF (kt, (1 + γ)t`) + (1− δ)kt
for all t. This system is almost exactly what we have looked at before. First, we have replaced
i by sy, since we take saving to be a constant fraction of output, in consistency with the
above evidence. Second, there are two additional assumptions: we have set hours worked
to a constant, `, and we have made technology growth appear only in a labor-augmenting
form, i.e., technical change is equivalent to raising labor input, or the quality of labor input.
This was based on the hunch above: if labor units become more and more productive due
to technological change, the return to capital does not have to fall due to a higher ratio
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Figure 2.10: Historical TFP for a broader set of countries

Source: Bergeaud, A., Cette, G. and Lecat, R. (2016) “Productivity Trends in Advanced
Countries between 1890 and 2012,” Review of Income and Wealth (see here). Hodrick-
Prescott-filtered annual growth of total factor productivity (TFP) per hours worked. Note:
Bergeaud et al. (2016) states: “In order to establish the stylized facts of productivity growth,
we smooth the annual productivity growth rate over the period using the Hodrick–Prescott
filtration (HP). Considering the very high volatility of our data, the choice of the lambda
coefficient, which sets the length of the cycle we capture, is of paramount importance. Setting
too high a value for lambda would tend to absorb smaller cycles, while setting too low a value
would result in major cyclical effects being considered to be trends, especially around WWII.
We decided to focus on 30-year cycles, which implies a value of 500 for lambda, according to
the HP filter transfer function.” TFP growth rate for years after 2012 is from OECD data.
OECD (2023), Multifactor productivity (indicator). doi: 10.1787/a40c5025-en (Accessed on
27 December 2023). Aggregate TFP growth rate for EU19 countries is calculated by taking
a weighted average of the growth rates of each country where weights are the share of each
country in the total GDP of the EU19 in each year. OECD (2023), Gross domestic product
(GDP) (indicator). doi: 10.1787/dc2f7aec-en (Accessed on 27 December 2023).

of capital to hours worked. It turns out that this assumption is actually crucial. Namely,
Uzawa (1961) proved that, for a production function of two inputs where one is limited—
labor hours, in this case, are constant—to admit exact balanced growth in a model of this
kind, technological change has to take this form.9 So we can obtain balanced growth if and
only if the above assumptions are met; whether labor input is constant or declining does not
matter.

9The proof of Uzawa’s important theorem can be found in Appendix 3.A, which discusses the Solow
model in detail.
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Figure 2.11: Ratio of total consumption to output

Source: BEA, NIPA Table 1.1.5 Calculated as the ratio of two series: Numerator: Sum of Personal
consumption expenditures (DPCERC) and Government consumption expenditures and gross in-
vestment (A822RC), Annual, Millions of dollars Denominator: Gross domestic product (A191RC),
Annual, Millions of dollars The figure plots the ratio between total consumption expenditures (sum
of all goods and services) relative to the GDP.

The dynamic system can be rewritten

(1 + γ)k̃t+1 = sF (k̃t, `) + (1− δ)k̃t;

the equation is obtained by means of a simple variable transformation—k̃t ≡ kt/(1 + γ)t, a
stationary variable if k grows at the net rate γ—and division by (1 + γ)t.

Now note, first, that there is a constant solution to this system: ¯̃k. It is the unique value
that (under some minimal conditions) solves

(1 + γ)¯̃k = sF (¯̃k, `) + (1− δ)¯̃k.

So in a situation where k̃0 = ¯̃k, we obtain k̃1 = k̃2 = · · · = ¯̃k. That is, capital grows at a
constant rate γ, since kt = k̃t(1 + γ)t. The same is then true for investment and output,

since yt = F (kt, (1 + γ)th) = (1 + γ)tF (¯̃k, h) follows when F is CRS.
We have established that if the initial capital stock has a particular value, this economy

will grow at a constant rate. However, the second, and most remarkable, thing to note about
this system is a convergence property. Solow showed, under very weak conditions, that for
any given initial condition on capital, the ensuing capital sequence, and hence the economy’s
aggregate variables will converge to the balanced growth path. We will explain this in detail
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in the next chapter. Intuitively, it is the neoclassical production function—the very feature
that was used to make sense of why a higher input price is consistent with lower input use,
and at the same time, under competition, a higher marginal productivity—that explains
convergence: when capital is comparatively low, growth is comparatively fast, because its
marginal productivity is high, delivering higher capital accumulation per unit of capital.
Conversely, when capital is high, its growth rate is low, so there is movement back toward
the balanced growth rate no matter where the initial capital stock is.

The neoclassical convergence mechanism de-mystifies why the value of the total capital
stock on average is worth roughly 3 times annual output: it doesn’t have to be exactly 3 at
all times, but deviations bring it back toward 3. It also produces a dynamic framework that,
as we shall see in the rest of the textbook, has become the workhorse model for macroeco-
nomics, much because it offers a coherent account of how the macroeconomic aggregates have
evolved historically. The analysis of business cycles, for example, builds on the neoclassical
framework with various stochastic shocks added to the dynamic system. These shocks could
be “supply shocks” or “demand shocks,” but they have in common that their propagation
through the economy—how the macroeconomic variables respond in the short run, which can
differ greatly across different kinds of shocks—eventually takes us back toward the balanced
growth path. This is ensured by the convergence property of the system.

The final, unresolved, issue is that some of our assumptions above are mere mechanical
descriptions of the data: investment is a constant rate s of output, and hours worked are
constant at `. In the real economy, these two features should be the results of conscious
choices made by households. Consumption choices are made continuously, and people can
influence how much they work. Moreover, a theory that adds consumer choice will also allow
us to make welfare statements, which the analysis so far does not. We will turn to households’
choices momentarily: we will “rationalize” the s and the ` based on microeconomic theory—
utility maximization. However, let us first briefly revisit the movements of input shares.

2.1.6 Input shares

On a balanced growth path, the shares of income paid to capital and to workers, respectively,
are constant. This is because in the theory Solow proposed, rk grows at the rate of output
(r is constant but k grows at the rate of output) and w` does as well (w grows at the rate of
output and ` is constant, at least over the postwar period). Thus, as shares of output, they
should be constant. Have they been? We see in Figure 2.12 that there is rather remarkable
constancy over time.

In the most recent years, a downward trend of the labor share can been noticed, however,
as is evident if the time interval is restricted. Figure 2.13 illustrates, for a few developed
countries, that the labor share has been declining. Figure 2.14 shows the same fact as a global
average. The downward trend has been subject to much scrutiny and research recently, but
for now we will maintain the stylized fact as “labor share is close to constant over time.”

Virtually all applied macroeconomic studies employ an aggregate production function
that is of the Cobb-Douglas variety, i.e., we have F (k, `) = Akα`1−α, where α is constant
over time. This function has the property that Fk(k, `)k/F (k, `) = α, i.e., the income shares

55



Figure 2.12: U.S. factor shares over time

Source: NIPA Table 2.1 Factor shares are calculated as compensation of employees and
capital income divided by personal income. Capital income is calculated as proprietors
income with inventory valuation and capital consumption adjustments plus rental income
of persons with capital consumption adjustment plus personal income receipts on assets.

under perfect competition are independent of the values of k and `. We see in the data that
although the shares are not literally constant, their movements are relatively minor, even as
economies go through recessions and booms. The Cobb-Douglas function thus conveniently
generates a decent approximation to the data, which is why it is so often used.

2.1.7 Summing up

We summarize the main stylized (notice the repeated appearance of the word “roughly” in
the descriptions below) facts:

1. output per capita has grown at a roughly constant rate

2. the capital-output ratio (where capital is measured using the perpetual inventory
method based on past consumption foregone) has remained roughly constant

3. consumption as a fraction of output has been roughly constant

4. the wage rate has grown at a roughly constant rate equal to the growth rate of output

5. the real interest rate has been roughly constant, seen over a longer period of time
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Figure 2.13: Labor share

Source: Karabarbounis, Loukas, and Brent Neiman. 2014. “The Global Decline of the
Labor Share.” Quarterly Journal of Economics, 129(1), 61-103. Note: No corporate labor
share data is available for Japan, thus total labor share is plotted instead. Moreover, the
plotted series for Japan looks different from the one in the paper.

6. labor income as a share of output has remained roughly constant

7. hours worked per capita have been roughly constant over the recent half a century.

These facts are consistent with aggregates obeying a neoclassical structure whose core is
a CRS production function with labor-augmenting technical change and decreasing marginal
products in each input, constant labor supply, a constant rate of capital depreciation, and a
constant investment-output (saving) ratio.

2.1.8 Rationalizing saving and labor-supply choices

We now discuss how macroeconomists theorize further to make sense of households’ observed
choices for saving and labor supply. The aim is to add a richer microeconomic structure that
is qualitatively, and quantitatively, consistent with the data. The central object here will
be utility functions and a key question is whether there are utility functions consistent with
the observed choices. A follow-up question is whether, given such utility functions, the main
dynamic properties—in particular convergence—will be maintained. We briefly address the
first of these questions in the present chapter and postpone the second until a later chapter.

Before we introduce utility functions, we will briefly discuss the population structure,
along with our general approach.
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Figure 2.14: Global labor share

Source: Karabarbounis, Loukas, and Brent Neiman. 2014. “The Global Decline of the
Labor Share.” Quarterly Journal of Economics, 129(1), 61-103.
Note: Global labor share of the corporate sector is the average of country-level labor
shares weighted by corporate gross value added measured in US dollars at market exchange
rates. Global labor share of the overall economy is the average of country-level labor shares
weighted by GDP measured in US dollars at market exchange rates.

Time and people

We begin with time and then describe our people.

Time The dynamic system above was described in discrete time, i.e., time periods are
integers. It is also possible to describe the system in continuous time (here, we would use t
as an argument of our functions and not as a subscript, e.g., y(t) vs. yt). The main workhorse
model developed in this book is using discrete time, mostly because we consider it somewhat
easier to teach.10 There is, however, no substantive difference between the two approaches
and both are common in practice.

Second, we will almost always assume that time is infinite; the main exception is when
we illustrate mechanisms in, say, two-period models. The reason for adopting infinite time
is mostly practical but to some extent also conceptual. The same economic structures as
we study under the infinite-horizon assumption can also be analyzed under the assumption
that time is finite. However, then there is a built-in non-stationarity: time itself obtains
importance—because it captures how far we are from “the end” and, certainly, if the end

10The reason is that it is easier to make concrete; for example, dynamic optimization can be more straight-
forwardly connected to basic optimization theory in one or more (a finite number of) variables; when there
are stochastic shocks, continuous time requires more investment still, and becomes a bit more abstract as
well.
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would be near, many decisions in the economy would change radically. So long as decisions
and outcomes today are not more than marginally affected by the exact end date, it is simply
more convenient to consider time to be infinite; then, time is not important in itself. Most
macroeconomic models with an end date T have the feature that T is virtually irrelevant for
decisions far from T (i.e., decisions at t� T ); when the models we look at do not have this
property, we will point it out.

People At any point in time, the economy is inhabited by individuals, or households, and
our maintained assumption will be that they are utility maximizers. By assuming utility
maximizers we mean we “rationalize” the choices we observe in the data by treating these
choices as optimal given well-defined utility maximization problems. Thus, we back out
how consumers must value consumption (and leisure) based on their own behavior. This
approach is powerful, since it allows us to make statements that directly reflect the welfare
of the population. In the analysis of economic policy, being able to make welfare statements
is crucial, since it allows us to compare policies on normative grounds.11

The most common macroeconomic model has a very stark, and highly stylized, descrip-
tion of the population: there are many identical individuals alive at any one point in time,
and these individuals, moreover, live forever. “Identical” here means that they have the
same utility functions and constraints and, therefore, face identical maximization problems.
“Many” is important in that it allows us to make sense of price-taking behavior, but the
number itself does not matter. “Live forever” sounds much sillier than it is: the notion here
is that people are representatives in a dynasty, i.e., a consumer at time t values not only her
own consumption but also that of her children, grandchildren, and so on. Given how people
appear to care about their children and grand-children—given the resources they spend on
them while alive and also in the form of bequests—it does seem a very natural starting point.
It should be pointed out that the assumption here is not just that people care about their
offspring: they are truly altruistic about their offspring. In other words, their preferences
are aligned. We will touch on the possibility that they are not later on in the text.

Of course, macroeconomic models with more explicit and realistic structures are also
common. First, building in a life-cycle pattern—since, at the very least, as a person ages,
needs and abilities change—is common.12 Then, the addition of children and altruism toward
them would still deliver a model that in its macroeconomic features is quite similar to the
simpler model. If life-cycle models do not have altruism toward children, such as in the simple
“overlapping-generations model,” they can (but do not necessarily) behave differently than
than dynastic model. We will discuss this in some detail too.

Second, nowadays a “heterogeneous-agent” framework has been developed and become a
very commonly used workhorse for macroeconomic analysis. In it, households are different in

11There is a strand of macroeconomic literature that builds in behavioral elements; after all, the literal
interpretation of the data that consumers make perfect decisions at all time is of course very strong. One
interpretation of this research is as a robustness check: if minor departures from rationality create major
changes in the results, we should perhaps worry. This research is ongoing and we have no systematic
treatment of it in this text.

12Death can then be modeled as deterministic or stochastic.
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a variety of ways (income, wealth, preferences, etc.). Such models share many properties with
the simplest dynastic setting, but of course also add richness. One aspect of these models
is that they allow us to jointly study macroeconomics and inequality. Another one is that
they behave quite differently (and, arguably, in ways closer aligned with the data) in some
respects, in particular in terms of how the economy responds to various shocks and to policy
changes. From our perspective here, however, the key observation is that heterogeneous-
agent models can be viewed as extensions of the dynastic representative-agent setting rather
than as fundamentally different. Third, some macroeconomic models also have richer models
of the household structure, explicitly incorporating couples and children. This is, so far, a
smaller literature, however.

Preferences

Households will be assumed to have utility functions that are time-additive, with consump-
tion in periods t and t + 1 evaluated as u(ct) + βu(ct+1), where u is strictly increasing and
strictly concave. Thus, the same function u is used for consumption in both periods, but
there is a weight β on t + 1 consumption. The fact that u is the same for both consump-
tion goods implies that consumption in both periods are normal goods: with more income,
consumers would like to consume more of both goods, which seems very reasonable in this
application.13 Another aspect of this setting is an element of consumption smoothing : there
is decreasing marginal utility to consumption in both periods so spending all of an income
increase in one period will in general never be optimal. Furthermore, β < 1 captures impa-
tience, or a probability of death—or any other reason for down-weighting future utility—and
will be a typical assumption.

Choice

An important part of the text will explain intertemporal choice from first principles: different
methods for solving intertemporal problems, with and without uncertainty, along with a
number of important macroeconomic applications. Here, the purpose is to very briefly
explain the key steps, heuristically, in order to account for the growth facts.

Conceptually, the way consumers make decisions—if able to choose when to consume
their income—is according to basic microeconomic principles: so as to set their marginal
rate of substitution equal to the relative price. We will now go through the two key choices
using these principles. Before looking at the specific choice examples, let us note that by
rationality, in the present context, we include the notion of perfect foresight : given that
no shocks are occurring, consumers know what prices prevail not only today but also in
the future. If there are shocks—and we will study shocks later in the text—rationality is
interpreted as rational expectations, i.e., knowing the probability distribution for variables
in the future.

13Try to verify this by showing that, if the income allocated to the two goods is increased and consumers
can choose between the goods freely, given a fixed relative price, both consumption levels will rise.
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Consumption vs. saving The relative price between consumption at t and t + 1 is the
real interest rate: it is the amount of goods at t+ 1 that a consumer can buy for one unit of
the good at t. We will denote the gross real interest rate between t and t+ 1 Rt+1 here. The
marginal rate of substitution between the goods can be obtained by defining an indifference
curve relating to these two goods. Thus, write u(ct) + βu(ct+1) = ū, take total differentials,
i.e., u′(ct)dct + βu′(ct+1)dct+1 = 0, and then solve for −dct+1/dct. Setting the resulting
expression equal to the gross real interest rate, we obtain

u′(ct)

βu′(ct+1)
= Rt+1.

This equation, which equivalently can be written

u′(ct) = βu′(ct+1)Rt+1,

is commonly referred to as the Euler equation and it is a central element of macroeconomic
theory. It says that an optimizing consumer sets the marginal utility loss of saving one con-
sumption unit for tomorrow (the left-hand side) equal to the gain tomorrow in consumption
terms (the right-hand side), that is, Rt+1 (the return on the savings) times the marginal
utility of each unit tomorrow, βu′(ct+1).

We argued above that a constant saving rate will imply convergence toward a constant
level of capital relative to technology, i.e., k̂t becomes constant—this is implied by Solow’s
analysis, which we will elaborate more on later. In particular, a constant saving rate is asso-
ciated with aggregate consumption growing at a constant rate. We also saw that balanced
growth requires a constant real interest rate. So the question now is whether individuals,
when faced with a constant interest rate, would choose a consumption path that grows at
a constant rate, despite the desires to smooth consumption over time. The question boils
down to whether the Euler equation could hold for constantly growing consumption, and we
now address this question.

Let us begin with the answer: there is a sharp characterization saying that the utility
function u is consistent with exact balanced growth if and only if it is a power function. It is
easy to verify the “if” part: u′(ct)/u

′((1 +γ)ct) becomes constant if u(c) is a power function,
and that constant contains the growth rate. Hence, under a power utility function a constant
interest rate will lead the consumer to choose a constant consumption growth rate. What
that growth rate is precisely depends on the interest rate, on β, and on the curvature of u,
but not on how wealthy the consumer is. The precise class of functions is captured by

u(c) =
c1−σ − 1

1− σ (2.5)

with σ > 0 and σ 6= 1; the case where σ approaches 1 yields u(c) = log c.14 The “only if”
result is harder to prove, but within reach; the proof is in the appendix to Chapter 4.

14To understand the σ = 1 case, take the limit as σ goes to 1 but use l’Hôpital’s rule. One obtains

limσ→1
d(c1−σ−1)/dσ
d(1−σ)/dσ = limσ→1

−c1−σ log c
−1 = log c.
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The above discussion has been carried out heuristically and in terms of simply selecting
two adjacent time periods, without reference to how many periods the consumer lives in
total. This discussion also means that the arguments above hold whether in dynastic or
overlapping-generation economies, or some combination of these, so that the restrictions
placed on preferences in order to be consistent with balanced growth hold rather generally.

Note that the utility-function characterization came from a requirement of exact balanced
growth. One could imagine growth paths that are asymptotically balanced and still match
our historical data. In the limit, however, the underlying utility functions would then look
like our u defined in equation (2.5).15

Let us summarize: in macroeconomic modeling, where consumption-saving choices are
viewed to come from optimizing consumers, the utility function employed in almost all
applications is a power function. This choice is made because we want our frameworks to
account for the basic historical facts. For utility functions that are not in this class, we would
therefore, for example, see very different saving rates 100 years ago than today; typically,
saving rates would go to zero or to one over time as the economy grows, and balanced growth
as observed in the data would not be possible.

Labor vs. leisure Turning to labor supply, the idea is to allow households to choose how
much to work. But do people choose how much they work? In many countries, work hours
are regulated, and your own specific employer may not offer you much choice. From the his-
torical, macroeconomic perspective, however, there is no doubt that labor supply is a choice.
First, we have seen that in the longer run, work hours per adult have fallen appreciably.
Second, looking across countries, a similar pattern emerges (one we will revisit later): house-
holds in rich countries work significantly less than do households in poor countries. These
patterns reflect differences (over time and across space) that involve both the intensive mar-
gin, i.e., how many hours each individual works when she works, and the extensive margin,
i.e., whether a given individual works at all and the fraction of her lifetime the individual
works positive hours. We thus see differences across time and space as reflecting choice and,
for example, labor-market regulations stipulating a 40-hour workweek should be seen as an
outcome reflecting people’s choice at the time these regulations were decided upon.16 In
sum, and especially with our long-run perspective, we consider the choice of how much labor
to supply as a very natural one.

In more concrete terms, and focusing on the intensive margin only, the period utility
function has to allow the agent to explicitly value leisure. Then, we can choose to have
leisure as an argument: u would depend on (c, l), where l is leisure.

We thus need to insist on balanced growth in consumption jointly with a constant labor
supply in the long run. We therefore need the condition ul(ct,lt)

uc(ct,lt)
= wt to be met at all points

in time on a balanced growth path where, as shown above, c and w grow at the same rate.

Let us begin with the requirement that work hours are constant along a balanced path,

15An example is u(c+ 0.01), where u satisfies (2.5).
16Of course, in countries that are not democratic, one could imagine that work hours are dictated. But

even then people’s preferences would likely play a role.
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as motivated by the postwar U.S. data. Then, just like in the above case, there is a sharp
characterization of what preferences are consistent with an exact balanced-growth path. In
particular, they are consistent with an exact balanced-growth path if and only if the utility

function is of the form u(c) = (cg(l))1−σ−1
1−σ , where g is strictly increasing and such that cg(l)

is strictly quasiconcave. It is again straightforward to show the “if” part—it is a matter
of looking at the Euler equation and the first-order condition for the hours choice jointly
and verifying that balanced growth is consistent with the derived equations—but, as before,
more demanding to show the “only if” part.

A second possibility is that we would like our theory to be consistent also with the longer-
run data and across countries with very different standards of living. This is actually possible,
since it also seems—though it was perhaps not clear from the earlier graphs—that as output
has grown at a roughly constant rate, hours worked have declined at a roughly constant
rate. The rate of hours decline is only, say, a third of a percent per year, but over time these
small changes accumulate and become visible. It turns out, moreover, that an outcome with
exact balanced growth where hours fall at a constant rate is possible as an outcome within

our framework if and only if the utility function satisfies u(c, l) = c1−σv(c
ν

1−ν l)−1
1−σ , ν > 0.

With technology and output growth proceeding at a net rate γ, we then have hours grow at
(1 + γ)−ν and consumption at (1 + γ)1−ν . Wages now grow slightly faster than output, and
the labor share remains a constant share of output.17

The case just mentioned collapses to the one described earlier with ν = 0. With ν = 0,
as wages grow along a balanced path, the substitution effect (making it more beneficial to
work at higher wages) exactly cancels the income effect (making it more attractive to choose
more leisure as income rises); if ν > 0, the income effect is slightly stronger. Thus, the
interpretation is that at lower levels of income, people work more because consumption is
more important to them.

In conclusion, we have now arrived at a utility-function specification that is (the only
one) consistent with choosing a constant saving rate and constant (or constantly declining,
at a low rate) labor supply in the long run. The precise population structure and the
length of households’ lives can, however, satisfy a variety of assumptions and our main two
applications below will be the representative-agent dynasty and the simplest overlapping-
generations model.

2.2 The rest of the text

In the next five chapters, we will go over the main macroeconomic tools: (i) the Solow
growth model (Chapter 3); (ii) dynamic optimization (Chapter 4); (iii) dynamic equilibrium
theory (Chapter 5); (iv) welfare (Chapter 6); and (v) uncertainty (Chapter 7). The methods
presented in these chapters are core material that will then be used and applied over and
over. The methods will also make the material discussed in the present chapter more precise;

17Constantly declining, or growing, hours worked do not pose a problem from the perspective of the
production side.
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for example, convergence in the Solow model will be discussed in detail, the maximization
problems of consumers will be fully described and a convergence theorem under optimal
saving will also be provided, a dynamic competitive equilibrium will be defined and charac-
terized in its application to the growth model, the welfare properties of such equilibria will
be discussed in some detail, and it will be made clear under what assumptions the methods
and results extend straightforwardly to the case of uncertainty.

The last methodological chapter, Chapter 8, goes over some materials on the empiri-
cal methods. The chapter also discusses the issues of how we quantitatively evaluate the
theoretical models in macro context.

We now very briefly discuss some of the key issues and contents in the applied chapters
that then follow in the second part of our text.

The applied issues: Chapters 9–22

Chapter 9: consumption This chapter looks more in detail at how key consumer choices
are made on the individual level. It will be made clear that the very simplest consumption-
saving model delivers predictions for marginal propensities to consume—these are a key
component of macroeconomic propagation mechanisms—that are hard to square with micro
data: they are too low. Imperfect insurance against individual shocks to labor-market
outcomes, an a priori plausible addition to the basic model, will change this and bring the
model closer in line with the data. At this point, heterogeneity will become an important
element of the analysis and the connection between macroeconomics and inequality will
appear for the first time.

Chapter 10: labor supply As just discussed in the present chapter, the choice of labor
supply can be seen as an extension to basic consumption theory. Allowing for both an
extensive and an intensive margin of choice is of particular relevance, the former referring
to whether or not to work at all and the latter to how many hours to work, conditional
on working. Given this foundation, it is of significant interest to understand how labor
choice varies with wages: the wage elasticity of labor supply. There are different notions of
elasticities and they are useful in different contexts, with a particular distinction between
how hours vary over time in response to wage changes and how hours vary across countries.
Another key distinction that will be discussed is individual vs. aggregate labor supply.

Chapter 11: growth Now the wide disparity of incomes across countries will be ad-
dressed. What explains why many countries remain poor, and more generally how do the
distributions of GDP, consumption, and other key variables across all countries in the world
evolve over time? What is the role of technological progress, and what determines it? Hu-
man capital accumulation and its role in the growth process will also be discussed. Relative
to the material in the earlier chapters, this chapter will introduce some additional features
and, at the same time, flesh out quantitative predictions and compare them with data. At
the end of the chapter, there will be an attempt at providing quantitative answers to the
core growth questions.
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Chapter 12: real business cycles Already in Chapters 3 and 7 there are some glimpses
into how the neoclassical model fares when the economy is hit by random shocks. The so-
called real business cycle (RBC) model, as laid out by Kydland and Prescott in their 1982
paper, proposed that macroeconomic fluctuations are indeed to an important extent a result
of unforeseen changes (mostly increases in) technology. In addition, and even more impor-
tantly, their paper introduced quantitative, microeconomics-based macroeconomic theory
as a tool. Their idea was to formulate a stochastic, dynamic general-equilibrium (DSGE)
model, solve it numerically for parameter values that were plausible given micro data and
long-run facts, and then use it to address macroeconomic phenomena such as fluctuations
and the effects of policy changes. Virtually all analyses of macroeconomic fluctuations since
have adopted their approach, though many of the frameworks that came later departed in
various ways from Kydland and Prescott’s basic RBC model. In particular, many other
shocks were proposed, money was introduced, and numerous frictions to how markets oper-
ate were included. This chapter thus begins by describing the key facts: how macroeconomic
aggregate fluctuate and correlate. It then describes the core model, if nothing else because
many of the later models treat it as a benchmark. What is the jury’s verdict on the role
of technology shocks in accounting for business-cycle fluctuations? This question will be
addressed in the later chapters. Finally, the chapter also discusses how to filter the raw data
in order to focus on the business-cycle frequencies.

Chapter 13: government So far, very little has been said about the government. The
U.S. government is sizable, and many other governments are much larger still as a share of
total expenditures or employment. Governments spend resources and make transfers aimed
at redistribution, e.g., from rich to poor and across age groups. The chapter will thus first
describe and discuss the key facts pertaining to government variables. Second, the chapter
will use our basic theory to examine, given some specified objectives, how different govern-
ment financing schemes compare, both positively and normatively? Taxation, for example,
tends to involve distortions, so some effort will be devoted to understanding its effects. Is
it important that the government runs a balanced budget, or does debt management even
matter? As a part of this effort, the chapter will give us an introduction to how one can for-
mulate optimal policy problems aiming to maximize consumer welfare while being restricted
to the use of distortionary taxes.

Chapter 14: asset prices The previous chapters will have studied many intertemporal
issues, including borrowing and lending, but the analysis of asset markets, and the deter-
mination of asset prices in particular, is important in its own right. The chapter will thus
describe the key facts—for example, asset prices fluctuate “wildly” and risky assets pay a
much higher return on average than do riskless assets such as U.S. Treasury bonds—and then
proceed to analyze these facts through the lens of our basic theories. A core framework is
the so-called consumption Capital Asset Pricing Model (CAPM), which derives asset prices
and their stochastic features in relation to explicit household choices over its stochastic con-
sumption path. An asset of specific relevance is housing, which will also be discussed in some
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detail both empirically and using quantitative theory.

Chapter 15: money A very particular asset is fiat money. “Fiat” refers to the fact that
money is intrinsically without value and, nowadays, the value of money is in no sense backed
by any real objects (as it was historically in many economies: its value was backed by gold).
This raises the question of why it has value at all. From this perspective, inflation means
that money loses value. The chapter will go over basic data on inflation and basic theories
of how the value of money can be determined. It will briefly touch on the determination of
exchange rates too; although the value of money in terms of real goods in any given economy
does not necessarily fluctuate much, exchange rates do and the chapter will briefly address
this volatility. A related concept is an asset’s liquidity, and we will very briefly describe the
Diamond-Dybvig model of banking, which offers a way of thinking of banks as transforming
illiquid into liquid assets, along with an associated potential susceptibility to “bank runs.”
The chapter, finally, will provide a bridge into the next chapter by explaining how money is
introduced in the so-called New-Keynesian model of business cycles.

Chapter 16: nominal frictions and business cycles Prices and wages appear to move
sluggishly on in the micro data. The chapter will begin by documenting some key facts on
this and also review some evidence suggesting that monetary policy can have real effects
because prices and wages are “sticky.” The New-Keynesian model will then be introduced
here. This model has become a workhorse for central banks around the world. It builds
on the RBC model but adds nominal frictions: costs associated with changing prices and
wages. The extension to the RBC model involves introducing long-lived firms with market
power: these firms set prices knowing that prices will be costly to change in the future. The
framework also has a description of how the central bank behaves; in particular it introduces
a notion of monetary “policy shocks,” as an additional source of macroeconomic fluctuations.
The chapter will also discuss the evidence on the role of monetary policy in accounting for
aggregate fluctuations.

Chapter 17: frictional credit markets By many economists, the Great Depression is
viewed to have in part been caused by frictions in the credit market, i.e., impediments to
borrowing for firms. Similarly, the 2007–2009 Great Recession is also considered to have
had its roots in financial-market malfunctioning. The chapter will begin by documenting
some correlations that suggest that financial frictions might be important. It will then
show how such frictions can be introduced into the core framework and how macroeconomic
propagation sometimes, but not always, changes nature in the presence of such frictions.
Policy measures to address the frictions will also briefly be touched upon.

Chapter 18: frictional labor markets Often, the rate of unemployement is even used
to define the business cycle: it is highly countercyclical—rises in recessions and falls in
booms. The chapter begins by reviewing not only the key facts on aggregate unemployment
but also on individuals’ movements in and out of jobs over time. It then introduces the
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most common framework for analyzing unemployment: the search and matching model. It
begins by looking at worker search and then introduces a full general-equilibrium model with
matching frictions as in Pissarides (1985). The resulting model is then confronted with data
and the so-called Shimer puzzle is introduced and discussed. Finally, the chapter shows how
the Pissarides model can be extended so as to incorporate capital accumulation and, thus,
as such can be seen as an important extension of our basic macroeconomic framework.

Chapter 19: heterogeneous consumers In this chapter, we discuss inequality between
households. The first part of the chapter views inequality as interesting in its own right
and, hence, reviews both data and theory. The focus is broad, thus covering labor-market
inequalities (wages, earnings, and hours) as well as inequality in consumption and in wealth,
and for each variable of interest it surveys the main theories. The discussion, again, aims to
be quantitative, i.e., the theories are evaluated based on how much of the observed inequality
they can plausibly account for. The second part of the chapter then turns around and asks
how inequality might matter for macroeconomic aggregates. We have already touched on one
way in which it could: to the extent a model with significant inequality generates a marginal
propensity to consume that is higher on average, it will alter many of the model’s predictions.
This is an active research area in macroeconomics; the HANK model—a Heterogeneous-
Agent New-Keynesian setting—in particular has already had significant impact in applied
monetary policy contexts.

Chapter 20: heterogeneous firms The introduction of the workhorse model is based
on an aggregate production function. Clearly, this is an abstraction, at the same time as it
hopefully offers a good approximation to the properties of a more realistic framework with a
multitude of firms. This chapter examines this issue, both by looking at data on firms and by
constructing models with firm heterogeneity. Like the chapter on household heterogeneity, it
discusses how firm heterogeneity suggests new mechanisms and thus add insight into how the
macroeconomy works. Two channels are studied in particular. One involving misallocation
of input factors across firms when there are frictions. The other makes specific assumptions
about firm size and discusses granularity: a notion of extreme firm inequality where some
very large firms can be relevant to the whole economy. The chapter also briefly touches on
markups and the degree of competition.

Chapter 21: international macro Many readers of this textbook will perhaps not pri-
marily feel at home in the “large, closed economy” version of our macroeconomic theories.
There are, in fact, even strong arguments to suggest that the U.S. economy of today is much
more dependent on the rest of the global economy than it used to be and, therefore, issues of
trade, exchange rates, and international borrowing and lending ought to take a more central
place than it does in many textbooks. The present chapter thus tries to make amends. In
particular, it builds toward an up-to-date international business cycle model with monetary
and other frictions. The focus is on conceptual issues and mechanisms rather than on a full
quantitative model.
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Chapter 22: emerging markets Yet many other readers may feel that the focus of our
text is on the highly developed, world-leading economies such as the U.S. while their interest
at least in part is in macroeconomic issues in emerging markets: countries that have opened
up to trade and hope to grow rapidly to begin catching up with the leading countries. These
countries are argued to have specific vulnerabilities, for example in their ability to borrow
in times of severe recessions; indeed sovereign default has been commonly observed, i.e.,
episodes where debts are not paid back and capital flight occurs. This chapter discusses
these issues, again as an extension of our workhorse model: what features need to be added,
or changed, to deliver a framework that can be used to study macroeconomic fluctuations
in emerging markets?

Chapter 23: sustainability The final chapter should concern all readers, independent
of country of origin, as it deals with global topics that have risen to the top of the political
agenda virtually everywhere: areas where human economic activity causes environmental
problems, such as climate change. The specific question of climate change concerns macroe-
conomics, as macroeconomic activity, at least historically, is closely tied to carbon dioxide
emissions—as a byproduct of using fossil fuels for energy generation. The chapter mostly
focuses on climate change and thus goes through the necessary basic natural-science back-
ground and the way in which climate and economics interact. A simple “integrated assess-
ment model” is developed and used to study how policy can be used to address the issue. A
brief discussion of natural resource use is also included.
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Chapter 3

The Solow model

One of the long-run economic facts presented in Chapter 2 is the stability of the capital-
output ratio Kt/Yt (where Yt represents aggregate output at period t and Kt represents
aggregate capital at period t) over time: capital is roughly three times annual GDP. Earlier
contributions of growth theory, such as the so-called Harrod-Domar model, considered this
stability as representing a technological property and incorporated it as one of the assump-
tions in the model. The capital stock, traditionally divided into structures and equipment
but nowadays also containing some intangible components (e.g., software), is one of the im-
portant production inputs, but it is of course not the only one. It is possible to produce
products in a very capital-intensive way, but clearly there is a choice and using labor—
different people’s time, skills, and effort—is the most obvious alternative, or complement.
Given the many possibilities in which production process can be set up, it is therefore not
obvious why, at the macro level, Kt/Yt is almost constant over time. As argued in Chapter
2, this was Solow’s starting point and he managed to resolve the tension between the stable
aggregate ratio and the intuitive notion that capital and labor are quite substitutable by a
sequence of insights that led both to the construction of a framework for studying macroe-
conomic dynamics and for measurement of technological change. The purpose of the present
chapter is thus to detail the Solow model: the basic assumptions underlying it and their
implications.

A central element in the Solow model is the aggregate production function. In the
aggregate production function, there are three economic variables that can affect the growth
of GDP: technology At, capital Kt, and labor Lt. The Solow model focuses on the endogenous
accumulation of capital Kt. We will see that Kt not only reacts to the saving rate but also to
At and Lt. After solving the model, which will deliver a stable capital-output ratio, we will
focus on two main takeaways: (i) the fundamental source of long-run growth in per capita
income is the growth in At; (ii) if all parameter values are common, different economies
converge to the same (both in terms of level and growth rate) income per capita in the long
run.
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3.1 The basic model

We start our exposition using the simplest version of the model, where there is neither
technological progress nor any growth in the size of the population or the skills of workers.
The centerpiece of the Solow model is the aggregate production function

Yt = F (Kt, Lt).

Note that we can interpret Yt as the GDP in this economy. We make the following assump-
tions for the function F (K,L):

1. F (K,L) is strictly increasing in both K and L.

2. F (K,L) is strictly quasiconcave in (K,L) (it has strictly convex isoquants).

3. F (K,L) exhibits constant returns to scale in (K,L): when K and L change to cK and
cL, with any c > 0, F (K,L) becomes cF (K,L).

4. F (0, L) = 0.

5. limK→0 F1(K,L) =∞, where F1(K,L) ≡ ∂F (K,L)/∂K.

6. limK→∞ F1(K,L) = 0.

Assumptions 5 and 6 are often called Inada conditions and are stronger than we need but
these assumptions simplify the exposition.1

In the basic model, we assume that the population is constant and that hours worked
per worker is constant, so that Lt is constant. We normalize both population and hours
per capita to 1; therefore, the only variable input for production is Kt, and because of this
normalization, we can write F (Kt, 1) = F (kt, 1), where we remind the reader that lower-case
letters are per-capita measures. Let us use f(kt) to denote F (kt, 1). Then the production
function can be expressed

yt = f(kt). (3.1)

The second important piece of the Solow model is the equation that describes the evolution
of the capital stock:

kt+1 = it + (1− δ)kt, (3.2)

where it is investment in period t. The existing capital stock loses value, δkt, while being
used, where δ ∈ (0, 1) is capital’s depreciation rate.

These two centerpieces are connected through individual behavior. First, the goods
supply yt is equal to the demand for goods, ct + it:

yt = ct + it. (3.3)

1We also assume that F is twice continuously differentiable. This means that first-order conditions to
maximization problems involving F can be differentiated and then generate continuous functions.
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Here, ct is consumption and it is investment (both per capita). Note that here we implicitly
assume (as in the large part of the following chapters) that goods are homogeneous and can
be used for both consumption and investment. Because output yt is also the total income
for consumers, it is either consumed or saved. Therefore, we know that total saving has to
equal total investment. In an open economy—where there is trade—this does not necessarily
hold. Finally, in this chapter section, we can interpret both c and i as including government
consumption and investment, respectively.

In the Solow model, instead of explicitly modeling the consumption-saving decisions of
consumers, the consumers are assumed to mechanically save a constant fraction of their
income, so that investment is given by

it = syt, (3.4)

where s ∈ (0, 1) is the constant saving rate. This behavioral assumption is relaxed and
replaced by consumers’ optimizing consumption-saving behavior in Chapter 4.

Inserting equation (3.4) into equation (3.2) and using equation (3.1) yields

kt+1 = (1− δ)kt + sf(kt). (3.5)

This difference equation expresses the dynamics of the capital stock kt over time. This is
the fundamental equation of the Solow model. Note that the only endogenous variable on
the right-hand side of the fundamental equation is kt. Therefore, the next period’s stock of
capital kt+1 can be determined only with the knowledge of the current capital stock kt, given
values of exogenous objects: the scalars δ and s and the function f . Note also that, starting
from a given k0, once we obtain the series of {kt+1}∞t=0 from the fundamental equation (3.5),
the time series yt = f(kt), ct = (1− s)yt, and it = syt can readily be obtained.

3.1.1 Steady state and dynamics

To analyze the difference equation (3.5), we first consider a special situation where kt is
constant over time. Call this situation the steady state and denote it with an upper bar:
kt = k̄ for all t. From the fundamental equation (3.5), the steady-state capital stock can be
determined by the solution of the equation

k̄ = (1− δ)k̄ + sf(k̄).

This equation implies δk̄ = sf(k̄). It is straightforward to verify that, under the assumptions
for the aggregate production function in the previous section, a strictly positive value of k̄
that solves this equation always exists and is unique. Graphically, plot the left- and right-
hand sides of the equation δk̄ = sf(k̄); the left-hand side is a straight line through the
origin with a positive slope and the right-hand side, which also starts in the origin, is strictly
increasing and strictly concave, with a slope of infinity at 0 and one that approaches 0 as
k̄ →∞. Clearly, we see that an intersection exists and is unique. The Inada conditions are
used here to guarantee the existence of k̄. In the context of the basic model and as pointed
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out above, the Inada conditions are stronger than necessary: they can be replaced by weaker
versions limk→0 F1(k, 1) > δ/s and limk→∞ F1(k, 1) < δ/s.

A particularly useful production function is the Cobb-Douglas production function: F (K,L) =
KαL1−α, so that f(k) = kα, where α ∈ (0, 1). This production function satisfies all assump-
tions we need, including the Inada conditions. With Cobb-Douglas production, k̄ can be
solved for analytically:

k̄ =
(s
δ

) 1
1−α

. (3.6)

From this expression, we can see that the capital stock in the steady state is increasing in the
saving rate s and decreasing in the depreciation rate δ. Because aggregate output (GDP) is
ȳ = f(k̄), ȳ is also increasing in s and decreasing in δ.

Now, let us use a diagram to analyze the dynamics of kt when k0 > 0 is not at the steady-
state level. Figure 3.1 plots the equation (3.5) with the 45-degree line (that is, representing
kt+1 = kt). In the figure, the intersection of (3.5) and the 45-degree line represents the
steady-state k̄.

Figure 3.1: Dynamics in the Solow model

In the figure, when we start from a given k0 on the horizontal axis, we can obtain k1 on
the vertical axis by using the (3.5) curve. By placing this k1 back on the horizontal axis and
using the (3.5) curve again, we obtain k2, and so on. This procedure yields the full time
series of the capital stock: {kt+1}∞t=0. One can easily verify the dynamics of kt exhibits a
global and monotonic convergence to k̄, regardless of the initial value k0. That is, whatever
the starting point is, the time series of kt gradually approaches k̄ over time.

The figure works very well as a graphical argument, but how would a mathematical proof
be put together? Suppose that kt < k̄. It is then straightforward to show that (i) kt+1 > kt
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(because sf(kt) > δkt when kt < k̄) and also that (ii) kt+1 < k̄ (because kt < k̄). Repeating
this procedure, we can see the sequence {kt, kt+1, kt+2, ...} is monotone and bounded by [kt, k̄].
From the Monotone Convergence Theorem, the sequence has a limit. The limit has to be k̄,
as the limit is unique under the conditions given.

Intuitively, the convergence occurs because the aggregate production function f(kt) has
decreasing returns to capital (Assumption 2 above). Equation (3.2), rewritten in terms of
the change in the capital stock,

kt+1 − kt = it − δkt,

reveals two forces that go in opposite directions: (gross) investment and depreciation. When
the total capital stock is small, output per unit of capital is large, and the constant saving
rate then implies that a large (gross) investment is made relative to the existing capital
stock. This process enables the aggregate capital stock to increase. As kt increases, output
per unit of capital becomes smaller due to the decreasing returns property, and when kt
is very large enough, the gross investment cannot cover total deprecation, δkt. Thus, the
investment force is stronger when kt is small and the depreciation force is stronger when kt
is large. This relationship is perhaps even clearer if we write the above equation in terms of
the growth rate:

kt+1 − kt
kt

=
sf(kt)

kt
− δ,

where we have replaced it = sf(kt). The assumptions f ′′(kt) < 0 and f(0) = 0 imply that
f(kt)/kt is decreasing in kt, generating the negative relationship between the investment
force of pushing up the capital stock and the level of the capital stock. In fact, when saving
behavior (as captured by s here) is modeled explicitly as a choice, s can counteract this force
toward convergence, but it turns out not to be strong enough to overturn the convergence
result. This issue will be discussed in detail in the next chapter.

Let us go back to our motivating fact: the stability of kt/yt over time. In the basic model
here, kt/yt is of course constant in steady state, as are all the variables. Below, however,
we will see that, even in a growing economy where kt and yt keep increasing over time, the
economy settles to a situation where kt/yt is constant over time.

In the Cobb-Douglas case above, the steady-state k/y ratio can be solved out as

k̄

ȳ
=
s

δ
.

Clearly, in the long run kt/yt is larger when s is larger and when δ is smaller.

Other kinds of dynamics

The growth model can, in principle, generate very rich (and complex!) dynamics if its neo-
classical feature is not present, i.e., if the production function is not strictly concave in
capital. There are applications in the economics literature that, in reduced form, have such
non-neoclassical features, and we now briefly illustrate how they can work.
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Endogenous growth Consider the situation where F1(k, 1) is uniformly above δ/s. Figure
3.2 below draws such an example. In this case, the steady state with k̄ > 0 does not exist,
and kt keeps growing larger over time. That is, there is unbounded growth “by itself”:
growth in endogenous. This concept will be discussed more in Chapter 11 below but in a
richer model where other production inputs can also be accumulated. Here, given that one
expects decreasing returns to each input—such as capital—it is hard to take this case very
seriously.

In the special (and illustrative) case where F1 is a constant—as illustrated in the graph—
we can think of output as linear in capital: yt = Akt, with no role for labor (make α = 1
in the Cobb-Douglas setting).2 Given that labor commands about two thirds of the income
from production, this setup does not seem empirically plausible. In a setup with endogenous
growth such as this, two identical countries starting out with different capital stocks will be
forever different; the gap between them, in percentage terms, will stay constant.

Figure 3.2: Endogenous growth in the Solow model

Poverty traps

Suppose that the production function is not globally concave in k: it has a middle sec-
tion that is convex. This could be true if there are some regions of k with increasing
returns, say, as a result of large infrastructure investments—the building of transporta-
tion networks. In such a case, the right-hand side of (3.5) will not be concave, and it

2One can imagine a role for labor if Yt = AKt + BL, which is CRS, but here labor would not matter
asymptotically if A > δ/s.
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may cross the 45-degree line multiple times, as illustrated in Figure 3.3 below.

Figure 3.3: Poverty traps in the Solow model

Clearly, in this case there are multiple steady states and at least one of the steady
states will then not be “stable”: kt will not converge to that steady state even when k0

starts very close to it (a small perturbation away from the steady state leads further
away from it). When there are multiple steady states, an economy can get stuck in
the steady state with a low k̄ (and thus a low GDP) when it starts from a low k0.
This situation is often called the poverty trap. The gap between a poor country with a
small k0 and a rich country with a large k0 may never close in this setting. In Figure
3.3, there are three steady states, k̄1, k̄2, and k̄3. Of these three, k̄1 and k̄3 are stable
steady states. When the economy starts from a very low k0, the economy converges to
k̄1 and gets trapped in it. To escape from the trap, the capital stock would have to
be pushed up to a larger level than k̄2, from which it would converge to k̄3. One way
to achieve this movement is to (temporarily) encourage very high saving. If the saving
rate is raised permanently so that the (1 − δ)kt + sf(kt) curve moves up sufficiently,
the steady states k̄1 and k̄2 will disappear and the economy converges globally to k̄3.
The growth/development literature does not appear to have identified sufficiently large
increasing returns leading to results of the kind described here, but it is an interesting
possibility.

Non-monotonic dynamics and chaos An even more radical departure from the
neoclassical setting is if f(k) declines in k at high levels of k. Conceptually, if a bakery
has no ovens, ovens have high marginal productivity, and as more ovens are added, the
marginal productivity declines, and it will become negative once there are so many ovens
in the bakery that there is neither space for bakers nor for the dough. This possibility
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is more esoteric in a macroeconomic context but let us nevertheless study it briefly. So
when f(k) decreases steeply enough, the right-hand side of (3.5) will become decreasing
in kt. Illustrating this graphically, we will see that convergence, if convergence is at
all possible, will not be monotonic.a In fact, kt can exhibit forever oscillating (or even
chaotic) dynamics.b An example of is drawn in Figure 3.4.

Figure 3.4: Complex dynamics in the Solow model

aLocally stable dynamics will occur if the slope at the steady state is less than 1 in absolute value.
bChaos is a mathematical term; it involves great sensitivity to initial conditions and forever non-

monotone behavior that never settles down to a repeated pattern (a repeated pattern could be a
two-cycle): it looks “random.”

3.2 The growing economy

Now we extend the model to the situation where At and Lt grow over time. In the previous
section, the long-run outcome was the steady state where there is no growth. This extension
is necessary for addressing the facts related to the growth issues described in Chapter 2.

We assume that the aggregate production function takes the form of

Yt = F (Kt, AtLt).

There are two changes from the basic model: first, we allow the labor input (population
times hours worked per person) Lt to grow over time. Second, and more importantly, we
allow for technological progress. In this production function, the variable representing the
technology level, At, is multiplied by labor input Lt. Technological progress thus takes a
form of improving the labor input, and AtLt is often referred to as the total number of
efficiency units of labor (or effective labor). This form of technological progress is labor-
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augmenting; it was introduced in the previous chapter.3 As was also asserted there, Uzawa
(1961) proved that labor-augmenting technical change is the only form of technical progress
that is consistent with exact balanced growth, that is, the growth path where aggregate
variables such as output and capital grow at a constant rate. Uzawa’s theorem is formally
stated and proved in Appendix 3.A.

We assume that the (net) growth rate of At is γ and that the growth rate of Lt is n.4

The same manipulations of equations as in the basic model yield

Kt+1 = (1− δ)Kt + sF (Kt, AtLt).

Dividing both sides by AtLt, we obtain

Kt+1

AtLt
= (1− δ) Kt

AtLt
+ s

F (Kt, AtLt)

AtLt
.

Let us define a new variable k̃t by

k̃t ≡
Kt

AtLt
.

Then, because the above equation can be rewritten as

At+1

At

Lt+1

Lt

Kt+1

At+1Lt+1

= (1− δ) Kt

AtLt
+ sF

�
Kt

AtLt
, 1

�
,

we obtain
(1 + γ)(1 + n)k̃t+1 = (1− δ)k̃t + sf(k̃t). (3.7)

Here, f(k̃t) ≡ F (k̃t, 1) as in the basic model. After the capital stock Kt is normalized by
AtLt, we thus obtain a very similar difference equation as the fundamental equation (3.5) in
the basic model. Once we characterize the dynamics of k̃t, we can “untransform” it into the
core macro variables Yt, Kt, and Ct.

3.2.1 Balanced growth and dynamics

The characterization of the fundamental equation (3.7) follows similar steps as for the basic
model. The concept corresponding to the steady state in the basic model is the balanced
growth path (some researchers still prefer to use the name “steady state” for the balanced
growth path, because the normalized variables are “steady” also in this case). Along the
balanced growth path, the normalized capital stock k̃t is constant, and typical economic
variables, such as Yt, Kt, and Ct, grow at a constant rate. Once again, we use a notation

with upper bar: k̃t+1 = k̃t = ¯̃k. The value of ¯̃k along the balanced-growth path solves

(1 + γ)(1 + n)¯̃k = (1− δ)¯̃k + sf(¯̃k).

3This form of technical progress is sometimes also called Harrod-neutral.
4n has two origins: a growing population and changes in hours worked per person, which we saw from

Chapter 2 is best characterized by a decline in the longer run.
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With a Cobb-Douglas production function we can obtain a closed-form solution:

¯̃k =

�
s

(1 + γ)(1 + n) + δ − 1

�1−α
. (3.8)

The dynamic property of the model can be analyzed similarly to the basic model. As in the

basic model, starting from any k̃0, {k̃t+1}∞t=0 converges monotonically to ¯̃k. In (3.8), the rate
of technological progress γ and the population growth rate n work similarly to depreciation:
maintaining a level of kt = Kt/(AtLt) is harder as A and L grow faster; i.e., each unit of
untransformed capital needs to grow faster, as if making up for depreciation.

In this framework, we can analyze how various economic variables grow over time. For
example, suppose Lt is simply population size (assuming that all citizens work one unit)
and then consider income per capita, defined as yt ≡ Yt/Lt. Because Yt/(AtLt) = f(k̃t), in

the long run, Yt/(AtLt) converges to f(¯̃k). Therefore, in the long run, income per capita
converges to

yt = f(¯̃k)At

and the growth rate of yt in the long run is

yt+1 − yt
yt

=
f(¯̃k)At+1 − f(¯̃k)At

f(¯̃k)At
=
At+1 − At

At
= γ.

The growth in technology At is essential in sustaining long-run growth in per capita income.
Surprisingly, no other parameters affect the long-run growth of per capita income. For
example, encouraging saving (an increase in s) does not affect the long-run growth rate of
per capita income in the economy. Note that this result does not mean that the change in
s does not have any effect on economic outcome: it has an effect on the level of per capita
income, rather than the growth rate. It also has an effect on the growth rate in the short
run (when the economy is not yet on the balanced-growth path).

In the short run, k̃t changes over time and its movement has an effect on the economic
outcome. For example, the growth rate per capita income is now

yt+1 − yt
yt

=
f(k̃t+1)At+1 − f(k̃t)At

f(k̃t)At
=
f(k̃t+1)

f(k̃t)
(1 + γ)− 1.

From the fundamental equation (3.7), we know that when k̃t <
¯̃k, k̃t increases over time,

that is, k̃t+1 > k̃t. Therefore, in this case, f(k̃t+1)/f(k̃t) > 1 and the growth rate of yt in the

short run is larger than γ. Similarly, when k̃t >
¯̃k, the growth rate of yt is smaller than γ. In

other words, the Solow model predicts that income per capita of a poor country grows faster
than at rate γ and that income per capita of a rich country grows slower than at rate γ in
the short run. This difference in growth rate is another representation of the convergence
prediction of the Solow model.
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3.3 Stylized facts and the Solow model

The model with growth, presented above, can match various stylized facts of economic
growth. First, going back to our motivating fact on Kt/Yt, because Yt/(AtLt) = f(k̃t) and
Kt/(AtLt) = k̃t are both constant along the balanced growth path, Kt/Yt = k̃tf(k̃t) is also
constant in the long run. Once again, the Solow model can replicate the constant Kt/Yt in
the data.

The first fact in Chapter 2 was the steady growth of the GDP per capita. As we have
seen above, the GDP per capita grows at the rate γ along the balanced growth path (towards
which the economy converges from any starting point). This fact, therefore, is consistent
with the Solow model with technological progress.

Another stylized fact is that the return to physical capital has been nearly constant.
Here, we need to first compute the return to physical capital in the model. Suppose that
firms maximize profit under competitive markets:

max
Kt,AtLt

F (Kt, AtLt)− rtKt − wtAtLt. (3.9)

Here, output is taken as the numéraire and the price is set at one. Therefore, F (Kt, AtLt)
is the revenue and rtKt + wtAtLt is the cost. Let us assume, for simplicity, that the capital
stock is owned by the consumers and rented to the firms with the rental rate rt. Thus, rt
represents the return to capital. The other component of the cost is the wage payment: wt
is the wage per efficiency unit of labor. From the first-order condition for Kt, the return to
physical capital is equal to the marginal product of capital:

rt = F1(Kt, AtLt).

Differentiating both sides of the equation f(Kt/AtLt) = F (Kt, AtLt)/(AtLt) with respect to
Kt, we obtain that

rt = f ′(k̃t).

Along the balanced growth path, therefore, rt is constant because the right-hand side is

constant at f ′(¯̃k).
Another prominent fact is the stability of the labor share and the capital share. The

capital share is equal to rtKt/Yt, and it can readily be seen that it is constant, because we
have already seen that both rt and Kt/Yt are constant along the balanced-growth path. The
labor share is wtAtLt/Yt. From the first-order condition of (3.9), the wage is equal to the
marginal product of labor:

wt = F2(Kt, AtLt).

When the production function has constant returns to scale, it is homogeneous of degree
one.5 Then it follows that production becomes

Yt = KtF1(Kt, AtLt) + AtLtF2(Kt, AtLt).

5Recall that a function f(x) is homogeneous of degree r (is H(r)) when f(sx) = srf(x) for all (s, x); here
x is a vector and r and s are scalars. If r = 1, it then follows, using differentiation with respect to s and
each element of x, that f(x) =

∑
i(∂f/∂xi)xi for all x.
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Dividing both sides by Yt, we obtain that the labor share is one minus the capital share.
Therefore, the labor share is also constant when the capital share is constant.

We can also confirm the stability of the labor share by direct calculation. As for the case
of rt, it can be shown, by differentiating f(Kt/AtLt) = F (Kt, AtLt)/(AtLt) with respect to
AtLt, that

wt = f(k̃t)− k̃tf ′(k̃t).
It can readily be seen that wt is constant when k̃t is constant at ¯̃k. Because AtLt/Yt =
1/f(k̃t), it is also constant along the balanced growth path. Therefore, wtAtLt/Yt is also
constant. Note that, for a Cobb-Douglas production function Yt = Kα

t (AtLt)
1−α, the capital

share is α and the labor share is 1−α regardless of the values of Kt and AtLt, and therefore
the factor shares are constant even outside the balanced-growth path.

3.4 Convergence

We have already seen that, in the Solow model, the economy monotonically converges to the
steady state (or balanced growth path). Here, we look at this convergence property more in
detail and take a quick look at the data.

3.4.1 Local properties: the speed of convergence

In the basic model, where we again set Lt = 1 and use the per-capita notation kt, the
fundamental equation (3.5) can be approximated around the steady-state as

∆kt+1 =
(
1− δ + sf ′(k̄)

)
∆kt, (3.10)

where ∆kt represents the deviation of kt from its steady-state value, that is, kt − k̄, when
the deviation is small.6 When the production function is in the Cobb-Douglas form, using
the steady-state solution (3.6),

∆kt+1 = (1− δ(1− α))∆kt

holds. Replacing ∆kt by kt − k̄ and dividing both sides by k̄, (3.10) can be expressed as

kt+1 − k̄
k̄

= (1− λ)
kt − k̄
k̄

,

where λ ≡ δ−sf ′(k̄) represents the convergence speed. A large value of λ implies that ∆kt+1

becomes smaller (in absolute value) more quickly, implying a faster convergence. This is
illustrated in Figure 3.5 below: a higher λ represents a flatter slope at the steady state and
“more steps until you reach steady state.”

In the Cobb-Douglas case, using (3.6),

λ = δ(1− α) (3.11)

6This is obtained from a first-order Taylor approximation of the expression around k̄.
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Figure 3.5: Slow and fast convergence

holds, and thus the convergence is faster when α is small and δ is large. Note that s does not
affect the convergence speed in this case. The convergence speed, in general, is affected by
how kt affects kt+1. In an extreme case, if kt has no effect on kt+1 (a flat line), convergence
is immediate. The parameter s has two opposing forces to this mechanism. For a given kt,
a large s implies a larger impact of kt on kt+1. However, the steady-state value of capital is
larger when s is larger, and thus the marginal product of capital at the steady state, f ′(k̄),
is smaller when s is larger, implying a smaller impact of kt on kt+1. These two opposing
forces exactly offset each other when the production function is in the Cobb-Douglas form.7

In the case with growth, the fundamental equation (3.7) can be approximated by

(1 + γ)(1 + n)∆k̃t+1 =
�
1− δ + sf ′(¯̃k)

�
∆k̃t. (3.12)

When the production function is in the Cobb-Douglas form, using the steady-state solution
(3.8),

∆k̃t+1 =

�
α +

(1− α)(1− δ)
(1 + γ)(1 + n)

�
∆k̃t

holds. The equation (3.12) can be rewritten as

k̃t+1 − ¯̃k
¯̃k

= (1− λ)
k̃t − ¯̃k

¯̃k
,

where the convergence speed is now given by λ = 1− (1− δ+ sf ′(¯̃k))/(1 + γ)(1 + n). In the
Cobb-Douglas case we obtain

λ = (1− α)

�
1− 1− δ

(1 + γ)(1 + n)

�
. (3.13)

7The Cobb-Douglas function is very convenient because it often simplifies the algebra and leads to simple
expressions. This simplicity, however, can be deceiving as we see here: the functional form often makes
fundamental forces going in opposite direction cancel. That is, under the surface there may be very strong
forces but, as if by magic, the Cobb-Douglas form makes them invisible.
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3.4.2 Cross-country data

Is convergence observed in the data? Recall that the convergence prediction implies that
a country that starts with a smaller per-capita GDP experiences faster subsequent growth.
Figure 3.6 plots this relationship across countries. The data is taken from the Penn World
Table 10.0 (https://www.rug.nl/ggdc/productivity/pwt/). The horizontal axis is per-capita
real GDP in 1960, which we take as the starting point. The vertical axis is the subsequent
growth rate (annualized using geometric averages) in per-capita real GDP from 1960 to 2019.
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Figure 3.6: All countries, 1960–2019

Source: Penn World Tables 10.0. The GDP variable used is RGDPNA.

One can immediately see that there is no systematic tendency for initially poor countries
to grow faster. The fact that there is no tendency for countries to converge, however, does
not imply a rejection of the Solow model. In fact, the Solow model does not predict that
different countries will always converge to the same balanced growth path (a phenomenon
called “unconditional convergence” or “absolute convergence”). Rather, it predicts that
countries converge if they share the same parameter values (“conditional convergence”). We
know, for example, that saving rates differ widely across countries and, at least over shorter
time horizons, it is reasonable to think that the growth rates of At also differ.

To examine conditional convergence, a useful exercise is to look at the same kind of
graph restricted to a smaller, and more similar, set of countries. Figure 3.7 thus plots the
same data as Figure 3.6, but only for the original members of the Organisation for Economic
Co-operation and Development (OECD). OECD was formed by high-income countries that
share relatively similar economic and political institutions, and we can expect the underlying
parameters in the Solow model to be relatively similar among these countries.
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Figure 3.7: OECD countries, 1960–2019

Source: Penn World Tables 10.0. The GDP variable used is RGDPNA.

For this set of countries, we observe a clear tendency for convergence: poor countries
in 1960 on average experience faster subsequent growth. Barro and Sala-i-Martin (2004,
Chapter 12) conduct a similar exercise across regions within countries, treating each region
as a different “country.” For U.S. states, Japanese prefectures, and European regions, they
find a clear tendency of convergence, supporting the prediction of the Solow model.

In a recent paper, Kremer et al. (2020) show that in recent years, the data actually show
a tendency for unconditional convergence. Figure 3.8 below repeats the same exercise as in
Figure 3.6 for the same set of countries, but setting the initial date to 2000. We can see
that some convergence (negative correlation) is observed in the recent years. The authors
argue that this tendency arose because some of the underlying factors that affect growth (the
factors that likely affect the growth rate of At), such as policies, institutions, and human
capital have become more similar across countries in recent years. In Chapter 11, we will
discuss this and many related issues in greater detail.

3.4.3 Quantitative use of the Solow model

What are the quantitative predictions of the model for convergence? To answer this question,
we need to assign functional forms and specific parameter values. This procedure will give
us a numerical value for λ in (3.13). Once λ is computed, one can of course also conduct
counterfactual experiments by simulating a hypothetical situation using the quantitative
model.
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Figure 3.8: All countries, 2000-2019

Source: Penn World Tables 10.0. The GDP variable used is RGDPNA.

If we are interested in the model’s quantitative predictions for the speed of convergence,
one way to proceed would be to simply see if it is possible to choose parameters so as to
hit the “observed λ” (e.g., as measured by the slope in Figure 3.7). More generally, one
could specify a full stochastic model, say, with explicit shocks to variables (such as At) and
estimate the resulting structure against the data we just looked at. Clearly, we could generate
a good fit in this case if we are free to choose parameters; for example, given any production
function, we could match the λ by an appropriate choice of δ. This choice, however, may not
be consistent with what we know about depreciation rates from microeconomic data. More
generally, we would like our model’s different components (functional forms and parameter
values) to be selected to be in line with microeconomic studies (and perhaps aggregate data
too). This way, the quantitative evaluation is disciplined. As briefly discussed in Chapter
1 above, a way forward is calibration. The procedure consists of two distinct steps, each
guided by data. First, we assign a parameterized functional forms to the unknown functions
in the model. In our case, the production function F corresponds to the unknown function.
Second, we assign specific values to the parameters. Because we use various moments (such
as means and variances) in the data to assign parameter values, this second step bears close
resemblance to estimation by the method of moments.

Before starting the calibration, we have to decide on the length of the time period. Here,
we are chiefly interested in movements in aggregates that occur over the medium run and
thus set one period to be one year. For the first step, we choose the Cobb-Douglas form,
used above, for the production function: F (Kt, AtLt) = Kα

t (AtLt)
1−α. As we have seen, this
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functional form yields constant factor shares, which is consistent with the rather striking
data on an absence of major movements in the shares. A Cobb-Douglas function is special,
however, in that it has the property that the substitution elasticity between inputs (capital
and labor) is equal to one, so we need to make sure that it is consistent with studies of
production functions, at least at a high level of aggregation.8 These studies rarely suggest
major departures from 1.

In the second step, we need to assign values to the parameters α, δ, γ, n, and s. Here,
we have implicitly assumed that the production function has constant returns to scale, i.e.,
that the sum of the exponents on capital and labor is one, so that it suffices to choose the α.
Before discussing the parameter selections, note that for the convergence speed λ in (3.13),
the information on s is not necessary. Below we will therefore skip assigning a value to s.

Calibration usually draws on multiple data sources. Overall, there are two methods of
assigning the parameter values based on data. First, if particular parameters have been con-
sidered as important objects for investigation elsewhere and we know plausible parameter
values from past studies, it is convenient to directly assign the parameter values accordingly.
Second, we can choose data moments that involve several parameters and assign parameter
values such that these moments, when generated by our theory, line up with observed mo-
ments. The first method can be considered a special case of the second method, because the
parameter values from past studies have to come from certain data moments used in these
studies. From this perspective, an alternative interpretation of the calibration procedure is
an implementation of the method of moments with multiple data sets.

We set the value of α from national income accounting. As we have seen from the previous
section, α corresponds to the capital share. From Figure 2.12 in Chapter 2, α = 1/3 is a
good approximation. We can set the value of γ from the long-run growth rate of per capita
income in advanced countries. The population growth rate n can be measured directly from
the data. Barro and Sala-i-Martin (2004, p.58) use γ = 0.02 and n = 0.01 as a benchmark
at the annual frequency. The fundamental equation (3.7) can be rewritten as

(1 + γ)(1 + n) = 1− δ +
It
Kt

,

where we used sf(k̃t)/k̃t = It/Kt. The investment-capital ratio in the U.S. economy is
about 0.076 (Cooley and Prescott, 1995) at an annual frequency. Given the above values of
γ and n, this equation implies δ = 0.046.9 Clearly, here, one could alternatively have used
depreciation rates directly from data on depreciation (by capital type, or from aggregate data
on depreciation rates) and then this equation would have implied a value for the average
size of I/K on a balanced growth path. Given the accounting practices and the fact that
capital remains at roughly three times annual GDP as time passes, on average investment

8The substitution elasticity is given by the percentage change in the ratio of the inputs when the ratio of
their prices change by one percent, i.e., −d log(K/L)/d log(r/w). Using the firm’s first-order conditions, we
can see that this expression must equal 1 for a Cobb-Douglas production function.

9Given that I/K = (I/Y )(Y/K), we could alternatively have measured I/Y—the saving rate—and
Y/K, which we know is about 1/3. Conversely, we can now obtain the implied I/Y as 0.076/0.33, which
approximately equals 0.23.
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precisely will have to make up for depreciation (taking population and technology growth
into account), so either way the number for δ ends up around 0.05.

With these values, we find that λ = 0.049. The empirical counterpart of λ is about 0.015
to 0.03 (Barro and Sala-i-Martin 2004, p,59), and therefore the Solow model over-predicts
the convergence speed. The model value of λ is about 0.02 if α is raised to 0.73. An argument
for a larger value of α is that a part of labor income is the return to human capital, which
can be accumulated in a similar manner as physical capital, and thus some part of labor
income should be included in the capital share. Relatedly, one can view At as an accumulable
factor—after all, technological development is often part of conscious investments into R&D,
and hence it too is a capital stock. These issues are returned to in Chapter 11.

Once the model has been assigned specific functional forms and parameter values, we
can also conduct quantitative experiments. Suppose, for example, the saving rate s equals
0.1. How would increasing s to 0.2 affect the normalized level of output along the balanced-

growth path, f(¯̃k)? With a Cobb-Douglas production function, we have already obtained

the solution for ¯̃k in (3.8). Inserting our calibrated parameter values, along with s = 0.1,

we obtain ¯̃k = 1.20 and f(¯̃k) = ¯̃k
α

= 1.06. When s goes up to 0.2, ¯̃k rises to 1.90 and

f(¯̃k) = 1.24. Therefore, doubling the saving rate from 10% to 20% increases the normalized
level of output by 17%, because 1.24/1.06 = 1.17. In addition, we could compute the
quantitative predictions for how fast output would rise to eventually reach a 17% higher
value.

3.5 Business cycles

The usefulness of the Solow model goes much beyond the study of economic growth; due to
its ability to account for the broad features of the macroeconomic data over our modern eco-
nomic history, it constitutes the core of macroeconomic modeling. A prominent illustration
of this is the fact that virtually all modern theories of business cycles build on a version of,
or elaboration on, the Solow model. Although business cycle theories are detailed later in
Chapters 12 and 16, we now briefly review how these theories are linked to the Solow model
and exhibit some of the key associated tools, such as impulse response diagrams.

3.5.1 Various theories of business cycles

The studies of business cycles are primarily the analysis of the arrival of shocks to the
economy and how the economy reacts to these shocks. The way the economy reacts to
the shocks is usually called the “propagation mechanism.” Once we introduce uncertainty
in Chapter 7, we can treat these “shocks” more precisely. Here, we consider a general
(exogenous and deterministic) movement in certain variables as the source of business cycle
fluctuations.

Below, first, we extend the basic model in several directions. In particular, we outline
how the Solow model can be modified and accommodate various shocks in three different
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business cycle models. Throughout we conduct the analysis in per-capita terms and, hence,
use lower-case letters.

� The first business cycle model is the so-called real business cycle (RBC) model. As
will be explained in Chapter 12, the RBC model provides a simple mechanism whereby
macroeconomic variables comove, as is clear in the data. The prototypical RBC model
considers the following aggregate production function

yt = AtF (kt, `t),

where `t is variable labor input, and considers a shock to At (often called the “neutral
technology shock”). That is, it assumes that At changes over time and the movement
of At is the source of the business cycle. For example, consider a model where At
switches around between two values, AH and AL, where AH > AL. When At moves
to AH , the economy starts moving towards the corresponding steady state. Then At
switches to AL, and the economy now moves towards a different steady-state value. We
can interpret these movements as business cycles: movements around some average.
Augmented with steady growth we would have movements around the balanced path.

Note that the production function in this section is different from the Harrod-neutral
form F (kt, At`t) earlier. Note that the distinction between Harrod-neutral techno-
logical progress and the Hicks-neutral technological progress is not essential when the
production function is in the Cobb-Douglas form: the Harrod-neutral production func-
tion kαt (At`t)

1−α can be rewritten as A1−α
t kαt `

1−α
t , and by defining Ãt ≡ A1−α

t , the same
production can be interpreted as the Hicks-neutral production function Ãtk

α
t `

1−α
t .

If we maintain the assumptions of the basic model, we have `t constant and it/yt = s
(and ct/yt = 1 − s) constant even with the shocks to At. These features are at odds
with the business cycle data. To accommodate the business cycle facts that (i) `t
comoves positively with the business cycle, (ii) it is more volatile than yt, and (iii) ct
is less volatile than yt, the basic equation would have to allow for the saving rate and
`t to react to At (and possibly to kt). The economy evolves, therefore, following the
difference equation

kt+1 = (1− δ)kt + s(kt, At)AtF (kt, `(kt, At)).

This is a modified form of the fundamental equation (3.5) of the basic Solow model.

� Next, we consider a different kind of shock. Suppose that the final goods market
clearing condition (3.3) is modified to

yt = ct + it/νt,

where νt moves over time (and often called the “investment-specific technological
progress”): when it is high, it is cheaper to produce investment goods. One can
think of this equation as reflecting the two-sector structure of the economy: yt and ct
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are measured in consumption goods, and investment goods have a production process
that can create it units of investment goods by using it/νt units of consumption goods.
The fundamental equation (3.5) can now be modified to

kt+1 = sνtF (kt, `) + (1− δ)kt;

this equation can also be extended to include endogenous s and ` as in the case of the
neutral technology shock.

� In the third example, we consider a very different model structure: one with “demand
shocks.” First, assume that ct is exogenous and that it moves around over time. The
movement of ct serves as the (demand) shock. Suppose, further, that we maintain the
assumption that it/ct = s/(1 − s). Because of this assumption, since s is constant, it
is proportional to ct and moves along with it. Therefore, the total demand for goods
is a function of ct:

ct + it =
1

1− sct.

When ct is not sufficiently large, ct + it would be less than the full capacity output
F (kt, `) (here we assume again that ` is given by labor-force participation: those who
want to work). Assume, then, that when there are demand shortages, total output yt
is determined by the demand side and so that a fraction ut of the labor force become
unemployed (therefore, ut is the unemployment rate):

yt =
1

1− sct = F (kt, `(1− ut)).

From the second equality, ut can be represented as the function of ct and kt: u(ct, kt).
The fundamental equation (3.5) can therefore be modified as

kt+1 = sF (kt, `(1− u(ct, kt))) + (1− δ)kt.

This framework is very Keynesian in spirit but clearly begs the question of how output
can end up below full capacity, and hence be driven by demand. In a well-functioning
market, this phenomenon could not occur. This book contains several chapters on fric-
tions that could lead to something like the setting just described, and it then becomes
central for policymakers to understand the exact nature of these frictions.

In all three cases above, we can represent kt+1 as a function of kt and a shock (At, νt, or ct).
This representation allows us to characterize the dynamics of kt (and other macroeconomic
variables, such as yt, ct, and it) in response to these shocks.

3.5.2 Impulse responses

One method of describing how the economic variables respond to shocks is to draw an
impulse-response function. Consider the RBC example above, with a Cobb-Douglas produc-
tion function, an exogenous saving rate, and fixed labor supply. Suppose that before period

88



0, the value of At is constant at Ā. After a sufficiently long time, the value of kt settles close
to the corresponding steady-state value k̄. Then suppose that at time 0, A0 is (ε × 100)%
higher, that is, A0 = (1 + ε)Ā. For t = 1, 2, 3, . . . , the value of At is At = (1 + ρtε)Ā, where
ρ ∈ (0, 1).

We can then generate the resulting time-path of kt, starting from k0 = k̄, with

kt+1 = sAtk
α
t `

1−α + (1− δ)kt, (3.14)

for t = 0, 1, 2, . . . . This time path is called the impulse-response function. The time-path
of At is drawn in Figure 3.9—the impulse—along with the response of kt. For the impulse-
response function for kt we use s = 0.2, δ = 0.046, and α = 1/3. The starting value of A
and the value of ` are normalized to 1. The initial value of the shock to A, ε, is 1%, and the
persistence ρ = 0.9.
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Figure 3.9: Impulse response: how At (left) affects kt (right)

In the figure, kt increases from its steady-state value of 9.066 to a maximum value of 9.089
and then gradually goes back to the steady-sate value: a hump shape. Three properties of
the graph are worthwhile emphasizing. First, the movement of kt is much slower than
the movement of At. The deviation of At becomes very close to zero around period 50,
whereas the response of kt is more persistent. Second, the magnitude of the response of kt is
significantly smaller than the impulse: the maximum deviation as a fraction to the steady-
state level is 9.089/9.066− 1 = 0.0025, that is, 0.25%. This magnitude is much smaller than
the initial At deviation of 1%. Third, kt eventually comes back to the steady-state value.
The convergence force is always at work when we consider the response to recurrent shocks,
as in the business-cycle examples.

Log-linearized impulse responses

Often it is more convenient to approximate the dynamics around the steady state by
a log-linarized system. Log-linearization expresses the system in terms of deviation of
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the logarithms of variables from their corresponding steady-state values. An arbitrary
variable xt can be expressed as

xt = x̄ex̂t , (3.15)

where
x̂t ≡ log

(xt
x̄

)
,

is the log deviation from the steady-state value x̄. Note that because

x̂t ≡ log
(xt
x̄

)
≈ xt − x̄

x̄
,

where the approximation is the first-order Taylor expansion around x̄, x̂t can be inter-
preted as the percent deviation from the steady state. Also note that

x̄ex̂t ≈ x̄(1 + x̂t) (3.16)

from the first-order Taylor approximation of the expression.

Consider the impulse-response experiment of the system (3.14). Using the transformation
(3.15),

k̄ek̂t+1 = sĀeÂt(k̄ek̂t)α`1−α + (1− δ)k̄ek̂t

holds. Using (3.16) and the fact that

k̄ = sĀ(k̄)α`1−α + (1− δ)k̄ (3.17)

holds from the definition of k̄, we obtain

k̄k̂t+1 = sĀ(k̄)α`1−α(Ât + αk̂t) + (1− δ)k̄k̂t.

Because equation (3.17) implies δk̄ = sĀ(k̄)α`1−α, this equation can be rewritten as

k̂t+1 = (1− δ(1− α))k̂t + δÂt. (3.18)

Let us again use λ ≡ δ(1 − α), which is the notation for the convergence speed in (3.11).
In fact, the log-linearization procedure here is essentially the same as the procedure for
obtaining the percentage deviation in the convergence section, in the sense that both are
applying the first-order Taylor approximation to (3.14).

The above impulse-response experiment corresponds to setting Â0 = ε and Ât = ρtε for
t = 1, 2, 3, . . . . Solving (3.18) with this specification yields

k̂t+1 =
t∑

τ=0

ρt−τ (1− λ)τδε = ρt
1−

�
1−λ
ρ

�t+1

1− 1−λ
ρ

δε.

Quantitatively, the log-linear approximation performs well in our calibrated model. The
maximum error (in the units of Kt) of the approximation is about 0.00001. If we were to
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plot the log-linear solution and the nonlinear solution in the same figure, the difference would
not be visible.

Applying the above log-linearization procedure to the production function yt = Atk
α
t `

1−α,
the log-deviation of output is

ŷt = Ât + αk̂t = ρt
αδ

ρ

1−
�

1−λ
ρ

�t
1− 1−λ

ρ

δε

for t = 1, 2, . . . (for t = 0, ŷ0 = Â0 = ε). This equation explicitly describes how yt moves
over the cycle, in response to the realization of the shock ε. Log-linearization allows us to
derive this explicit expression.

An alternative to the log-linear approximation is a linear approximation in levels. Let
the production function be AtF (kt, `t). Assuming that `t = 1 for any t and defining f(kt) ≡
F (kt, 1), the fundamental equation (3.5) (with the modification in the production function)
can be written as

kt+1 = g(kt, At),

where g(kt, At) ≡ (1− δ)kt + sAtf(kt). Using the notation we employed earlier,

∆kt+1 = gk∆kt + gA∆At,

where gk and gA are the partial derivatives of g(k,A) with respect to k and A, respectively
(evaluated at the steady state), and ∆kt = kt − k̄ and ∆At = At − Ā. When f(kt) = kαt , we

obtain gk = 1− δ(1− α) and gA = s
1

1−α δ−
α

1−αA
α

1−α .
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Chapter 4

Dynamic optimization

In the Solow model presented in Chapter 3, the evolution of the capital stock, along with
technological change, is the driving force of output growth. In the model, because agents
are assumed to save a constant proportion s of income, saving and, therefore, investment
decisions are exogenously given. Cass (1965) and Koopmans (1965) developed the first op-
timizing models of growth by adding microeconomic foundations, i.e., by describing how
saving comes about as a result of (rational) choice. These foundations were based on the
inter-temporal trade-off between consumption today and consumption in the future, also
known as the consumption-saving model. Augmenting the Solow model to incorporate en-
dogenous investment decisions by individuals gave rise to the “optimizing neoclassical growth
model,” which is nowadays at the core of modern macroeconomic theory. This model de-
livers the same long-run implications as the original Solow model, but because individual
utility is explicit, the model can also be used for analyzing normative issues (individual wel-
fare outcomes). In addition, because the decisions are forward-looking, we can obtain richer
policy implications even on the positive side. With the introduction of methods dealing with
stochastic model elements (“shocks”), it also serves as the foundation of the real business
cycle theory, which we will discuss in more detail in Chapter 12.

In this chapter, we introduce a simple dynamic optimization model and discuss the main
characteristics of this class of models. A key objective is to describe how to characterize
solutions to dynamic optimization problems, and to introduce discrete dynamic programming
methods. We work with a representative agent who faces a dynamic trade-off, meaning that
sacrifices today yield gains in the future. For example, in the standard consumption-saving
model, the agent can save today (reducing current consumption) in exchange for increasing
consumption possibilities in the future. In such a model, the saving rate s is endogenously
determined. When extending this model to incorporate production, saving and investment
are optimally determined. Because saving depends on income in the neoclassical growth
model, the level of capital and the productivity level will now affect the saving’s rate.

A key underlying assumption, first introduced by Milton Friedman in 1957, is that indi-
viduals are forward-looking. This means that they do not make decisions based just on their
current income (as in the textbook Keynesian model) but also considering their expected
future income. In other words, consumption and saving decisions depend on expectations.

93



Subsequent research on consumption also incorporated the idea of rational expectations,
which states that individuals use all the information available to them at each point in
time to make the best possible forecast about the future. While this assumption may seem
extreme, it is arguably a good first approximation to the average behavior of individuals
for important decisions in their lives. Deviations from rational expectations are studied in
behavioral economics, some of which will be discussed in later chapters of the book. In
the present chapter, we assume that agents are fully rational and forward-looking. Because
their future income is taken into account when making dynamic decisions, it is important
to determine the time horizon of their decision-making process. There are two common ap-
proaches followed in the literature: (i) agents live a finite number of periods, or (ii) agents
live forever. The latter is interpreted as a dynastic structure in which individuals alive
today care about the welfare of their descendants, as discussed later in this chapter. Be-
cause the infinite-horizon models require more mathematical sophistication, we start with
a finite-horizon model. We also discuss two alternative ways of solving dynamic optimiza-
tion problems: using sequential methods and using recursive methods. Sequential methods
involve maximizing over sequences. Recursive methods, also labeled dynamic programming
methods, involve functional equations. We begin with sequential methods and then move to
recursive methods.

4.1 A dynamic optimization problem

Economic decisions are made by agents. These could be: (i) individuals (or households)
deciding how much of a good or service to consume, (ii) firms choosing how much to produce,
or (iii) a government deciding on policy. In this chapter, we focus mainly on the decisions
of individuals. The problem of the firm is described in detail in Chapter 5, whereas the
government policy decisions are deferred to Chapter 13.

Agents live for T periods, and this time horizon can, in principle, be finite or infinite.
With reference to the next chapter, which deals with market economies inhabited by many
consumers, we assume that consumers are all identical, so we now study a representative
agent. This agent makes decisions over sequences of allocations in order to maximize
a lifetime objective. Allocations are quantities of goods or services, such as consumption,
hours worked, investment, etc. The typical dynamic optimization problem in sequential form
studied in macroeconomics takes the following form

max
{yt,xt+1}Tt=0

T∑
t=0

βtF̂ (yt)

s.t. xt+1 = h(xt, yt)

xt+1 ∈ Γ(xt).

(P1)

In this problem,
T∑
t=0

βtF̂ (yt) represents the objective function. The summation between

0 and T indicates that decisions must be made for each and all of those time periods. The
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function F̂ is the instantaneous objective, representing, for example, a per-period utility
function (for individuals) or profit function (for firms). The constant β is referred to as the
stationary discounting weights: it is our discount factor; 1

β
− 1 is the discount rate. They

are called stationary because the ratio between the weights of any two different dates t = i
and t = j > i only depends on the number of periods elapsed between i and j, and not on

the values of i or j. In other words, βt+k

βt
= βk.

The sequence {yt}Tt=0 represents the choice variables, sometimes referred to as control
variables. Examples of these are consumption, leisure, saving, and investment levels at
each point in time. The sequence {xt}Tt=0 represents the state variables. Examples are the
stocks of capital, debt, or housing. States and controls are related through the constraint
xt+1 = h(xt, yt). For example, h can reflect a budget constraint or a production technology.
The value of the initial state x0 is exogenously given. To differentiate states from controls,
notice that if an agent chooses y0 in period 0, the value of the state next period, x1, is
automatically determined from x1 = h(x0, y0) because x0 is exogenous.1 In period 1, the
choice of the control y1 determines the state in the following period, x2, and so on. In other
words, choosing the control variable optimally at t determines the value of the state variable
at t+ 1. Finally, Γ(xt) represents the feasible set which, given the value of the current state
xt, restricts the values that xt+1 can take; we will be specific on standard forms Γ can take
later.

For dynamic optimization problems to be well defined (i.e., for solutions to exist), we
need to make assumptions about the primitives of the model. Quite generally, we know from
basic math—the Weierstrass theorem—that a continuous function attains both a maximum
and a minimum when evaluated over a non-empty and compact set. A compact set (of values
for a finite vector) means that the set is closed and bounded.2 Sufficient conditions for this
theorem are that (i) F̂ (yt) is continuous for all yt, (ii) h(xt, yt) is continuous and, in its
second argument, strictly monotone for all (xt, yt), and (iii) Γ(xt) is non-empty, closed, and
bounded for all xt. Assumption (ii) ensures that we can express yt as a (continuous) function
of (xt, xt+1), which allows us to write the period objective as a continuous function of this
vector. Hence, we have an overall continuous function (of the sequence {x1, x2, . . . , xT , xT+1})
to be maximized over a non-empty, compact set.

The two most widely used models in macroeconomics are the consumption-saving model
and the neoclassical growth model (NGM). The agent’s objective in both models is to maxi-
mize lifetime utility choosing the optimal path of consumption. They differ in the production
structure and assets available to consumers. In the consumption-saving model, the agent has
a time-varying endowment, and can save or borrow at market prices. The NGM, instead,
considers the production structure from the Solow model but extends it by endogenizing
consumption and investment decisions. In order to fix ideas, it is useful to discuss the main

1Often, the problem explicitly says “with x0 given,” to emphasize that it is not a choice variable. However,
the fact that it is not a choice variable is already clear since it is not listed among them (under the “max”).

2By drawing simple graphical examples with non-continuous functions, open sets, and unbounded sets,
you can illustrate what can go wrong and why a supremum or infimum may exist but neither a maximum
nor a minimum exist.
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assumptions underlying these models and to map them into our generic formulation.

4.1.1 The consumption-saving model

In the consumption-saving model, there is a representative agent who lives for T periods
and must choose the optimal stream of consumption {ct}Tt=0, where ct denotes consumption
at time t. We can think of consumption at t as a different good from consumption at t+ 1.
Preferences are represented by a utility function U

(
{ct}Tt=0

)
. A standard assumption is that

this function exhibits “additive separability”:

U
(
{ct}Tt=0

)
=

T∑
t=0

βtu (ct) .

Additive separability implies that the marginal utility of consumption at t does not
depend on consumption at other times. Notice that the per-period (or instantaneous) utility
index u (·) does not depend on time either. The stationary discounting weights satisfy 0 <
β < 1, which is consistent with the observation that individuals seem to deem consumption
at an early time more valuable than consumption further off in the future. Formally, if
consumption were constant over time, i.e., ct = c for all t, the marginal utility of ct decreases
in t because u′(c) is multiplied by βt. Of course, consumption in the future can be more
valued on the margin if there is less of it, i.e., if it is sufficiently low relative to consumption
today.

We assume that the instantaneous utility function u(c) satisfies the following properties.

1. u(c) is strictly increasing.

2. u(c) is strictly concave.

3. lim
c→0

u′(c) =∞.

The first property states that individuals have positive marginal utility, u′(c) > 0. We also
assume that marginal utility of consumption is diminishing, or u′′(c) < 0. The last property
is an Inada condition, stating that agents have infinite marginal utility of consumption as c
approaches zero.

We abstract from preferences over leisure and, hence, the determination of the number
of hours worked (e.g., labor). These will be studied briefly in the next chapter, and more
in depth in Chapter 9. For now, we simply assume that individuals have an endowment of
one unit of time, and supply it inelastically to production. They are paid a wage wt, which
may vary over time. In addition, they have access to borrowing and lending. We denote
their level of assets with at, with the understanding that at < 0 indicates that the agent
has debt. For example, at = 10 means that another individual owes him or her 10 units of
the consumption good, so the agent is a lender, whereas if at = −10 then the agent owes
someone else that amount, so he or she is a borrower. The initial amount of assets is given
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by a0. The net interest rate earned on savings is rt. The budget constraint of the agent can
be written as

ct = wt + (1 + rt)at − at+1.

Borrowing allows the agent to consume more today (in the amount −at+1), but lowers
consumption in the future because he or she would need to pay the principal and interest on
the loan, (1+rt)at. A standard assumption is that agents cannot borrow more than a certain
amount, which is incorporated as the borrowing limit at+1 ≥ a, with a being an exogenous
constant. In addition, we impose that aT+1 ≥ 0 in order to eliminate the possibility that the
agent ends with a positive level of debt in the last period. Absent this constraint, the agent
would choose to borrow up to the limit and never pay back, which clearly could not occur
in equilibrium (since no lender would be willing to lend the funds in the last period). We
will further discuss the issue of the borrowing limit and the terminal condition later in the
chapter.

The dynamic optimization problem of the agent can now be written as

max
{ct,at+1}Tt=0

T∑
t=0

βtu (ct)

s.t. ct = wt + (1 + rt)at − at+1,∀t ∈ {0, ..., T}
ct ≥ 0,∀t ∈ {0, ..., T}
at+1 ≥ a,∀t ∈ {0, ..., T}
aT+1 ≥ 0.

(P2)

The key sequences to be optimally determined are consumption and asset holdings {ct, at+1}Tt=0,
to maximize the lifetime utility of the agent. We assume that agents know the sequences
of prices (wages and interest rates) when making decisions, and take them as given. We
defer the discussion of how these are determined in equilibrium to Chapter 5. The main
trade-off faced by the agent, then, is whether to consume today or to save (borrow) a unit
of consumption in exchange for 1 + rt+1 additional (less) units in the future.

This model can be mapped to the generic specification as follows: the per-period objective
F̂ (·) corresponds to the instantaneous utility function u (·), the control variables are given by
the consumption sequences {ct}Tt=0, and the states correspond to the level of assets xt = at.
The equation relating controls to states is the resource constraint, h(at, ct) = wt+(1+rt)at−
ct. The feasible set is given by Γ(at) = [a, wt + (1 + rt)at]. The lower bound ensures that
at+1 ≥ a, whereas the upper bound ensures that savings do not exceed current income so
that ct ≥ 0 for all t.

4.1.2 The neoclassical growth model

The utility function in the NGM is the same as in the consumption-saving model: an agent
wants to maximize his or her discounted lifetime welfare. The assumptions underlying the
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instantaneous utility function u are the same as in the previous section: the marginal utility
of consumption is positive but diminishing, and the Inada condition must hold.

What changes relative to the consumption-saving model is that this is not an endowment
economy, but a production economy instead. Rather than focusing on assets delivering an
exogenous return, we consider capital accumulation, where returns are determined by the
productivity of capital. The production structure is identical to the one in the Solow model.
Following what we learned in Chapter 3, we assume that technology can be represented by
the production function yt = f(k), where we have used the fact that aggregate labor L = 1.
From the properties of F (K,L), it is easy to show that f is a strictly increasing and strictly
concave function in k. In some applications, we relax the assumption to weak concavity in
order to accommodate linear production functions. Capital evolves as in the Solow model,
i.e.,

kt+1 = (1− δ)kt + it (4.1)

with k0 given. We abstract from population growth and technological progress to simplify
the exposition. The resource constraint is ct+ it ≤ yt, assuming that this is a closed economy
where savings are equal to investment. We can combine it with equation (4.1), substituting
away investment, to write the resource constraint in terms of consumption and capital:

ct + kt+1 ≤ f(kt) + (1− δ)kt. (4.2)

There are alternative ways to specify how the markets for labor, consumption, and capital are
organized. For example, we could consider firms who own the capital stock and accumulate
it over time. They produce output and sell it to consumers, who work in firms. Alternatively,
we could assume that agents own capital, make investment decisions, and rent it to firms
every period in exchange for a rental rate. These decentralized production structures will
be discussed at length in Chapter 5, where we also explain how prices are determined. In
Chapter 6, we show that as long as markets are perfectly competitive, the allocations (i.e.,
quantities of consumption, capital, and investment) in a competitive equilibrium are Pareto
optimal and solve the following planning problem.

max
{ct,kt+1}Tt=0

T∑
t=0

βtu (ct)

s.t. ct + kt+1 ≤ f (kt) + (1− δ) kt,∀t ∈ {0, ..., T}
ct, kt+1 ≥ 0,∀t ∈ {0, ..., T}.

(4.3)

The planner chooses allocations directly (note that there are no prices in the equations above)
to maximize the lifetime welfare of all agents in the economy. Because all agents are identical,
this objective is equivalent to maximizing the welfare of the representative agent. The key
sequences to be optimally determined are consumption and capital {ct, kt+1}Tt=0. The main
trade-off faced by consumers is whether to consume today or in the future. Any amount of
production that is not consumed can be saved, and therefore invested in new capital, yielding
future consumption through the additional amount of goods produced, f ′ (kt) + 1− δ. The
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rationale is analogous to that in the consumption-saving model. Because we assume strictly
positive marginal utility of consumption, the resource constraint always holds with equality.

We can map this model to the generic specification as follows: the per-period objective
F̂ (·) corresponds to the instantaneous utility function u (·), the control variables are given by
the consumption sequences {ct}Tt=0, and capital represents the states xt = kt. The equation
relating controls to states is the resource constraint, h(kt, ct) = f (kt) + (1− δ) kt − ct.
Finally, the feasible set is given by Γ(kt) = [0, f (kt) + (1− δ) kt]. The lower bound ensures
that kt+1 ≥ 0, whereas the upper bound ensures that ct ≥ 0. The next step is to discuss how
to solve for the optimal sequences.

4.2 Sequential methods: finite horizon

When the horizon is finite, T < ∞, it is possible to use the Kuhn-Tucker Theorem to
solve a sequential maximization problem (4.3). The associated Kuhn-Tucker conditions are
necessary and sufficient for an optimum if the objective function is strictly concave in the
choice vector and the constraint set is closed, bounded, and convex. Let’s start with the
simplest case, in a two-period economy.

4.2.1 A two-period consumption-saving model

Consider the consumption-saving model when T = 2, that the agent is borrowing constrained
a = 0, and that initial assets holdings are zero, a0 = 0. Moreover, let us consider a specific
example where, for illustration, the endowment profile is decreasing over time, w0 ≥ w1 and
the interest rate is time invariant, rt = r. The budget constraints can be written as

c0 = w0 − a1 and c1 = w1 + (1 + r)a1,

where we already used the fact that the lower bound on assets holdings binds in the last
period, a2 = 0. Intuitively, the representative agent will never choose to save in period 1 if
the economy ends in period 1. These constraints can be combined by replacing a1 from the
second period constraint into the first period constraint, and re-organizing terms, as follows

c0 +
c1

1 + r
= w0 +

w1

1 + r
.

This equation is known as the lifetime budget constraint. It states that the discounted value
of lifetime consumption (left-hand side) must be equal to the lifetime value of income (right-
hand side). Future periods are discounted by 1+r, the relative price of consumption between
periods 0 and 1. In addition, we have that a1 ≥ 0, which can alternatively be written as
w0 − c0 ≥ 0. The Lagrangian can be written as

L = u (c0) + βu (c1) + µ

§
w0 +

w1

1 + r
− c0 −

c1

1 + r

ª
+ λ{w0 − c0},
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where we introduced the Lagrange multiplier µ on the lifetime budget constraint and λ on
the non-negativity constraint. We do not need to consider the non-negativity constraints
on consumption because the Inada condition lim

ct→0
u′(ct) = ∞ ensures that the agent always

chooses ct > 0.3 The first-order conditions with respect to c0 and c1 are

∂L
∂c0

: u′(c0)− µ− λ = 0,

∂L
∂c1

: βu′(c1)− µ 1

1 + r
= 0,

and the additional Kuhn-Tucker conditions read

λ[w0 − c0] = 0 (4.4)

w0 − c0 ≥ 0 and λ ≥ 0. (4.5)

Consider an interior solution with w0 − c0 > 0, implying λ = 0. The assumption of a
decreasing wage path w0 > w1, strictly decreasing marginal utility of consumption, and a
mild assumption on β(1 + r) guarantee that the solution will indeed be interior. Combining
these conditions, we obtain the first-order condition known as the Euler equation

u′(c0) = β(1 + r)u′(c1).

The left-hand side captures the marginal cost of saving an additional unit (which causes a
decrease in consumption in the initial period). The right-hand side captures the marginal
benefit of saving, which is given by the discounted value of consumption in period t = 1
obtained through the returns to savings, 1 + r. Note that when β(1 + r) = 1, the agent
chooses to consume a constant proportion of lifetime earnings every period

c0 = c1 =
w0 + βw1

1 + β
.

Using the budget constraints, this in turn implies that w0 − c0 = a1 = w0−w1

2+r
> 0.4

4.2.2 Generic T -period model

When the budget constraint is non-linear in the state variables, it is not possible to construct
the lifetime budget constraint as we did in the example above. However, it is still possible
to use the Kuhn-Tucker theorem to solve the finite-horizon model, as the next result shows.

3The proof of this statement is straightforward and omitted for brevity.
4In the general case (where β(1 + r) = 1 or w0 > w1 may not be met), we can proceed by first finding

an interior candidate solution and then verifying whether or not a1 satisfies its constraint (in this case that
it be non-negative); if this works, it is a solution—given the strictly concave utility function and convex
constraint set. If a1 violates its constraint, set it equal to its boundary value and solve for λ, in order to
verify that it is non-negative.

100



Result 1 Consider a finite-horizon problem (P1), with Γ(xt) = [x, γ(xt)]. Now use the
constraint xt+1 = h(xt, yt) to solve for yt as yt = ĥ(xt, xt+1), replace it in the instantaneous

objective function, with F (xt, xt+1) ≡ F̂
�
ĥ(xt, xt+1)

�
, so that we obtain

max
{xt+1∈Γ(xt)}Tt=0

T∑
t=0

βtF (xt, xt+1) .

Suppose that F (xt, xt+1) is increasing in its first argument, decreasing in its second argument,
continuously differentiable, and jointly concave in (xt, xt+1). If

(i) F2

(
x∗t , x

∗
t+1

)
+ βF1

(
x∗t+1, x

∗
t+2

)
= 0, ∀t < T with

{
x∗t+1

}T−1

t=0
∈ int Γ(xt).

(ii) x∗T+1 = x.

Then the sequence
{
x∗t+1

}T
t=0

maximizes the objective.

We omit the proof of this result here. In our section on infinite-horizon optimization
below, we state the corresponding result for that setting and, in our appendix, prove it from
first principles. That proof can easily be adapted to the present, finite-horizon case.

The result states that it is optimal to choose the lower bound of the feasible set in the last
period, x, and that an interior solution for t < T satisfies the first-order condition (i), which
represents the Euler equation for the general model. This equation is sometimes referred
to as a “variational” condition (as part of “calculus of variation”): given two boundary
conditions xt and xt+2, we vary the intermediate value xt+1 so as to achieve the best outcome.
Combining these variational conditions, we notice that there is a total of T + 2 equations
and T + 2 unknowns, namely the sequence of states, plus the initial and terminal conditions.
This is called a difference equation in the sequence of state variables. It is a second-order
difference equation because there are two lags of x in the equation. Since the number of
unknowns is equal to the number of equations, the difference equation system will typically
have a solution.

4.2.3 The finite-horizon neoclassical growth model

In the NGM, we have that x = 0. Solving for consumption from the resource constraint and
inserting it into the objective, the problem can be written more compactly as

max
{kt+1}Tt=0

T∑
t=0

βtu (f(kt) + (1− δ) kt − kt+1) s.t.

kt+1 ≥ 0 ∀t ≤ T.

(P3)

Our assumptions on the utility and production functions ensure concavity of the objective
function and a closed, bounded, and convex constraint set, so that the assumptions guar-
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anteeing that there is a unique maximizer are fulfilled.5 As in the two-period consumption-
saving model, we are omitting the constraint ct ≥ 0, given the Inada condition in the utility
function.

The Lagrangian associated to our maximization problem (P3) is

L =
T∑
t=0

βt {u(f(kt) + (1− δ) kt − kt+1) + µtkt+1} ,

where we introduced the Lagrange/Kuhn-Tucker multipliers βtµt corresponding to the non-
negativity constraints on capital for each period t. The first-order conditions are as follows.

∂L
∂kt+1

: −u′(ct) + βu′(ct+1)[f ′(kt+1) + 1− δ] + µt = 0, t ∈ {0, ..., T − 1}. (4.6)

∂L
∂kT+1

: −u′(cT ) + µT = 0. (4.7)

The first-order condition in the last period is different from the previous ones because the
economy ends at that time. Finally, the Kuhn-Tucker conditions also include

µtkt+1 = 0, t ∈ {0, ..., T} (4.8)

kt+1 ≥ 0, t ∈ {0, ..., T}
µt ≥ 0, t ∈ {0, ..., T}.

Equation (4.8) is usually referred to as the complementary slackness condition; it par-
allels equation (4.4) above in the two-period consumption-savings problem. Because we
assumed that u (ct) is increasing in its first argument, equation (4.7) implies that µT > 0.
From (4.8) evaluated at t = T , we find that kT+1 = 0. This result establishes the terminal
condition for our maximization problem: consumers leave no capital for production after
the last period, since they receive no utility from that capital and would rather use it for
consumption during their lifetime. The insight is trivial here but will be relevant also when
we consider an infinite-horizon economy.

Given the Inada conditions, in particular lim
k→0

f ′(k) =∞ and lim
c→0

u′(c) =∞, it is optimal

to set kt+1 > 0 for all t < T . Hence, the non-negativity constraint on capital will never be
binding, implying that µt = 0 for t < T . Replacing this in equation (4.6) delivers the Euler
equation,

u′ [f (kt) + (1− δ)kt − kt+1] = βu′ [f (kt+1) + (1− δ)kt+1 − kt+2] [f ′ (kt+1) + 1− δ] , (4.9)

which holds for all t ∈ {0, ..., T − 1}. This, together with the initial condition k0 and the
terminal condition derived before, kT+1 = 0, determines the capital sequence {kt+1}Tt=0 (e.g.,
T +2 equations and T +2 unknowns). Because the first-order conditions are sufficient in the

5To show that the period objective is concave in (kt, kt+1), it is necessary to go beyond concavity in kt
and kt+1 separately: one needs to check that the Hessian is globally negative-definite.
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example, there is a unique solution to the difference equation (4.9) describing the evolution
of capital over time.

To interpret the key equation for optimization, it is useful to break the Euler equation
down in three components:

u′ (ct)︸ ︷︷ ︸
marginal cost

of investment

= βu′ (ct+1)︸ ︷︷ ︸
utility increase

per unit invested

· [f ′ (kt+1) + 1− δ]︸ ︷︷ ︸ .
return on investment

The left-hand side represents the marginal cost of investing one unit of consumption today,
generating a disutility loss of u′(ct). The right-hand side represents the marginal benefit of
this investment. Higher investment increases capital next period, which produces additional
output (plus un-depreciated capital) f ′(kt+1)+1−δ. This increases consumption next period,
with a discounted utility gain of βu′(ct+1).

4.2.4 Solving a finite-horizon model

We have seen how to derive the set of equations that will determine the solution to the
maximization problem. How does one solve these equations, however? Several methods are
available. The first one uses “backward induction”: starting at the final period, T , we can use
the resource constraint and the Euler equation iteratively moving backwards. This method is
illustrated in the following example, which is designed to yield closed-form solutions at each
stage (it is the only known example with strictly concave utility and production functions
that can be solved analytically).

Example 4.1 Consider a T -period economy where utility is logarithmic, u(c) = log c, the
production function is Cobb-Douglas f(k) = Akα, and there is full depreciation δ = 1. The
Euler equation (4.9) for t < T becomes

1

Akαt − kt+1

= β
1

Akαt+1 − kt+2

· αAkα−1
t+1 . (4.10)

The last term is the marginal product of capital f ′(k) = αAkα−1. Evaluating equation (4.10)
at period t = T − 1, replacing the terminal condition kT+1 = 0 in its right-hand side, and
simplifying delivers

kT =
αβ

1 + αβ
AkαT−1.

We can now use this result, together with equation (4.10) evaluated at period T −2, to obtain

kT−1 =
αβ(1 + αβ)

1 + αβ + (αβ)2
AkαT−2.
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Going backwards in time, it is possible to see that

kT−t =
αβ(1 + αβ + ...+ (αβ)t)

1 + αβ + ....+ (αβ)t+1
AkαT−t+1.

Using the fact that αβ < 1, we can use the properties of geometric series in the numerator
and the denominator to simplify this expression. That, together with a change of variables,
allows us to obtain a formula that describes the evolution of capital in closed form:

kt+1 = αβ
1− (αβ)T−t

1− (αβ)T−t+1
Akαt .

Consumption becomes

ct =
1− αβ

1− (αβ)T−t+1
Akαt .

There are a few characteristics of the solution that we would like to highlight. First, we
obtained an expression that, given the initial condition k0, fully describes the evolution of
capital, output, and consumption for the whole time horizon: the outcomes depend explicitly
on parameters and on k0. Second, we see that it is optimal to save (and invest) a proportion

st = αβ 1−(αβ)T−t

1−(αβ)T−t+1 of output every period. In contrast to the assumption of the Solow model,

the optimal saving rate depends on time (the time left to the final date T ). But, like in the
Solow model, the saving rate does not depend on the level of the capital stock. Two key
parameters determine the saving rate: the discount factor and the degree of concavity of the
production function. Third, although the utility function is strictly concave, consumption
is not fully smoothed: it will, in general, vary over time. The reason for the lack of full
smoothing is that the level of the capital stock influences the marginal return on saving
when the production function is neoclassical: the higher the capital stock, the lower is this
return. The Euler equation tells us that the higher the marginal return on saving, the higher
the consumption growth should be, implying that for capital stocks below (above) steady
state, consumption rises (falls) over time.6

It is possible to obtain analytical solutions in a few other cases; one is where the produc-
tion function is linear and preferences are represented by a u as given in (2.5); this function
is often called the Constant Relative Risk Aversion (CRRA) utility function.

Constant Relative Risk Aversion (CRRA) utility function

The CRRA function is one of the most commonly used additively separable utility
functions in macroeconomicsa

u (c) =
c1−σ − 1

1− σ where σ ≥ 0 and σ 6= 1

6The special case α = 1 means that the marginal return on saving is always A. Then, unless βA = 1, the
economy will grow or shrink over time at a constant rate, as will consumption. Consumption, along with
capital, will thus only be constant if βA = 1.
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It has, as special cases,

σ = 0 linear utility,

σ > 0 strictly concave utility,

σ → 1 logarithmic utility.

The limit case where σ → ∞ is the zero function. However, the relevant limit should
be seen as that obtained by raising

∑∞
t=0 β

tc1−σ
t to a power 1/(1− σ), in which case the

limit becomes a “Leontief function”: mint {ct}∞t=0.b

aWe do not consider uncertainty in this chapter, so the concept of the “relative risk aversion” is not
directly relevant. Here this term serves only as a label for a class of utility functions.

bThe stated utility function here is a monotone transformation of the original function and we know
that the behavior given by a utility function is preserved under monotone transformations.

The elasticity of intertemporal substitution (EIS) is defined as the percentage change in
consumption between periods t and t+ s in response to a percentage change in the returns
to investment between the same two periods:

EIS ≡

∂
( ct+s
ct

)
ct+s
ct

∂Rt,t+s
Rt,t+s

.

In the next example, we show that the CRRA function has a constant intertemporal elas-
ticity of substitution, which is equal to 1

σ
. For this reason, a CRRA utility function is also

sometimes referred to as a Constant Elasticity of Intertemporal Substitution (CEIS) utility
function.

Example 4.2 Consider a T -period economy where utility is CRRA, u(c) =
c1−σ − 1

1− σ and

the production function is linear ft(kt) = Rtkt. In this case, the Euler equation:

u′ (ct) = βu′ (ct+1)Rt+1.

Replacing repeatedly, we have

u′ (ct) = βku′ (ct+s)Rt+1Rt+2...Rt+s︸ ︷︷ ︸
≡ Rt,t+s

u′ (c) = c−σ ⇒ c−σt = βkc−σt+sRt,t+s

ct+s
ct

=
(
βk
) 1
σ (Rt,t+s)

1
σ .
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This means that the EIS becomes

∂
( ct+s
ct

)
ct+s
ct

∂Rt,t+s
Rt,t+s

=
∂ log ct+s

ct

∂ logRt,t+s

=
1

σ
.

When σ → 1, the relative expenditure shares ct/(ct+s/Rt,t+s) do not change: this corresponds
to the logarithmic case. When σ > 1, an increase in Rt,t+s would lead ct to increase and
investment to decrease: the income effect, leading to smoothing across all goods, is larger
than the substitution effect. Finally, when σ < 1, the substitution effect is stronger than
the income effect: investment rises whenever Rt,t+s increases. When σ = 0, the elasticity is
infinite and investment responds discontinuously to Rt,t+s.

Another, and absolutely central, reason that the CRRA utility function plays an important
role for us is that it is the only one that is consistent with balanced growth, as described in
Section 4.3.3.

4.3 Sequential methods: infinite horizon

In this section, we extend our model to infinite periods. The main advantage of an infinite
horizon is that the household problem becomes stationary: the maximization problem at
date t is exactly the same as in period t + 1 (for a given starting level of capital). This
property is in contrast to that in the previous section, where decisions were significantly
affected by how many periods the individual had left (see Example 4.1). A large number of
macroeconomic applications, particularly those studying the long-run evolution of aggregate
economic variables, use infinite-lived agents as their main building block.

For the typical models that macroeconomists use, the infinite-horizon version behaves
very similarly to the finite-horizon version when the latter’s remaining time horizon is long
enough.7 However, let us also discuss whether an infinite time horizon is a sensible as-
sumption: after all, people do not live forever. However, to the extent that individuals are
altruistic, they care about their descendants. Let u (ct) denote the utility flow to generation
t. We can then interpret βt as the weight individuals attach to the utility enjoyed by their
descendants, t generations down the family tree. Their total welfare is given by

∑∞
t=0 β

tu (ct).
As long as β < 1, agents care more about themselves than about their offspring.8

4.3.1 Mathematical considerations

Because agents are now choosing infinite sequences of consumption and investment, models
with an infinite time horizon demand more advanced mathematical tools.

7Game theory is a sharp contrast here: we know that an infinite horizon can then open up to the existence
of many equilibria, e.g., the trigger-strategy outcomes in repeated games.

8In this simple example we attach only one consumption level to each generation. The example could be
extended to the case where people of generation t consume in multiple periods; though more complicated to
formulate, this extension would be straightforward and the main insights would carry over.
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A basic question is whether the solution to the planner’s problem exists once choices
are no longer elements of the Euclidean space <T . In more general notation, suppose we
are seeking to maximize a function U (x), where x ∈ S and S is a set that includes infinite
sequences. If U is continuous, we can invoke the Weierstrass theorem, provided that the set
S is nonempty and compact. For finite sequences, continuity and compactness are defined in
standard ways. But for infinite-dimensional sequences, several issues arise. How do we define
continuity in this setup? What is an open set? What does compactness mean? Answering
these questions in detail is beyond the scope of this book; we refer you, for example, to
Stokey and Lucas (1989). For illustration, we will, however, provide some specific examples
where the maximization problem may be ill-defined (i.e., have no solution) unless a set of
necessary conditions holds.

Unbounded utility Continuity of the objective requires boundedness. A necessary con-
dition for the lifetime utility U to be bounded is that consumption streams do not yield
“infinite” utility. If two consumption streams do so, they cannot be compared and the
maximization problem is ill-defined. For example, consider a plan specifying equal amounts
of consumption each period, {ct}∞t=0 = {c}∞t=0, delivering U =

∑∞
t=0 β

tu (c). Clearly, this
function is unbounded (e.g., does not have a finite limit) unless β < 1.

This may not be sufficient, however. Suppose that the constraints allow for a constantly
increasing consumption stream {ct}∞t=0 =

{
c0 (1 + γ)t

}∞
t=0

. The lifetime utility is now U =∑∞
t=0 β

tu
(
c0 (1 + γ)t

)
. Even if β < 1 (so βt is decreasing to 0), the argument inside the

utility function is growing at rate γ. The shape of the utility function, hence, is key to
determining whether the maximization problem is well defined. In the case of a CRRA
utility function u (c) = (c1−σ − 1)/(1 − σ), we obtain a level of utility that is a geometric
sum. Hence, boundedness requires β (1 + γ)1−σ < 1. If σ < 1, so that there is less than
logarithmic curvature, this requirement involves an upper bound on γ for utility to be a
positive, finite number. If σ > 1, positive growth (γ > 0) implies that the boundedness
condition is met; with negative growth at a sufficiently high rate, it will not be.9

Constraint sets that are “too large” The problem can be ill-defined if the constraint
sets are “too large”. In the consumption-saving model discussed at the outset of the chapter,
we imposed the constraint that borrowing could not exceed the exogenous amount a. This
condition ensures that the constraint set is bounded, and hence that the problem is well
defined.

In some applications, however, imposing the constraint at+1 ≥ a for each t can be “too
restrictive”; it will rule out feasible borrowing. Instead, for example, we could only impose
that aT+1 ≥ 0, i.e., that the agent cannot borrow in the very last period. This terminal con-
straint is important: if this constraint was not imposed, any individual would have incentives

9Negative growth, i.e., γ < 0, does not occur in the context of our standard balanced-growth model, but
it can hypothetically occur if natural resources are assumed to be finite and essential for production. In this
case, utility could hence become unboundedly negative—recall that u is negative in this case—and there
may even be no allocation of resources with finite utility. For more, see Chapter 23.
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to accumulate an infinite amount of debt going into the final period. Such a restriction also
makes sense: knowing that the consumer would engage in such a scheme, no lender would
be willing to lend at any positive rate, as the loan would be defaulted with probability 1.

With an infinite horizon, a final-period constraint loses meaning in a literal sense. In-
stead, we impose a constraint that is its appropriate infinite-period extension, known as the
no Ponzi game (nPg) condition. In words, this condition rules out “borrowing at infinity,
measured in present value.” This requirement represents a restriction on the agent’s con-
straint set, preventing it from being so large as to allow the agent to attain arbitrarily high
utility. To see how the condition comes about, let us look at a simple example.

Suppose we endow a consumer with a given initial amount of net assets, a0, representing
claims against other agents. Additionally, suppose that the agent has no other sources of
income, so the budget constraint is

ct + at+1 = (1 + r)at,∀t ≥ 0,

where we assume that r > 0.10 Consider a candidate solution to consumer’s maximization
problem {c∗t}∞t=0. Absent further constraints, the agent could improve on {c∗t}∞t=0 as follows:

1. Let c̃0 = c∗0 + ε, with ε > 0, thus making ã1 = a∗1 − ε.

2. For every t ≥ 1 leave c̃t = c∗t by setting ãt+1 = a∗t+1 − ε(1 + r)t.

Given a strictly increasing utility function, the agent is clearly better off under this alternative
consumption allocation, which satisfies the budget constraint period-by-period. Because this
sort of improvement is possible for any candidate solution, there cannot be a maximum for
lifetime utility.11 Note that with this alternative allocation, the agent’s debt is growing
without bound at rate 1 + r, and it is never repaid. This type of scheme, borrowing (1 + r)at
every period t to keep rolling the debt, is often called the “Ponzi scheme” or the “Ponzi
game”. It is crucial in the infinite-horizon model to impose a constraint that rules out the
Ponzi scheme. A condition that works is the nPg condition in the following form:

lim
t→∞

at+1

(1 + r)t
≥ 0. (4.11)

Intuitively, the agent cannot engage in borrowing and lending so that their “terminal asset
holdings” (in present-value terms) are negative, because this means that they would borrow
and not pay back.

We can use the nPg condition to simplify, or consolidate, the sequence of budget con-
straints. To do this, solve for a1 from the budget constraint in period 1 and substitute the
expression into the budget constraint in period 0: we obtain a budget containing c0, c1, a0,

10Cases with r ≤ 0 can sometimes be relevant but we do not consider them here.
11One could imagine a maximum if an arbitrary upper bound is placed on consumption at each date, but

such ad-hoc assumptions are undesirable.
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and a2. Next, replace a2 in this expression by solving for it in the next budget constraint,
and proceed this way forward. After T substitutions, we obtain

T∑
t=0

ct
1

(1 + r)t
= a0(1 + r)− aT+1

(1 + r)T
.

Taking limits, we arrive at

∞∑
t=0

ct
1

(1 + r)t
= a0(1 + r)− lim

T→∞

aT+1

(1 + r)T
≤ a0(1 + r), (4.12)

where the inequality comes from the nPg condition. This is the lifetime budget constraint
in the infinite horizon model.

We motivated ruling out Ponzi schemes as a natural infinite-horizon extension of the
constraint aT+1 ≥ 0 in a finite-horizon model. There is also a constraint often labeled the
“natural borrowing limit.” It can be used both in the finite-horizon and the infinite-horizon
cases and it captures, precisely, the notion of a loosest possible constraint on borrowing:
the only restriction is that you are able to pay back, in a present-value sense, if you set
consumption to zero at all future times. In the particular model here, the natural borrowing
limit is zero at all times, but in general the constraint depends on the future stream of
non-asset income. This case is analyzed in Appendix 4.A.1, which shows that imposing
the natural borrowing limit, imposing the lifetime budget constraint, and imposing the nPg
condition are all equivalent.

Note that the lifetime budget constraint is often written with equality, i.e.,

∞∑
t=0

ct
1

(1 + r)t
= a0(1 + r), (4.13)

because, as we shall see below, limT→∞ aT+1/(1 + r)T will never be chosen to be positive, so
long as the utility function is strictly increasing. The reason is that assets do not themselves
contribute to utility, so it is always better to increase consumption as long as it is positive.
The inequality in the opposite direction of (4.11),

lim
T→∞

aT+1

(1 + r)T
≤ 0, (4.14)

therefore, is a part of the optimality condition. The condition (4.14) will be referred to as the
transversality condition (TVC). The equality (4.13) is the combination of the inequalities
(4.12) (which comes from the nPg condition (4.11)) and the TVC (4.14). The nPg and the
TVC are different in nature: the former is a restriction on what paths the consumer is allowed
to choose whereas the latter is a self-imposed condition—it is chosen by the consumer.

Let us now work out a full solution to the problem above.
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Example 4.3 Consider the infinite-horizon version of the consumption-saving model (with-
out borrowing constraints) given a logarithmic utility function u (c) = log c. The optimization
problem is:

max
{ct,at+1}∞t=0

∞∑
t=0

βt log ct

s.t. ct + at+1 = at (1 + r) , ∀t ≥ 0

nPg condition.

To solve this problem, replace the period budget constraints with a consolidated one eval-
uated at equality (hence, already using the TVC, i.e., the fact that it is not optimal to save
a positive amount, in present-value terms, at infinity):

∞∑
t=0

ct

�
1

1 + r

�t
= a0 (1 + r) .

With this simplification, the first-order conditions are

βt
1

ct
= λ

�
1

1 + r

�t
,∀t ≥ 0,

where λ is the Lagrange multiplier associated with the consolidated budget constraint. From
the first-order conditions it follows that

ct = [β (1 + r)]t c0, ∀t ≥ 1.

Substituting this expression into the consolidated budget constraint, we obtain

∞∑
t=0

βt (1 + r)t
1

(1 + r)t
c0 = a0 (1 + r)

c0

∞∑
t=0

βt = a0 (1 + r) .

From here, c0 = a0 (1− β) (1 + r), and consumption in the periods t ≥ 1 can be recovered
from ct = [β (1 + r)]t c0.

Sufficient conditions: the transversality condition (TVC) In general, the infinite-
horizon maximization problems involve the same mathematical techniques as the finite-
horizon ones. In particular, we make use of (Kuhn-Tucker) first-order conditions. In the
neoclassical growth model, these lead to a second-order difference equation, the Euler equa-
tion, defining a path for the state variable given the initial condition k0. But unlike in the
finite horizon case, where it was optimal to set kT+1 = 0, there is no final condition that
allows us to pin down the sequence of capital. Therefore, the difference equation that char-
acterizes the first-order condition may have an infinite number of solutions. To determine
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the solution, we need to make use of an additional optimality condition that we already
briefly discussed: the transversality condition. This condition, which we will now discuss in
more general terms, captures the principle that it cannot be optimal for an agent to choose
a sequence of capital involving, in present-value utility terms, a positive shadow value as
t → ∞. In the consumption-saving problem such behavior is clearly sub-optimal: lower
savings would be feasible and yield higher lifetime utility.

We will not prove the necessity of the TVC here. We will, however, provide a sufficiency
condition for a generic optimization problem. We will, moreover, offer a proof strategy
that also allows us to derive what form the TVC must take (it is not always obvious what
its precise form should be). The message of the following proposition is that if we have a
convex maximization problem (utility is concave and the constraint set convex) and a se-
quence {xt+1}∞t=0 that satisfies the Kuhn-Tucker first-order conditions and the transversality
condition, then indeed we have a maximum. Formally, we have the following.

Proposition 4.4 Consider the infinite-horizon version of the maximization problem (P1),
where we use xt+1 = h(xt, yt) to replace yt in the objective:

max
{xt+1∈Γ(xt)}∞t=0

∞∑
t=0

βtF(xt, xt+1).

If x∗t+1 ∈ int Γ(xt) for all t,

(i) Euler equation: F2

(
x∗t , x

∗
t+1

)
+ βF1

(
x∗t+1, x

∗
t+2

)
= 0 ∀t

(ii) TVC: lim
t→∞

βtF1

(
x∗t , x

∗
t+1

)
x∗t = 0,

F (xt, xt+1) is jointly concave in (xt, xt+1) and increasing in its first argument, and Γ(x) is
a convex set for all x, then

{
x∗t+1

}∞
t=0

maximizes the objective.

Proof. See Appendix 4.A.3

The proof is relatively mechanical: it repeatedly uses the Euler equation, (i), and a
definition of concavity, namely, that a concave function is always globally below its tangent
hyperplane. It thus shows that the stated sequence gives a higher value to the objective
than any other feasible sequence so long as a remaining inequality is met. That remaining
inequality is met when the TVC is satisfied: condition (ii) of the theorem.

In the neoclassical growth model, the partial derivative F1 (xt, xt+1) becomes u′(ct)[f
′(kt)+

1− δ], which corresponds to the marginal utility of increasing capital in period t. The TVC
thus reads

lim
t→∞

βtu′(ct)[f
′(kt) + 1− δ]kt = 0.

It states that the discounted present-value of each additional unit of capital times the stock
of capital has to be zero in the limit. If this requirement is not met, it would be beneficial
to modify the path of capital in order to increase consumption, generating higher lifetime
utility, without violating feasibility.
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In cases where a proposed chosen sequence becomes stationary in the limit—such as in
the neoclassical growth model without growth—the TVC is satisfied “automatically” so long
as β < 1. When consumption and capital grow, i.e., due to technical change, the condition is
less trivial. Under the form of utility that allows balanced growth, u (c) = c1−σ−1

1−σ , βtu′(ct)kt
will grow at the gross rate βγ1−σ, since both ct and kt grow at gross rate γ on a balanced
path. The transversality condition thus requires βγ1−σ < 1, which we recall is also the
condition that makes utility bounded.

It is yet again worth emphasizing that the transversality condition and the no-Ponzi
game conditions are conceptually distinct. The TVC (jointly with the Euler equation being
met at all times) is a sufficient condition for optimization. It states that the value of assets
cannot be positive in the limit, because the agent could otherwise be made better off by
reducing them. Hence, it is eliminating sequences that cannot be optimal by ruling out
over-accumulation of wealth.12 The nPg condition, on the other hand, is an institutional
constraint ensuring that the agent cannot have positive debt (in present value terms) in the
limit. An agent would want to choose to increase debt unboundedly if he or she were allowed
to violate it. The latter could not reasonably be thought to occur in a market economy and
therefore the constraint is imposed. In sum, the TVC is a self-imposed constraint ruling out
over-accumulation of assets, whereas the nPg condition is an externally imposed constraint
ruling out of extreme under-accumulation (exploding debt).

4.3.2 Solving the infinite-horizon neoclassical growth model

The infinite-horizon maximization problem can be solved taking the limit of the solution we
found in the finite horizon case, and making sure that the transversality condition is met.
A question, to which we will return later, is whether this model, like the Solow model, will
imply global convergence to a steady state. A preliminary inquiry involves finding the set of
steady states. This is straightforward: the Euler equation (4.9) implies that for any constant
positive level of consumption—which means that u′(ct) = u′(ct+1) can be eliminated from
the equation—we obtain

1 = β(f ′(k) + 1− δ). (4.15)

Given that f is strictly concave and satisfies Inada conditions, this implies a unique solution.
We will return to the general formulation later, once we have covered recursive methods,

and then establish global convergence to k from any positive starting level of capital. For
now, we will look at an example where we can solve for dynamics explicitly.

Example 4.5 Consider an infinite-horizon economy where utility is logarithmic, u(c) =
log c, the production function is Cobb-Douglas f(k) = Akα, and there is full depreciation: δ =
1. Truncating the economy at t = T delivers the same optimality conditions and analytical
expression for capital next period that we found in Example 4.1. Denote the solution to the
truncated problem with kTt+1. Taking limits, we can find a candidate solution to the infinite

12The nature of this argument is that TVC is a necessary condition for optimization, which it is under
some conditions; we do not prove this here.
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horizon problem kt+1 as

lim
T→∞

kTt+1 = lim
T→∞

αβ
1− (αβ)T−t

1− (αβ)T−t+1
Akαt

kt+1 = αβAkαt (4.16)

To check that the TVC holds, as pointed out above, we only need to look at a limit and not
at other aspects of the sequence for capital. So, (i), (4.16) implies that the capital sequence
converges to a limit (as will, then, consumption) and, (ii) therefore the limit behavior of
the expression βtF1 (kt, kt+1) kt will boil down to a constant times βt. Thus, the TVC will
be met. To see the concrete expressions, first note that F1 (kt, kt+1) = u′(c)f ′(kt), since
consumption is simply c = f(kt)− kt+1. The TVC can be written as

lim
t→∞

βtu′(ct)f
′(kt)kt = lim

t→∞
βt

Aαkα−1
t

Akαt − kt+1

kt.

Using equation (4.16) and simplifying delivers limt→∞ β
tα/(1− αβ) = 0, since β < 1.

Another method typically used to solve infinite horizon models analytically is called
“guess and verify.” The strategy consists of guessing a generic functional form for kt+1 as a
function of kt and using the Euler equation to verify that the guess is correct. We illustrate
this method in the following example.

Example 4.6 Consider the economy from Example 4.5. Guess that kt+1 = sAkαt , where s
is an unknown parameter (the saving rate). Insert this guess into the Euler equation (4.9)
to obtain

1

Akαt − sAkαt
= βαA

kα−1
t+1

Akαt+1 − sAkαt+1

.

After some manipulations, we can verify that s = αβ satisfies the equation above no matter
what kt is.

An obvious complication with this approach is of course how to come up with an insightful
initial guess. A standard procedure is to use a combination of the truncation-at-T method
and the guess and verify method. In other words, it is possible to solve the problem backwards
a couple of periods to get a sense of the possible functional form, and then verify whether
this guess is correct using the Euler equation.

It is worth noticing that, in the infinite-horizon economy of Example 4.5, the stock of
capital evolves as assumed by the Solow model: agents invest a constant proportion, s = αβ,
of their income every period. Moreover, using what we have learned in Chapter 2, we can
show that this economy converges to a steady state k. To compute it, simply evaluate our
solution at the steady state, kt = kt+1 = k,

k = βαAk
α ⇒ k = (βαA)

1
1−α ,
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which is identical to what we found in Chapter 3, given δ = 1.
In general, when closed-form solutions are not possible to solve for, we need to resort to

numerical methods. It is possible to solve for sequences numerically, but seeking numerical
solutions using dynamic programming is also possible. Dynamic programming also delivers
conceptual insights. The following section turns to this method.

In the case of a relatively simple model like the NGM, yet another method of character-
izing the dynamics is to use phase diagrams. The solution to a general NGM can be written
as a set of two difference equations for two variables (kt, ct):

kt+1 − kt = f(kt)− δkt − ct

and
u′(ct) = βu′(ct+1)(f ′(kt+1) + 1− δ).

The first is the resource constraint for the social planner, and the second is the Euler equation.
We can look for the dynamic path of (kt, ct) that satisfies these two difference equations,
together with the nonnegativity constraints for both variables and the TVC. The graphical
analysis using the phase diagram is explained in Appendix 4.A.4.

4.3.3 Balanced growth in the neoclassical growth model

The economies described in the previous sections eventually converge to a steady state,
exhibiting no growth in the long run. It is possible to study a version of the NGM in which
there is balanced growth, with a production structure similar to the one studied in Chapter
3.2. There, we considered Yt = F (Kt, AtLt), where AtLt denotes “efficiency units of labor.”
An important assumption that allows us to obtain balanced growth is that Lt and At grow
at the (constant) rates n and γ, respectively. Because of population growth, we now need to
take a stand on the welfare criterion by giving weight to the current population and people
born in the future. In what follows, we assume that the social planner is “utilitarian” and
maximize the sum of utility in the entire economy:

∞∑
t=0

βtLtu (ct) ,

where ct = Ct/Lt is the per capita consumption. An alternative formulation is to assume
the social planner cares about the “per capita” utility in each period:

∑∞
t=0 β

tu (ct). As will
become clear with the procedure below, this different assumption amounts to a different dis-
count factor by the social planner. In our benchmark formulation, with positive population
growth, we give more weight to future utility than in the alternative formulation. Quantita-
tively, the population growth rates tend to be small in advanced economies, and the impact
of the alternative assumptions on the outcome is unlikely to be significant.

The resource constraint with growth becomes

Ct = F (Kt, AtLt) + (1− δ)Kt −Kt+1.
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Defining variables in “per efficiency units of labor”, x̃t = Xt/(AtLt), we can follow similar
steps as those in Section 3.2 to write the resource constraint as

c̃t = f(k̃t) + (1− δ)k̃t − (1 + γ)(1 + n)k̃t+1. (4.17)

We further assume that the instantaneous utility is CRRA, u (ct) = c1−σ
t /(1 − σ), σ > 0

and σ 6= 1. Appendix 4.A.2 shows that this function (and the logarithmic function, which
should be seen as the case σ → 1) is the only form that is consistent with balanced growth.
Normalizing A0 = 1 and L0 = 1, we can rewrite the objective function as

∞∑
t=0

βtLt
c1−σ
t

1− σ =
∞∑
t=0

βt(1 + n)t
((1 + γ)tc̃t)

1−σ

1− σ

=
∞∑
t=0

β̃t
c̃1−σ
t

1− σ , (4.18)

where now we use the adjusted discount factor β̃:

β̃ ≡ β(1 + n)(1 + γ)1−σ. (4.19)

The maximization problem for the social planner can then be written as maximizing (4.18)
subject to the resource constraint (4.17) and the non-negativity constraints c̃t ≥ 0 and
kt+1 ≥ 0. The problem can be solved using standard procedures, and the Euler equation can
be derived as:

(1 + n)(1 + γ)(c̃t)
−σ = β̃(c̃t+1)−σ

�
f ′(k̃t+1) + (1− δ)

�
.

Note that, given the definition of β̃ in (4.19), the term (1 + n) drops out when the Eu-
ler equation is written with the original discount factor β. Therefore, the social planner’s
intertemporal allocation is not affected by the population growth under our utilitarian as-
sumption.

Along the balanced growth path, each variable grows at a constant rate. From our
normalized model above, the balanced growth path can be found by imposing steady-state
conditions in the (c̃t, k̃t+1) variables. This procedure reduces the Euler equation to

(1 + n)(1 + γ) = β̃
�
f ′(¯̃k) + (1− δ)

�
.

By setting n = γ = 0, we can check that the above equations coincide with the ones derived

under no growth. If we assume a Cobb-Douglas production function, replacing f ′(¯̃k) = α¯̃kα−1

in the equation above, we can deliver ¯̃k as a function of the relevant parameters of the model.

The question of whether or not the economy will converge to its balanced growth path
from arbitrary initial conditions will be dealt with in the next section.
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4.4 Recursive methods

In the previous section, we solved the maximization problem searching for a sequence of real
numbers

{
x∗t+1

}∞
t=0

that achieves the highest value of the objective function. This involved
finding a solution to an infinite sequence of equations (e.g., a difference equation). It is
conceptually useful to break down this high-dimensional problem into a sequence of similar,
but smaller problems, which all are tied to each other: “recursive” refers to this tie. This
principle is at the core of the recursive method known as dynamic programming, introduced
by Richard E. Bellman in the 1950s. A key difference with sequential methods is that
the solution to the optimization problem will now be a function rather than a sequence of
numbers. In what follows, we present the idea behind recursive methods and how they can
be used; we discuss the precise theoretical links between the sequential approach and the
functional approach briefly in Section 4.4.3 below.

4.4.1 Dynamic programming and the Bellman equation

An implicit assumption in the sequential formulation was that the whole path of xt+1 was
chosen in the initial period. The key to dynamic programming is to think of dynamic
decisions as being made not once-and-for-all but period by period instead. In other words,
the value of xt+1 is decided in period t rather than at date 0. A key question is whether the
two formulations are identical. They will be, as long as the problem at hand is stationary.
This is the case whenever the structure of the maximization problem that a decision maker
faces is identical in nature at every point in time. To make ideas more concrete, let’s revisit
the infinite-horizon version of the problem (P1).

V (x0) ≡ max
{xt+1∈Γ(xt)}∞t=0

∞∑
t=0

βtF(xt, xt+1) (4.20)

where Γ(xt) represents the feasible choice set for xt+1 given xt. In the expression, the “value
function” V (x0) represents the value of the objective function at the optimum given the
initial condition x0. This high-dimensional problem can be broken down and re-written as

V (x0) = max
{xt+1∈Γ(xt)}∞t=0

{
F(x0, x1) + β

∞∑
t=1

βt−1F(xt, xt+1)

}

= max
x1∈Γ(x0)

{
F(x0, x1) + β

[
max

{xt+1∈Γ(xt)}∞t=1

∞∑
t=1

βt−1F(xt, xt+1)

]}

= max
x1∈Γ(x0)

F(x0, x1) + β

[
max

{xt+2∈Γ(xt+1)}∞t=0

∞∑
t=0

βtF(xt+1, xt+2)

]
︸ ︷︷ ︸

≡V (x1)
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The simple mathematical idea that maxx,y f(x, y) = maxy{maxx f(x, y)}, provided that each
of the max operators is well-defined, allows us to maximize “in steps.” To do so, first notice
that the problem in squared brackets (in the last row) has the same structure as equation
(4.20), but with a different initial condition. In other words, it represents the value of the
objective function attained by an agent that chooses the optimal sequence of xt+1 given the
initial condition x1. Because the time horizon is the same, and neither the instantaneous
objective function nor the feasible set Γ change over time, then it must be the case that the
problem in squared brackets is equal to V (x1). This implies that we can write

V (x0) = max
{x1∈Γ(x0)}

{F(x0, x1) + βV (x1)} .

The two representations are identical as long as the problem is stationary. Intuitively,
a dynamic problem is stationary if the problem at t and at t + 1 look the same, so one
can capture all relevant information for the decision maker in a way that does not involve
time. Not all problems are stationary. For example, consider the finite-horizon version of the
neoclassical growth model. In it, agents care about how many periods are left when choosing
investment. The decision problem changes as the terminal period approaches. One can still
describe the problem recursively: break it up into a current choice between consumption and
investment and all future choices as implicitly captured by a value function. The difference
is that the value function will depend on time, Vt.

With infinitely many periods, the remaining horizon is the same at every t. For different
values of the initial capital stock, the choices differ, but do not depend on the time period in
which the choice is made. This means that a decision at any point in time does not depend
on anything but the level of capital at that point in time.

In general, the predetermined, payoff-relevant information for the consumer is—as was
mentioned earlier in this chapter—called a state variable. The state variable for the planner
in the neoclassical growth model is the current stock of capital kt. In our generic example,
it is simply given by xt. When transforming a sequential problem into a recursive one, it is
important to choose the state variables appropriately so that the resulting problem is indeed
recursive.

When the problem is stationary, decisions take a stationary form:

xt+1 = g (xt) .

In particular, the function determining how future capital depends on the current state does
not vary with time. The function g (·) is known as the decision rule or policy function.

Given an arbitrary initial condition xt, we can write the recursive problem as

V (xt) = max
xt+1∈Γ(xt)

{F(xt, xt+1) + βV (xt+1)}.

This is the dynamic-programming formulation. The derivation was completed for a given
value of xt on the left-hand side of the equation. On the right-hand side, however, we need
to know V evaluated at any value for xt+1 in order to be able to perform the maximiza-
tion. Going forward, we now change our notation and use x to denote current values and,
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adding a prime, x′, to denote next period’s values. This change of notation is conceptually
important: in a stationary dynamic program, “t” actually has no place as time is no longer
of essence. Above, it was used to connect the sequence problem to the recursive one; the
only remaining need is to distinguish today’s x from tomorrow’s x′. Thus, we write our
dynamic-programming equation as the quest for a V (x) satisfying

V (x) = max
x′∈Γ(x)

{F(x, x′) + βV (x′)} (4.21)

for all values of x. This equation is called the “Bellman equation.” It is a functional
equation: the unknown is a function V (x); i.e., it needs to satisfy eq. (4.21) for all values of
the argument of the function, x. It can be intuitively interpreted as follows: the discounted
lifetime value of our representative agent’s objective function is equal to the instantaneous
value F(x, x′) received today, plus the discounted value enjoyed from tomorrow into the
future, βV (x′), all assuming optimal choices.

We use the function g alluded to above to denote the arg max in the functional equation:

g(x) = arg max
x′∈Γ(x)

{F(x, x′) + βV (x′)}

for all x, or the decision rule for x′: x′ = g(x). This notation presumes that a maximum
exists and it is unique. Otherwise, g would either not exist or not be a function and, rather,
a correspondence. Note that the following must hold for all x by definition.

V (x) = F(x, g(x)) + βV (g(x)).

4.4.2 Writing a problem recursively

Sometimes we are presented with the sequential formulation of a problem, and it is necessary
to ‘translate it’ into a recursive formulation. We can do this for several reasons. Perhaps
the most important one is conceptual: finding a recursive formulation offers an added un-
derstanding of the problem at hand. That is because when a problem has been formulated
recursively, we know what behavior will depend on: the state variable(s) of the recursive
formulation, and nothing else. In practice, this often means that we can obtain insights into
how a problem can be solved.

Consider the infinite-horizon version of the neoclassical growth model, which corresponds
to (P3) with T =∞. We first need to make sure that the problem is indeed stationary. That
is, that the decision-maker faces the same type of problem every period given the same value
of the state variables. That brings us to the question of what the relevant state variables
ought to be.

The standard NGM: In the NGM, the state variable is given by the stock of capital at
the outset of the period, k. In other words, x = k in this model. The value function depends
on k, implying that we can write V (k). The control variable is c = f(k) + (1 − δ)k − k′,
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where we already used the notation that next period variables are denoted with primes (e.g.
kt+1 is written as k′). The recursive formulation of the neoclassical growth model is

V (k) = max
k′∈Γ(k)

{u(f(k) + (1− δ)k − k′) + βV (k′)}, (P4)

with Γ(k) = [0, f(k) + (1 − δ)k], for all k. While this problem is relatively straightforward
to write in recursive form, this is not always the case, as we see with the next two examples.

The periodic NGM:

Consider a small deviation from the problem above, where the level of technology os-
cillates deterministically between two values Ah and Al, where Ah > Al. In particular,
period t output equals Ahf(kt) if t is even and Alf(kt) if t is odd. The resource con-
straint is ct + kt+1 = Atf(kt) + (1 − δ)kt, as before. At first sight, this problem does
not look stationary because the level of productivity is changing over time. However,
it is changing deterministically and predictably. We can write the problem recursively
exploiting the periodicity in the evolution of TFP. To do so, we need to incorporate
an additional state variable: whether we are in an even or odd period, which in turn
corresponds to an h or l value for At. We can therefore write

Vh(k) = max
k′∈Γh(k)

{u(Ahf(k) + (1− δ)k − k′) + βVl(k
′)}

Vl(k) = max
k′∈Γl(k)

{u(Alf(k) + (1− δ)k − k′) + βVh(k
′)}

with Γi(k) = [0, Aif(k) + (1− δ)k − k′] for i ∈ {h, l}, for all k. Clearly, given the same
values of these two states, the decision maker would always select the same k′. So we
were able to write the problem recursively with the appropriate choice of state variables.

The delayed depreciation NGM: The objective and resource constraints are stan-
dard,

max
{ct}∞t=0

∞∑
t=0

βtu (ct)

s.t. ct + it = F (kt) ,

but capital depreciates fully in two periods, and does not depreciate at all before that,
so that the law of motion for capital given a sequence of investments {it}∞t=0 is given by

kt = it−1 + it−2.
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In the first period, k0 = i−1 + i−2, with two initial conditions i−1 and i−2. The recursive
formulation for this problem (with “primes” denoting consecutive periods) becomes

V (i′, i) = max
c,i′′
{u(c) + V (i′′, i′)}

s.t. c = f (i′ + i)− i′′.

Notice that there are two state variables in this problem. That is unavoidable here;
there is no way of summarizing what one needs to know at a point in time with only one
state variable. Both i−1 and i−2 are natural state variables: they are predetermined,
they affect utility and decision making, and neither is redundant.

4.4.3 Properties of the value function

We have argued that there are two different ways of solving a dynamic maximization prob-
lem: (i) the sequential method, where the task is to find a sequence (that maximizes the
objective function), and (ii) dynamic programming, where the task is to find a function
solving the recursively stated problem, i.e., solving a functional equation. A formal math-
ematical statement that these two methods are equivalent is beyond the scope of this text;
Stokey and Lucas (1989) has all the details. For each of the two approaches, it is important
to specify a space within which one looks for a solution—a space of “allowable” sequences
and a space of allowable functions, respectively. For dynamic programming, one most con-
veniently restrict attention to bounded, continuous functions V . For this choice to work out,
one needs assumptions on primitives (F , Γ, and β in our generic formulation); minimum
conditions involve (i) continuity of F , (ii) non-emptiness, continuity, and compactness of Γ,
and (iii) β < 1.13 Under these assumptions, the functional equation defined by the dynamic
program has a unique solution (it is the value function what is unique; the policy function
can be a correspondence, unless we place further restrictions on F and Γ.) Moreover, for
any given value of the state, it allows us to construct a sequence of choices corresponding
to solutions to the sequentially stated problem. Conversely, solutions in the sequence space
can be used to construct a value function solving the dynamic programming problem.

We now state some key properties of the dynamic programming problem and briefly
comment on them. For proofs, see Stokey and Lucas (1989). You may have studied the
necessary ingredients into the proofs in preparatory math, in particular the fact that the
dynamic program defines a contraction mapping.

1. It is possible to find V (x) by an iterative process. The procedure is as follows.

i. Select any initial V0(x) function. One example is V0 (x) = 0 ∀x.

13Some maximization problems involve discrete choice; we could, for example, restrict the choice of capital
to belong to a finite set of values. The conditions on primitives then become correspondingly weaker: F has
to be bounded and Γ nonempty.
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ii. Define a sequence of functions as follows: for all x,

Vn+1(x) = max
x′∈Γ(k)

F(x, x′) + βVn(x′)

for n = 0, 1, 2, . . . .

Then the following is true:

(i) the resulting sequence {Vj(x)}∞j=0 converges to V (x), i.e., to the function that
solves the dynamic program;

(ii) the distance to the solution V gets smaller and smaller at a constant rate: ‖Vn+1−
V ‖ ≤ β‖Vn − V ‖, where ‖f‖ denotes a distance between functions.14

Notice that the particular initial guess V0 = 0 delivers an interpretation of Vn: it
represents present-value utility for an economy consisting of n periods. Clearly, Vn
is an addition of “utils” over time which involves optimal choice of x′ in all periods,
including the last one, V1.

Feature (ii) is rather remarkable: it holds no matter what the initial guess is and it is
therefore very useful in practical applications: for finding a solution numerically. In
particular, if one can bound the initial error by some value ε̄ ≡ ‖V0 − V ‖ and then
generate the sequence of functions, one knows that after n iterations the error is at
most βnε̄. Finally, (ii) is extremely useful in allowing us to prove properties of the
value function, such as those we state next.

2. Assume that F is strictly increasing in its first argument and that Γ is monotone: if
x ≤ x̃, then Γ(x) ⊆ Γ(x̃). Then V is strictly increasing.

3. Assume that F is strictly concave (in its two arguments jointly) and that Γ(x) is convex
in the following sense: if x′ ∈ Γ(x) and x̃′ ∈ Γ(x̃), then θx′+(1−θ)x̃′ ∈ Γ(θx+(1−θ)x̃).
Then V is strictly concave and the policy unique (i.e., g is a well-defined function).

4. Assume that F and Γ satisfy the properties in the previous statement and, in addition,
that F is continuously differentiable. Then for any x where the choice is interior, V is
differentiable, i.e., V ′(x) exists.

5. Assume that F and Γ satisfy all the conditions above. Then, the policy function g(x)
is strictly increasing.

Very briefly, property 1 above follows from the Bellman equation being a contraction
mapping.15 Properties 2 and 3 are proved using property 1 as follows: take a V0 with the
desired characteristic (e.g., concavity), show that if Vn has the desired characteristic then

14The distance is a norm; in practice the sup-norm is used, i.e., the largest difference across all values of
the argument of the function, i.e., ‖f‖ ≡ supx f(x).

15A contraction mapping obtains for the Bellman equation so long as β < 1.
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so does Vn+1, and finally argue that the limit V ∗ inherits the characteristic at least weakly
(e.g., V ∗ is concave). Strictness of the characteristic (e.g., V ∗ is strictly concave) follows
by applying the argument again, with the limit V ∗ inserted on the right-hand side of the
Bellman equation. Property 4 is also possible to prove relatively straightforwardly but note
that it applies only in the case where V is concave. Property 5 follows from the first-order
condition

−F2(x, x′) = βV ′(x′).

The left-hand side of this equality is clearly increasing in x′, since F(x, x′) is strictly concave
in its second argument, and the right-hand side is strictly decreasing in x′, since V (x)
is strictly concave under the stated assumptions. Furthermore, since the right-hand side
is independent of x but the left-hand side is decreasing in x, the optimal choice of x′ is
increasing in x.

4.4.4 Solving for the value function

As for the sequentially formulated maximization problem, analytical solutions are only avail-
able in very special cases. When they do exist, there are again a few different methods
available to find them. One is a “guess and verify method,” also known as the “method
of undetermined coefficients.” This method, however, requires an insightful initial guess for
V (x). When the initial guess is unavailable, we can use the iterative process described above,
starting from V0 (x) = 0, quite similarly to how we proceeded to solve the finite-horizon model
backwards.

We again illustrate these solution methods using the neoclassical growth model, (P4).

Example 4.7 Consider the economy from Example 4.5. The corresponding Bellman equa-
tion is

V (k) = max
k′≥0
{log (Akα − k′) + βV (k′)} .

Let the initial guess of the value function be V0 (k) = 0. Then,

V1 (k) = max
k′≥0
{log [Akα − k′]} . (4.22)

The right-hand side is maximized by taking k′ = 0, yielding V1 (k) = logA + α log k. Using
this in the next iteration, we obtain

V2 (k) = max
k′≥0
{log [Akα − k′] + β [logA+ α log k′]} .

The first-order condition delivers

1

Akα − k′ =
βα

k′
⇒ k′ =

αβAkα

1 + αβ
.

122



We can interpret the resulting expression for k′ as the rule that determines how much it
would be optimal to save if we were at period T − 1 in the finite horizon model. We can
substitute this into V2 (k) to yield

V2 (k) = log

�
Akα − αβAkα

1 + αβ

�
+ β

�
logA+ α log

αβAkα

1 + αβ

�
= log

�
A− αβA

1 + αβ

�
+ β logA+ αβ log

αβA

1 + αβ︸ ︷︷ ︸
=a2

+
(
α + α2β

)︸ ︷︷ ︸
=b2

log k.

The same procedure can be used to obtain a V3 (k), and so on. This procedure would make
the sequence of value functions converge to V (k).

We can also, at this point, guess and verify a functional form for V . Grouping terms
in V2, we can see that it takes the form Vn (k) = an + bn log k for all n. Therefore, we may
already guess that the function to which this sequence is converging has to be of the form:

V (k) = a+ b log k.

In order to determine the corresponding parameters a, b, we take first-order conditions and

find that k′ =
βb

1 + βb
Akα. Inserting this into the right-hand side of the Bellman equation

RHS ≡ max
k′≥0
{log (Akα − k′) + β (a+ b log k′)} .

and equating the resulting expression to our guess delivers a system of two equations in two
unknowns, a and b. The solutions will be

b =
α

1− αβ and a =
1

1− β
1

1− αβ
�
logA+ log (1− αβ)1−αβ + log (αβ)αβ

�
.

The resulting decision rule is exactly the same policy rule obtained using sequential methods,

k′ = αβAkα.

4.4.5 The functional Euler equation

In the sequentially formulated maximization problem, the Euler equation turned out to be
a crucial part of characterizing the solution. With the recursive strategy, an Euler equation
can be derived as well. Consider the Bellman equation for a general instantaneous objective
function F (x, x′):

V (x) = max
x′∈Γ(x)

{F (x, x′) + βV (x′)} .
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Under suitable assumptions, this problem delivers the policy function x′ = g(x). Hence,

V (x) = F (x, g(x)) + βV (g (x)) . (4.23)

Assuming an interior solution, g(x) satisfies the first-order condition

F2 (x, x′) + βV ′(x′) = 0.

Evaluated at the optimum, i.e., at x′ = g(x),

F2 (x, g(x)) + βV ′ (g(x)) = 0.

In contrast to how we derived the sequential formulation, we now need to know the derivative
of the value function V ′(·) in order to solve for the policy rule. Even though it is not possible,
in general, to write V (x) in terms of primitives, we can find its derivative. Using the equation
(4.23) above, one can differentiate both sides with respect to x (recall that the equation holds
for all x and, again under some assumptions stated earlier, is differentiable). We obtain

V ′(x) = F1 (x, g(x)) + g′(x)
[
F2 (x, g(x)) + βV ′ (g(x))

]
︸ ︷︷ ︸
indirect effect through optimal choice of x′

,

where “g′(x)” represents the derivative of the policy function. The differentiability of g was
not established above, and it is harder to prove, but it is actually not required in order to
derive the result that just will follow. Namely, from the first-order condition, the argument
in brackets in the equation just stated is zero and hence

V ′(x) = F1 (x, g(x)) ,

which again holds for all values of x. The indirect effect thus disappears: this is an application
of a general result known as the Envelope Theorem.

Updating, we know that V ′ (g(x)) = F1

(
g(x), g (g (x))

)
also has to hold. The first-order

condition can now be rewritten as follows:

F2 (x, g(x)) + βF1

(
g(x), g (g(x))

)
= 0 ∀x. (4.24)

This is the Euler equation stated as a functional equation: it does not contain the unknowns
xt, xt+1, and xt+2 but, rather, has to hold for all x. Recall our previous Euler equation
formulation

F2 (xt, xt+1) + βF1 (xt+1, xt+2) = 0,∀t,
where the unknown was the sequence {xt}∞t=1. Now instead, the unknown is the function
g. That is, under the recursive formulation, the Euler equation turned into a functional
equation: the functional Euler equation.
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Solving directly for policy The previous discussion suggests that a third way of search-
ing for a solution to the dynamic problem is to consider the functional Euler equation, and
solve it for the function g. We have previously seen that we can (i) look for sequences solving
a nonlinear difference equation plus a transversality condition; or (ii) we can solve a Bellman
(functional) equation for a value function.

The functional Euler equation offers another way to solve directly for behavior, thus
bypassing the value function. Its key feature is that it expressed an intertemporal tradeoff.
Here, the recursive approach provides some extra structure relative to the sequential Euler
equation: it tells us that the optimal sequence of capital stocks needs to be connected using
a stationary function. Mathematically, unlike the Bellman equation, the functional Euler
equation is not a contraction mapping. It is also only a necessary condition on the optimal
policy function g and, viewed in isolation, can allow multiple solutions. Only one of these
solutions, however, is the policy function that solves the right-hand side of the Bellman
equation. It will become clear below how, at least locally, multiple solutions are possible.

The functional Euler equation approach is often used in practice in solving dynamic
problems numerically. We now show an example for which an analytical solution exists.

Example 4.8 Consider the model used in Example 4.7. With full depreciation F (k, k′) =
u (f(k)− k′). Then, the respective derivatives are:

F1 (k, k′) = u′ (f(k)− k′) f ′ (k)

F2 (k, k′) = −u′ (f(k)− k′) .

In the particular parametric example, and replacing k′ = g(k), equation (4.24) becomes:

1

Akα − g(k)
− βαA (g(k))α−1

A (g(k))α − g (g(k))
= 0,∀k.

This is a functional equation in g (k). Guess that g (k) = sAkα, i.e., saving is a constant
fraction of output. Substituting this guess into functional Euler equation delivers

1

(1− s)Akα =
αβA (sAkα)α−1

A (sAkα)α − sA (sAkα)α
.

As can be seen, k cancels out, and the remaining equation can be solved for s. Collecting
terms and factoring out s, we obtain

s = αβ.

Thus, αβAkα satisfies the functional Euler equation for all values of k. It is, moreover, the
same answer that we arrived at in Example 4.7.

4.4.6 Dynamics in the optimizing neoclassical growth model

We now apply recursive methods to characterize the solution to the planning problem involv-
ing the standard neoclassical growth model. We could also apply our methods to the case
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of consumer saving under a constant wage and interest rate, but we leave that application
for the reader. It may be useful to first note that there is a unique maximum attainable
level of the capital stock, ku. That is, if the capital stock starts out below (or at) ku, it
cannot take a higher value than ku in the future. This result follows because for any k,
f(k) + (1 − δ)k is the highest feasible saving k′, because this implies zero consumption.
Hence, f(ku) + (1− δ)ku = ku defines ku and we can restrict attention to a search for value
and policy functions over the closed and bounded set [0, ku]. There are two solutions to this
equation: a strictly positive ku and 0; we discard the latter.

We know from the functional Euler equation (4.24) that, for all k ∈ [0, ku], g(k) satisfies

u′ (f(k) + (1− δ)k − g(k)) = βu′ (f(g(k)) + (1− δ)g(k)− g(g(k))) (f ′(g(k)) + 1− δ)
(4.25)

In particular, at a steady state k̄, g(k̄) = k̄, which—given that the argument of u′ is non-
zero—allows us to write the steady-state condition as

1 = β(f ′(k) + 1− δ), (4.26)

which is identical to (4.9) above. Now we can proceed to show global convergence to the
steady state.

We use the property that under the standard assumptions the value function V (k) is
strictly concave.16 That implies that we can write

[V ′(k)− V ′(g(k))] [k − g(k)] ≤ 0 ∀k ∈ [0, ku].

To see that the inequality holds, note that whenever g(k) > k, the expression contained in
the left-most bracket is positive, whereas the right-most bracket contains a negative quantity,
and vice versa.

Using the envelope theorem, we know that

V ′(k) = u′ (f(k) + (1− δ)k − g(k)) (f ′(k) + 1− δ).
From the first-order condition in the Bellman equation, we obtain

V ′(g(k)) = u′ (f(k) + (1− δ)k − g(k))
1

β
.

Inserting these two expressions into the left-most bracket of the inequality and factorizing
u′, we obtain

u′(f(k)− g(k))

�
f ′(k) + 1− δ − 1

β

�
[k − g(k)] ≤ 0 ∀k ∈ [0, ku]. (4.27)

When k = k, from (4.26), f ′(k) + 1 − δ = 1
β

and g(k) = k holds. When k > k, then

f ′(k) + 1− δ < 1
β
, and thus (4.27) implies g(k) < k, and capital decreases over time. When

k < k, capital increases. This result implies, given that we also know that g is increasing
(property 5 above), that the system is globally stable and converges monotonically to k.

16This requires us to show that u(f(k) + (1− δ)k− k′) is concave in (k, k′). This can be accomplished by
computing the Hessian and showing that it is negative definite.
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Approximating the policy function Most often, it is not possible to solve for the policy
function in analytical form. In such cases, we can approximate the solution locally with a
linear function,

g(k) ∼ a0 + a1k

where a0 and a1 are the coefficients that we need to solve for, around the steady-state value
of capital. We need two equations to solve for our two unknowns, but since g(k) = k = k in
steady state we obtain one condition as

a0 = k(1− a1),

where k solves (4.9). To obtain a1, we use a procedure that parallels linearization techniques
discussed in Chapter 3, but is less cumbersome because we exploit the fact that the functional
Euler equation must hold for all k. Thus, we can simply differentiate equation (4.25) with
respect to k, i.e., take the derivative of the left-hand side, LHS, and set it equal to the
derivative of the right-hand side, RHS. We obtain, with the obvious notation, LHSk(k) =
RHSk(k), which must hold for all k. Evaluating this expression at steady state allows us to
obtain an equation that provides a second condition relating a1 to a0. Hence,

LHSk(k) = u′′(c)[f ′(k) + 1− δ − g′(k)︸︷︷︸
=a1

]

RHSk(k) = βu′′(c)
[
(f ′(k) + 1− δ)a1 − g′(k)g′(k)︸ ︷︷ ︸

=a2
1

][
f ′(k) + 1− δ

]
+ βu′(c)f ′′(k)a1.

where we used the fact that, under our guess, g(g(k)) = a0 + a1[a0 + a1k]; furthermore, c̄ is
defined as f(k)− δk. Setting LHSk(k) = RHSk(k) and simplifying delivers

u′′(c) [1− βa1] = u′′(c)
[
a1 − βa2

1

]
+ β2u′(c)f ′′(k)a1, (4.28)

which can be used to solve for a1 given k. Clearly, a1 satisfies a second-order polynomial
equation. It is straightforward to show that this equation has two real solutions, of which
one is strictly between zero and one, and the other is strictly greater than one. Thus, locally,
g(k) can be approximated by two functions. This was alluded to above and it is not a
surprise, given that the functional Euler equation is only a necessary condition. A function
g which solves this equation also has to attain the maximum on the right-hand side of the
Bellman equation. Of the two functions obtained here, only one has that property: the one
with an a1 between zero and one. It is the one corresponding to a slope less than one in
(k, k′) space, thus giving monotone convergence to the steady state. Concretely, by denoting
Θ ≡ β2u′f ′′/u′′ > 0, the solution of (4.28) is

a1 =
1 + β + Θ−

√
(1 + β + Θ)2 − 4β

2β
. (4.29)

It can easily be checked that a1 ∈ (0, 1], a1 is decreasing in Θ, and a1 = 1 when Θ = 0 and
a1 → 0 as Θ→∞.
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Using this procedure, it is possible to also obtain higher-order approximations to the
policy function g around the steady state. To obtain the second-order Taylor approxima-
tion, simply differentiate the functional equation once more with respect to k, which delivers
g′′ at the steady state: it can be solved for as a function of g and g′, which were previ-
ously solved-out. Further differentiations will, successively, give us any desired higher-order
approximations.17

Calibration We discussed the concept of calibration in Chapter 3: the adoption of specific
functional forms and parameter values with the purpose of generating quantitative predic-
tions. We applied it in that chapter to gauge the Solow model’s quantitative predictions for
the speed of convergence to a steady state. The NGM developed in this chapter, instead,
differs in its convergence properties: the saving rate is not constant away from steady state
but is instead endogenous and, as we have seen, a function of the current level of the cap-
ital stock. How strong the dependence on capital is depends on the utility function. More
precisely, equation (4.29) determines a1, the slope of the saving function as it crosses the
steady-state line: a slope of zero implies convergence in one period (infinite speed) and a
slope of 1 implies no (infinitely slow) convergence. The remaining model parameters can be
selected as in Chapter 3 so our only question here is: what is a1, or rather, what is the value
of Θ at the steady state? Recall that Θ = β2u′f ′′/u′′, c̄ = f(k̄)−δk̄, and f ′(k̄) = 1/β−(1−δ).
Furthermore, suppose that u(c) = c1−σ−1

1−σ . Then it can be shown that

Θ = −β
2f ′′(k̄)(f(k̄)− δk̄)

σ
.

Because f ′′(k̄) is negative, Θ is positive and decreasing in σ. When σ = 0, the utility function
is linear, and in this case Θ→∞. The above result implies a1 → 0 in this case, implying k′

does not depend on k. Convergence, in this case, is immediate. The opposite extreme is when
σ →∞, Θ→ 0 and a1 → 1. In this case, the utility function is “infinitely curved” (Leontief
utility). When σ is very large, consumers are extremely unwilling to change consumption
over time and convergence is very slow.

Therefore, σ is an important parameter in determining the speed of convergence. What
do empirical studies of consumption suggest as an appropriate value of σ? Using aggregate
consumption data, Hall (1982) estimates that 1/σ = 0.1. Attanasio (1993, 1995) uses micro
data instead and finds that 1/σ ∈ [0.3, 0.8]. In many applied macroeconomic studies using
the CRRA function, however, there are also stochastic components, and under uncertainty,
σ is also equal to the coefficient of relative risk aversion (uncertainty is discussed in Chapter
7 below) and this coefficient is often estimated to be above 1. Perhaps for this reason, much
of the applied literature focuses on σ = 1 (log utility) or σ = 2, though rarely much higher
than one.

Further assume that the production function f(k) is a power function: f(k) = kα. This
formulation implies the aggregate production function is of the Cobb-Douglas form. In this

17Approximations based on Taylor approximations, as those carried out here, of course require differen-
tiability of the function. Thus, we approximate g, which is endogenous, with that proviso.
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case, Θ can be solved as

Θ =
β2(1− α)

σ

�
1

β
− 1 + δ

��
1

α

�
1

β
− 1 + δ

�
− δ

�
which is decreasing in α and increasing in δ. Convergence is slower when the production
function is closer to linear and the depreciation rate is small. This property is qualitatively
similar to the Solow model.

4.5 Concluding remarks

In this chapter, we showed a set of tools that are useful for solving standard dynamic opti-
mization models used in macroeconomics. We discussed the sequential formulation, where
the aim is to choose the best sequence of allocations (quantities) that maximize lifetime
utility, starting with a finite horizon economy and then moving to an infinite horizon econ-
omy, highlighting the mathematical complications that arise. We then showed how to use
dynamic programming methods to write the optimization problem recursively, where the
key is to solve for policy functions determining optimal allocations. In practice, all these
methods are used. We spent less time on motivating specific functional forms and, through-
out, only used two examples: a pure consumption-saving problem under price-taking and an
optimizing neoclassical growth model. Neither of these cases allowed valued leisure or other,
richer optimization problems. However, the methods we introduce here are straightforwardly
extended to other, richer contexts and will indeed be used over and over in the rest of the
text.
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Chapter 5

Dynamic competitive equilibrium

The introductory chapter looking at long-run data, Chapter 2, argued that a certain view
on production and technical change was important for understanding our macroeconomic
history. It also argued, informally at least, that a market economy with certain features was
another important component of the overall picture: firms and private households making
decisions in their self interest. The most commonly used framework in economics is a market
setting with perfect competition—indeed, it is the setting the earlier chapter alluded to—
and in the present chapter we will develop such theory carefully in the context of a dynamic
economy.

Like many of our assumptions, perfect competition should be viewed as a useful approx-
imation rather than an exact description of our economy. Indeed, most firms have a degree
of market power and in some industries market power is critical for understanding how the
industry works. However, a macroeconomic approach naturally starts from a benchmark
case that is (i) not too far from a description of “average” behavior and (ii) allows tractable
analysis, while still capturing the key features of markets. These features involve how pri-
vate incentives—of consumers and firms—jointly steer production and consumption through
a price mechanism. Market scarcity—expressed as a demand that exceeds supply—will lead
to higher prices, lowering demand and/or raising supply. For example, the level of invest-
ment, a key macroeconomic variable, is affected by the interest rate, which is a relative
price between goods today and goods in the future: consumers are willing to forsake goods
today by lending more to investors the higher is the interest rate; and investors thus invest
until the interest rate they have to pay on a loan no longer balances the productive returns
on the investment. This market mechanism, moreover, is at play not just for traditional
consumption and investment goods and services but for the development of new ideas and
technologies that are key to long-run development.

How do agents decide what to buy or sell? They solve an optimization problem that is—
in a macroeconomic context—often dynamic, as we have seen in Chapter 4. The solution
to the optimization problem provides the quantities of the objects that the agent would like
to buy and/or sell at given prices; for example, a household could sell labor services and
get paid a wage (the price for labor). Therefore, an important component of a competitive
equilibrium is the characterization of individual demands and supplies for goods, services and
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assets, given the corresponding prices.1 Since in the economy there are many agents who buy
and sell the traded objects, the derivation of economy-wide demands and supplies requires
the aggregation of demands and supplies over all agents. The core framework described in
this chapter makes this procedure simpler by assuming that all consumers are identical and
that all firms are identical—we use the “representative consumer” and the “representative
firm” as our key constructs. A large part of the current macroeconomic research literature
of course focuses on consumer and firm heterogeneity, which will be amply discussed later
in the text.

In summary, a perfectly competitive equilibrium occurs when two conditions are met:
agents’ choices are optimal taking the prices as given and markets clear, i.e., demand equals
supply, for all goods and services. In this chapter, we will also see that the market alloca-
tion delivers a Pareto-optimal outcome. With a representative consumer, this amounts to
verifying that, in the perfectly competitive equilibrium, the consumer’s utility is maximized
given all technological constraints. When we depart from this setting, and when monopoly
elements and other “frictions” are introduced, markets need no longer deliver optimal out-
comes. We look at such instances in some detail in Chapter 6 but they will then appear
again and again in the applied chapters later.

5.1 Different equilibrium concepts

When considering our macroeconomic models, it is very helpful to be precise in formulating
equilibrium concepts. A model economy, first, has some descriptive “deep” features, such as
a set of agents (consumers, firms, a government, etc.) along with their objectives (such as
utility functions) and relevant constraints (time available, technologies, etc.). Second, what
the set of traded goods and services is—along with their prices—must be specified. The equi-
librium concept then lists a set of conditions that need to be fulfilled: (i) agents maximizing
their objectives subject to their constraints (e.g., consumers maximizing utility subject to
their budget constraints and firms maximizing profits taking their technological possibilities
into account) and (ii) resource feasibility: that what is consumed is also produced, often
expressed as “demand equals supply,” for all traded goods and services. The definition of an
equilibrium thus organizes this information in the form of a set of conditions that need to be
fulfilled. In this chapter, we will formulate equilibrium definitions in a rather mathematical
way, i.e., with a minimum of words. Thus, we will try to refrain from conditions such as
“taking prices as given” in a maximization problem; rather, if a maximization problem is
specified, it must list the choice variables, and it then follows that any variables that are not
listed as choices (such as prices in a perfectly competitive equilibrium) must, then, be taken
as given.

Formulating equilibria in dynamic models, moreover, involves a choice regarding how
time is dealt with. We will, in particular, consider three different definitions of competitive

1The notion that agents take prices as given allows us to analyze the economy without game-theoretic
elements: in a given agent’s decision problem, the behavior of others appears in the form of (endogenous)
constants.
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equilibria in turn:

1. Arrow-Debreu equilibrium in which trades occur at date 0,

2. sequential equilibrium in which trades occur period by period, and

3. recursive equilibrium in which prices and decisions are expressed as functions of the
economy’s state variables.

In the first two of these, an equilibrium consists of sequences (of quantities and prices)
indexed by time, i.e., a specific values for each variable at each point in time. The third
concept, in contrast, formulates the equilibrium as a set of functions of state variables (such as
a capital stock or level of asset holdings). For many economies, one can define the competitive
equilibrium in any of these three ways and they all give rise to the same allocations. Which
one is chosen in a given application depends on the purpose, but, broadly speaking, the
Arrow-Debreu equilibrium is the version that aligns most closely with microeconomic theory
while being rather abstract as a concept. Sequential equilibria are defined more in accordance
with how we think events actually play out in reality. A recursive equilibrium has the
sequential trading structure but is expressed in terms of functions rather than sequences
because it uses dynamic programming methods. Whereas equilibria based on sequences
typically are defined given specific values of the state variables (such as the initial capital
stock), recursive equilibria are not, i.e., they apply to all values of the state variables.

Throughout, we will focus on dynamic models with an infinite time horizon. Finite-
horizon economies can of course be studied too; they should be seen as special cases of what
we study here. As pointed out above, infinite-horizon economies are useful because there,
time plays a less central role: the remaining time horizon is always the same. Occasionally
(later in the text), we focus on one-period (where the “time horizon” plays no role) or two-
period economies, but later in the text. In Sections 5.2–5.4 we study infinitely-lived dynasties
and go through the different equilibrium definitions. In the final part of the chapter, Section
5.5, we study overlapping-generations (OG) economies, where time goes on forever but all
individuals live a finite number of periods.

5.2 Arrow-Debreu equilibrium

In an Arrow-Debreu equilibrium, all trades take place at time zero. One way to think about
this assumption is that every agent signs a contract at time zero with other agents. The
contract specifies the quantities of the traded objects that the agent will deliver or receive at
any future time t from other agents at the prices specified. This market structure is called an
Arrow-Debreu or date-0 market. It differs from the sequential market structure where trades
for goods take place at all times t, not only at time zero. This different market structure
will be considered in the other two equilibrium concepts.

It is perhaps worth emphasizing that signed contracts are fully enforceable, that is,
promises made in a contract are always fulfilled. If some of the promises are not enforceable,
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we are in an environment in which markets are incomplete. We will consider economies with
incomplete markets in later chapters.

The best way to illustrate the concept of an Arrow-Debreu equilibrium is through the
application to specific economies. We start with an endowment economy.

5.2.1 An endowment economy

The first example is an economy in which production is exogenously determined. There is
a continuum of consumers, indexed by i ∈ [0, 1]. In every period t each consumer produces
yi,t ∈ R+ of a single consumption good that cannot be stored for future consumption. The
model does not specify how production takes place (for example with the input of labor) and
the exogenous production is often referred to as endowment. An economy without the spec-
ification of a production technology is sometimes called an exchange economy, since the only
economic activity that agents undertake, besides consumption, is the trade of the endow-
ments. But, effectively, the exchange economy can be seen as a special case of a production
economy. Finally, the consumer’s utility from any given consumption path {ci,t}∞t=0 is

∞∑
t=0

βtu (ci,t) . (5.1)

Consumers’ preferences are all the same (they have the same u and β).
What is traded here is goods at different points in time: buying one unit of good at time

t means buying a contract that gives ownership of a unit of good at that point in time. Its
price is denoted by pt. Thus, pt/p0 represents the units of consumption goods delivered at
time 0 that are needed to buy 1 unit of the consumption good delivered at time t. It is
customary to normalize the price at time zero to 1 so that the good at time 0 becomes the
numéraire. Then pt is the price of a time-t good in terms of time-0 consumption goods.

Given the price pt for t = 0, 1, ..., the total value of the consumer’s endowments is given
by
∑∞

t=0 ptyi,t and the value of the consumer’s total expenditures is
∑∞

t=0 ptci,t. The budget
constraint then requires that the value of expenditures not be larger than the value of the
endowments. In practice, since we always use strictly increasing utility functions, consumers
will always use up all the resources and we will therefore impose this constraint with equality.
Thus, we have

∞∑
t=0

ptci,t =
∞∑
t=0

ptyi,t. (5.2)

We will define the equilibrium focusing on the mathematical conditions that must be
satisfied, as opposed to their economic interpretation. The equilibrium definition provides a
roadmap for solving for an equilibrium—we convert the equilibrium conditions into a set of
equations that allow us to solve the model.2

2Here and in what follows, we omit any requirements that quantities and prices be non-negative. After
we solve for an equilibrium we can verify that any such requirements are satisfied. Also, we do not specify
the mathematical spaces to which the sequences must belong; for infinite sequences, this involves advanced
concepts, which is why we omit them.
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Definition 1 An Arrow-Debreu competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

,
for each i ∈ [0, 1], and {pt}∞t=0 such that

1. for each i,
{
c?i,t
}∞
t=0

solves

max
{ct}∞t=0

∞∑
t=0

βtu(ct) s.t.
∞∑
t=0

ptct =
∞∑
t=0

ptyi,t;

2.
∫ 1

0
c?i,tdi =

∫ 1

0
yi,tdi.

Equilibrium characterization

To characterize the optimal decision of a consumer (point 1 in the above definition), we write
the Langragian for the consumer problem. We then take the first-order conditions as shown
in Chapter 4. This gives us

βtu′(ci,t) = λipt,

where λi denotes the Lagrange multiplier for the (lifetime) budget constraint, equation (5.2),
and the prime denotes the derivative of the utility function. The multiplier is the shadow
value of lifetime wealth which could differ across agents if their lifetime endowments differ.
However, the multiplier does not depend on time. If the utility function is strictly concave,
its derivative is strictly decreasing in consumption. Thus, the above condition determines,
uniquely, the optimal consumption for agent i.

If we eliminate the multiplier using the optimality conditions at time zero and at a generic
time t, for the same consumer, we obtain the price

pt = βt
u′(ci,t)

u′(ci,0)
. (5.3)

Remember that p0 has been normalized to 1, which explains why it does not appear in this
expression. Since the price pt is the same for all agents, this condition tells us that the ratio
of marginal utilities at different times are the same across consumers. This equation states
that the relative price of consumption at time t in terms of time zero consumption has to
equal the marginal rate of substitution between these two goods. This is the ratio between
the present value of the marginal utility of consumption at time t and the marginal utility
of consumption at time zero.

To gain further intuition, we now consider the special case in which the utility func-
tion takes the logarithmic form, that is, u(·) = log(·). With this special utility, the above
condition becomes

pt = βt
ci,0
ci,t

.

Since this condition must hold for all agents, we can use this condition to find equilibrium
prices. Multiply both sides of the equation by ci,t and sum across all i. We obtain pt

∫ 1

0
ci,tdi =
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βt
∫ 1

0
ci,0di. Using market clearing, i.e.,

∫ 1

0
ci,tdi =

∫ 1

0
yi,tdi = Yt, we obtain

pt = βt
Y0

Yt
.

Thus, we see that prices decline over time because of discounting but also that periods with
lower total endowments have higher prices. This is because marginal utility is strictly de-
creasing: lower total resources make each unit of consumption more valuable on the margin.

From the Euler equation, we see that in this economy all consumers experience the same
consumption growth. More specifically, if we take any two consumers, i and i′, we have

ci,t+1

ci,t
=
ci′,t+1

ci′,t
=
Yt+1

Yt
= β

pt
pt+1

.

This condition is valid for any pattern of the individual endowments. Clearly, the growth
rate of individual consumption is only determined by the aggregate endowment Yt. Thus,
individual consumption could be less volatile than individual income (consumption smooth-
ing). To see this more clearly, suppose that that individual endowments change over time.

However, the aggregation of the individual endowments is a constant, that is,
∫ 1

0
yi,tdi = Ȳ .

In equilibrium it must be that
∫ 1

0
ci,tdi = Ȳ . In other words, aggregate consumption is con-

stant. Since the consumption growth of all agents is the same, this implies that individual
consumption must also be constant for all t = 0, 1, 2, . . . . Therefore, in this special case with
a constant aggregate endowment, but not necessarily constant individual endowments, the
model features perfect consumption smoothing.

Lastly, the level of consumption for each consumer can be derived from the individual
budget constraint. By combining the Euler equations for t = 0, 1, 2, ... and p0 = 1 we arrive
at ptci,t = βtci,0. The budget constraint then becomes

ci,0

∞∑
t=0

βt = Y0

∞∑
t=0

βt
yi,t
Yt

⇒ ci,0 = (1− β)Y0

∞∑
t=0

βt
yi,t
Yt
.

Clearly, the level of consumption of individual i, as measured by its level at time 0, is a frac-
tion 1−β of the individual’s present-value income. This income is a function of endowments
where (i) endowments further into the future obtain lower weights due to discounting and
(ii) endowments in periods where aggregate income is high obtain a lower weight. The latter
is true since resources in periods with high aggregate income are given lower value by con-
sumers: their marginal utilities are lower then than in other periods. Thus, two consumers
with the same average endowments can have different total wealth: the wealthy consumer is
the one whose endowments are high when others’ endowments are low.

Clearly, since consumption growth is identical for all consumers, we see that individual
i’s share of aggregate consumption, and aggregate resources, is constant over time:

ci,t = θiCt = θiYt, with θi = (1− β)
∞∑
t=0

βt
yi,t
Yt
.
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In the special case in which agents have exactly the same endowment (yi,t = Yt), the share
is 1 for all agents which effectively means that they consume their own endowment. We are
then in the case of a representative consumer.

If the utility function is not logarithmic but maintains the balanced-growth form (c1−σ−
1)/(1− σ) (with σ > 0 and σ 6= 1; recall that σ → 1 should be interpreted as log c), then it
is still possible to solve the model. It is easy to verify, using the consumer’s Euler equation,
that individuals’ consumption growth rates will all be identical: the gross rates will equal
(β pt

pt+1
)

1
σ . From this it follows that pt = βt(Y0

Yt
)σ: again, resources are more valuable in times

with lower endowments, and the more so the higher is the curvature of the utility function,
as measured by σ.

The endowment framework studied here is useful in many contexts. One of these is asset
pricing, covered in Chapter 14. The idea there is that any asset can be thought of as a
stream of payments, “dividends,” such as the endowment sequences described here, so the
price of the asset is then the total market value of these endowments. Prices of endowments
at each time period are straightforward to compute in endowment economies, including in
cases with uncertainty; we will look at uncertainty in Chapter 7.

Finally, in many macroeconomic applications, the assumption of a representative agent
is used. It makes sense as a special case of the above, when u is strictly concave: then, given
equal endowments for all agents, the consumption choices must all be the same. Such an
equilibrium is often defined more compactly as

Definition 2 An Arrow-Debreu competitive equilibrium is a set of sequences {c?t}∞t=0

and {pt}∞t=0 such that

1. {c?t}∞t=0 solves

max
{ct}∞t=0

∞∑
t=0

βtu(ct) s.t.
∞∑
t=0

ptct =
∞∑
t=0

ptyt;

2. c?t = yt.

This equilibrium definition is mathematically precise but the economic context—that of
many consumers, making the same choices—is only written “between the lines.”

5.2.2 A production economy with labor

We now consider an economy where there is production but with only one factor input:
labor. The economy is populated by a continuum of households, each supplying working
hours `i,t to the market. However, working is costly for the household as it reduces utility.
Given the consumption path {ci,t}∞t=0 and working hours {`i,t}∞t=0, the household’s utility is

∞∑
t=0

βt
[
u (ci,t)− υ(`i,t)

]
. (5.4)

The function υ(`i,t) is the disutility from working. It is increasing and convex in `i,t. We
allow households to differ in their efficiency units of labor which we denote by ei. What
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this means is that, if household i works `i,t hours, its contribution to the economy’s input of
labor (in efficiency units) is ei`i,t. We can think of ei as labor skills.

In this economy there is also a representative firm that produces consumption goods with
the production function

Yt = AtLt, (5.5)

where At could be time varying but not stochastic, and Lt is the effective input of labor used
in production.

In a competitive economy, the presumption is also that there are many firms. However,
if these firms all have the same objective (profit maximization) and the same technology
available, then they will face identical maximization problems. For this reason, we will use
the concept of a representative firm. It thus hires labor from households paying the wage rate
wt per effective unit of labor in terms of the consumption good at that time. Therefore, if the
household supplies one efficiency unit of labor at time t, it receives wt units of consumption
goods at that time, which translates to ptwt units in terms of time-0 good.

The representative firm’s objective is to maximize profits:

max
{Lt}∞t=0

∞∑
t=0

{
ptAtLt − ptwtLt

}
. (5.6)

Clearly, Lt only appears in the time-t term, so this problem reduces to an infinite sequence
of static problems maxLt(AtLt − wtLt); the within-period relative price wt is the price that
will clear the time-t market. Unlike for the concept of the representative consumer, whose
optimal choice is unique, the optimal firm choice is—under constant returns to scale and
price-taking—not unique in equilibrium: the firms is indifferent as to what scale to operate
at.3

Given prices pt and ptwt and labor supplies `i,t, for t = 0, 1, ..., the value of lifetime
income for household i is

∑∞
t=0 ptwtei`i,t and the value of its expenditures is

∑∞
t=0 ptci,t. The

budget constraint requires that the value of expenditures not be larger than the value of
incomes, that is,

∞∑
t=0

ptci,t =
∞∑
t=0

ptwtei`i,t. (5.7)

The following is then the compact definition of our equilibrium.

Definition 3 An Arrow-Debreu competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

and
{
`?i,t
}∞
t=0

, for each i ∈ [0, 1], {L?t}∞t=0, {pt}∞t=0 and {wt}∞t=0 such that

1. for each i,
{
c?i,t
}∞
t=0

and
{
`?i,t
}∞
t=0

solve

max
{ct,`t}∞t=0

∞∑
t=0

βtu(ct) s.t.
∞∑
t=0

ptct =
∞∑
t=0

ptwtei`t;

3In this case, an equilibrium price for labor, wt, has to equal At, in which case the firm is indifferent as to
its choice of Lt; if At > wt, there is no optimal scale (profits rise without bound with scale), and if At < wt,
the firm’s unique maximizer is Lt = 0.
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2. {L?t}∞t=0 solves

max
{Lt}∞t=0

∞∑
t=0

{
ptAtLt − ptwtLt

}
;

3. for each t,
∫ 1

0
ei`

?
i,tdi = L?t and

∫ 1

0
c?i,tdi = AtL

?
t .

The first two points say that the allocation is what agents (households and firms) choose
optimally to maximize their respective objective functions.4 The third item defines the
market clearing condition for labor (the aggregate supply of labor from households must
be equal to the aggregate demand from firms) and for the goods markets (the aggregate
demand of goods from households must be equal to the aggregate supply, which corresponds
to production).

Equilibrium characterization

The optimality conditions for the consumer’s problem (again derived from the Lagrangian
as shown in Chapter 4) are

βtu′(ci,t) = λipt, (5.8)

and

υ′(`i,t) = eiwtu
′(ct), (5.9)

where λi is the Lagrange multiplier for the (lifetime) budget constraint, equation (5.7).
We can eliminate the multiplier using the optimality conditions for an agent i, at time t

and at time t+ 1, and obtain
pt+1

pt
=
βu′(ci,t+1)

u′(ci,t)
. (5.10)

As in the case of the endowment economy we just studied, the relative price of tomorrow’s
consumption in terms of today’s consumption—the inverse of the (gross) real interest rate—
equals the marginal rate of substitution between consumption at t and t + 1. With the
normalization p0 = 1, the equilibrium price at any time t is

pt =
βtu′(ci,t)

u′(ci,0)
.

The firm solves (5.6) and the first-order condition requires that, for an interior solution—
where the firm is indifferent between using more or less labor—we need to have

At = wt.

4For the firm, we have written it so that the firm chooses labor and production at all times. Since the
problem is not fundamentally dynamic—Lt can be chosen independently of labor chosen at times other than
t—we could alternatively had firms operating production at single dates only.
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If At were to exceed wt, the firm’s maximization problem would have no solution: the higher
is Lt, the better. If wt were to exceed At the firm would shut down (choose zero labor). Thus,
for an equilibrium to exist, the relative price wt needs to adjust to be equal to At. When it
has, the firm’s size is indeterminate: all Lt ≥ 0 deliver zero profits. This is a standard result
under constant returns to scale and will apply also when the firm has more inputs (such as
labor an capital, as in the neoclassical growth model). Our notation may suggest that there
is one firm that produces the economy’s entire output but, really, we think of a large number
of firms solving the same problem under perfect competition, and the equilibrium will then
determine total production but not which firm produces how much.

We now again consider the special case in which the utility function takes the logarithmic
form, that is, u(·) = log(·). With this utility equation (5.10) can be written as

ci,t+1

ci,t
=

βpt
pt+1

.

Since prices are the same for all agents, this implies that households experience the same
growth in consumption. Thus, also in this case we have that individual consumption is a
constant share of aggregate output, that is, ci,t = θiYt. However, output is not exogenous but
it depends on the endogenous input of labor Lt. This is determined by the aggregation of
individual labor supplies which are determined by the first-order condition (5.9). Using the
log specification of the utility function and the fact that the wage rate is given by wt = At,
the condition can be rewritten as

υ′(`i,t)ci,t = eiAt.

Next we use the property that individual consumption is a fixed share of aggregate output
ci,t = θiYt. Substituting in the first-order condition we obtain

υ′(`i,t)θiYt = eiAt.

Let us normalize skills so that
∫ 1

0
eidi = 1. Given that skills are constant over time,

different consumers have different total resources to spend in exact proportion to ei, aside
from differences in how much they work. However, we see that if we conjecture θi = ei,
then the above condition implies that all households will supply the same labor `i,t = Lt,
confirming that total resources available to spend are simply proportional to ei.

To see that the lifetime budget (5.7) is satisfied, use ci,t = θiYt, wt = At, and `i,t = Lt in
the budget constraint to obtain

θi

∞∑
t=0

ptAtLt = ei

∞∑
t=0

ptAtLt.

This is satisfied if θi = ei, confirming our guess.
Because high-skilled households earn higher incomes, they will enjoy higher consump-

tion. High-skilled households, however, supply the same amount of labor as do low-skilled
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households. This is a consequence of income and substitution effects offsetting each other.
To see this, note that an extra unit of work effort earns eiwt, which increases with the wage
and the skill of the worker. This generates a substitution effect in the direction of working
more. However, since—without working more—the household earns higher consumption the
higher is the wage, it experiences a lower marginal utility of consumption, which leads it to
wish to work less (choose lower effort/higher leisure). With the utility function here, the
two effects exactly cancel. These features play out even more clearly in a static optimization
problem where the consumer has labor income only and spends it on consumption, c = w`,
with the utility function log c− υ(`): the choice of ` will not depend on w. This feature was
alluded to in Section 2, where we argued that balanced growth with constant labor supply
restricts us to a specific class of utility functions, to which the current example belongs.

Finally, imagine that individuals, in addition to being able to work, had independent
(“asset”) income. In particular, individual i would be endowed with ai,0 at time zero, with∫ 1

0
ai,0di = 0. This assumption implies that, if some agents have positive asset holdings, other

agents must have negative holdings; thus, the resource constraints remain unchanged. Now,
agents with different asset holdings will work different amounts because assets generate an
income effect but not a substitution effect: higher asset holdings, by making the individual
richer, will induce lower labor effort, as discussed above. Consider the simple static case
just described: if the budget constraint reads ci = eiA`i + ai, individual labor supply will,
using the first-order condition, be given by υ′(`i) = aiA/(eiA`i + ai). Here, `i will depend
nonlinearly on ai (so long as υ′ is not a constant). Hence, total labor supply, along with
total consumption, will depend on the distribution of assets: they will depend on wealth
inequality. Consumption growth would still be equalized across agents, but total production
will also depend on inequality since total consumption does.

5.2.3 The neoclassical growth economy

We extend the economy considered in the previous subsection by adding capital to produc-
tion. This is essentially the neoclassical growth model with endogenous supply of labor. The
accumulation of capital makes the problem more complex because what is produced in the
future depends on the capital that is accumulated today. In most cases, a full analytical
solution will not be available. Nevertheless, we can define the conditions that an equilibrium
must satisfy.

The production function now takes the form

Yt = AtK
α
t L

1−α
t , (5.11)

where At is productivity, Kt is the input of capital and Lt is the input of labor.
We assume that capital is accumulated by households who then rent it to firms, similarly

to labor. Therefore, in addition to the price for goods and labor, we now have a price for
rental capital. The representative firm solves the profit maximization problem

max
{Kt,Lt}∞t=0

∞∑
t=0

{
ptAtK

α
t L

1−α
t − ptrtKt − ptwtLt

}
, (5.12)
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where rt denotes the rental price of capital paid to households expressed in time-t consump-
tion. As in the previous sub-section, the optimal choice of the firm for period t does not affect
the optimal choices in other periods; we can equivalently state the problem as a sequence of
sub-problems: for each t, maxKt,Lt AtK

α
t L

1−α
t − rtKt − wtLt.

In this economy, production is used for consumption, Ct, and for investment, It:

Yt = Ct + It.

Given the initial capital held by a household, ki,0, and individual i’s investment ιi,t, for
t = 0, 1, ..., the individual stock of capital evolves according to

ki,t+1 = (1− δ)ki,t + ιi,t. (5.13)

Given pt, rt, wt, investment ιi,t, and labor supply `i,t, for t = 0, 1, .., the value of lifetime
income is

∑∞
t=0 pt(rtki,t +wtei`i,t) and the value of expenditures for consumption and invest-

ment is
∑∞

t=0 pt(ci,t + ιi,t). The budget constraint requires that the value of expenditures be
equal to the value of incomes, that is,

∞∑
t=0

pt(ci,t + ιi,t) =
∞∑
t=0

pt(rtki,t + wtei`i,t). (5.14)

The compact equilibrium definition reads as follows.

Definition 4 An Arrow-Debreu competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

,{
ι?i,t
}∞
t=0

, and
{
`?i,t
}∞
t=0

, for each i ∈ [0, 1], {L?t}∞t=0,
{
K?
t+1

}∞
t=0

, {pt}∞t=0, {ptwt}∞t=0 and
{ptrt}∞t=0 such that

1. for each i,
{
c?i,t
}∞
t=0

,
{
ι?i,t
}∞
t=0

, and
{
`?i,t
}∞
t=0

solve

max
{ct,ιt,`t}∞t=0

∞∑
t=0

βtu(ct) s.t.
∞∑
t=0

pt(ct + ιt) =
∞∑
t=0

pt(rtkt + wtei`t)

where, ∀t, kt+1 = (1− δ)kt + ιt with k0 = ki,0,

2. {L?t}∞t=0 and {K?
t }∞t=0, where K?

0 =
∫ 1

0
k?i,0di, with k?i,0 = ki,0, solve

max
{Lt,Kt}∞t=0

∞∑
t=0

pt

{
AtK

α
t L

1−α
t − rtKt − wtLt

}
,

3.
∫ 1

0
ei`

?
i,tdi = L?t ,

∫ 1

0
k?i,tdi = K?

t , and
∫ 1

0
(c?i,t + ι?i,t)di = At(K

?
t )α(L?t )

1−α for all t.
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Note that the ki,0s are exogenous and that K0 therefore is not included as an equilibrium
object: we only include as equilibrium objects those that are endogenously determined. Also
note, again, that since firms rent capital from consumers, their profit maximization problem
is not dynamic (and we could equivalently have one firm per date). It is also possible to
define an equilibrium where firms buy and own capital. A firm would then purchase a unit
of the good at t and use it as an investment good and then use it, together with labor at
t + 1. That way, the firm would have a dynamic problem, making profits in period t + 1
and on that, in equilibrium, would be just large enough to offset the costs of investment at
t because of constant returns to scale.

Equilibrium characterization

The optimality conditions for consumption, labor, and investment are derived by formulating
the Lagrangian and taking derivatives. For consumption and labor we have, as in the previous
economy,

βtu′(ci,t) = λipt, (5.15)

υ′(`i,t) = eiwtu
′(ci,t), (5.16)

where λi is the Lagrange multiplier for the (lifetime) budget constraint, equation (5.14).
Since the optimality condition for consumption is the same as in the previous economy, we

can again show that all households experience the same consumption growth independently
of their skills ei and their initial wealth ki,0, so long as u(c) is a power function, which
we will assume. This also implies that individual consumption is a share θi of aggregate
consumption, that is, ci,t = θiCt. What determines θi are, as before, the skills ei and the
initial wealth ki,0, along with how prices develop over time.

The optimality condition for investment is new and it takes the form

pt = pt+1rt+1 + (1− δ)pt+1. (5.17)

The condition has a simple interpretation. If we buy one unit of capital today, it will cost
us pt. Next period, however, we can rent it to the representative firm earning the rental
rate pt+1rt+1. In addition, we still have the non-depreciated capital 1 − δ, which is worth
(1 − δ)pt+1. Thus, the left-hand-side is the cost of investing and the right-hand-side is the
gross return, both expressed in terms of time-0 consumption. The equality simply says that
the cost of investing must be equal to its return.5 Note that if we divide both sides of
equation (5.17) by pt+1 we find pt/pt+1 = 1 + rt+1 − δ so the price of consuming in date t in
terms of foregone consumption in t+ 1 is given by the gross return on capital.

The firm’s problem now has two optimality conditions,

rt = αAtK
α−1
t L1−α

t ,

wt = (1− α)AtK
α
t L
−α
t .

5From the consumer’s perspective, one could conceive of prices and rental rates such that the stated
equality is an inequality. This would either mean that a maximum does not exist or a corner solution; in
equilibrium, neither are possible, so prices have to adjust to ensure equality.

143



The rental rate of capital and the wage rate are, respectively, the marginal productivities
of capital and labor. Again, for general pairs (rt, wt) these two conditions will not be met
at the same time (in which a firm would make infinite profits or shut down): these prices
will, however, adjust so that they are, and the firm is then indifferent as to the scale of the
operation. However, the capital-labor ratio is pinned down uniquely.

Let us now specialize the utility function further: u(c) = log c. Then, using the first-order
condition for consumption, equation (5.15), at t and t+ 1, we obtain

ci,t+1 = β
pt
pt+1

ci,t.

Since ci,t = θiCt for all t, we obtain (equivalently, sum across all i)

Ct+1 = β
pt
pt+1

Ct,

i.e., the Euler equation can also be expressed in terms of aggregate consumption. However,
from the discussion at the end of Section 5.2.2 we know that aggregate labor supply will
depend on the asset distribution—as given by the distribution of ki,0s here—so let us make
a simplifying assumption here:

ki,0 = eiK0.

This assumption implies if you are rich in assets, you are also rich in productivity. Here,
ei can then be interpreted also as the share of total initial capital K0 held by agent i. We
can also see that, conditional on working the same amounts, agents with different eis will
have total wealth (including the asset holding) levels proportional to ei. To see this, use
ki,t+1 = (1− δ)ki,t + ιi,t and (5.17) for all t in the individual budget to obtain

∞∑
t=0

ptci,t =
∞∑
t=0

ptwtei`i,t + (1− δ + r0)ki,0.

Here we see that, if we set `i,t = `t independent of i—a guess we will confirm to be correct
momentarily—then individual i’s total resources (the right-hand side) would be proportional
to ei, since ki,0 also is. Since the Euler equations yield pt+1ci,t+1 = βptci,t for all t and i, we
can then insert, simplify, and rewrite the budget as

ci,t = ei
βt(1− β)

pt

(
∞∑
t=0

ptwt`t + (1− δ + r0)K0

)
.

We see that θi, the individual’s share of aggregate consumption, equals ei.
6 Going back to

equation (5.16), we see that the right-hand side becomes independent of i, and hence `i,t will
be independent of i: it will equal Lt.

6To see this, note that ci,t has the structure eiXt where Xt is independent of i. Integrating across i and
using

∫
eidi = 1 we find that Ct ≡

∫
ci,tdi = Xt.
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Given our assumptions, we can now think of there being a “representative consumer,”
even though consumers differ in endowments, since individuals’ decisions all scale with ei
(this representative is, rather, the aggregate of all consumers). We have not solved the model
fully yet, however: aggregates remain to be determined. We can collect them as follows:

Ct+1

Ct
= β

(
1− δ + αAt+1K

α−1
t+1 L

1−α
t+1

)
, (5.18)

where we have used the aggregate Euler equation, (5.17), and the firm’s first-order condition
for capital;

υ′(Lt) =
(1− α)AtK

α
t L
−α
t

Ct
, (5.19)

where we have used the consumer’s intratemporal first-order condition and the firm’s first-
order condition for labor; and

Ct = AtK
α
t L

1−α
t + (1− δ)Kt −Kt+1 (5.20)

from the resource constraint. Consumption can be eliminated and the system can be written
as a difference equation (second-order in K, given L). It does not, in general, have a closed-
form solution.7

How does the competitive equilibrium allocation compare to the solution to a social
planner’s problem of the kind we studied in Chapter 4? To explore this, let us suppose that
all individuals have the same labor efficiency so ei = 1 for all i. The social planner then
wishes to maximize the utility of the representative household

∞∑
t=0

βt [log (Ct)− v (Lt)]

subject to the aggregate resource constraint (5.20). If we substitute the constraint into the
objective function and take the first order condition for the planner’s problem with respect to
Kt+1 we obtain the exact same expression as (5.18). Similarly the first order condition with
respect to Lt is exactly the same as (5.19). The equations that characterize the solution to
the planner’s problem are therefore exactly the same as the equations that the competitive
equilibrium must satisfy. As a result, the competitive equilibrium coincides with the choice
of the planner. This is an important result that we will return to in Chapter 6.8

7δ = 1 would deliver a constant saving rate equal to αβ, and Lt would then be given by υ′(Lt)Lt = 1−α
1−αβ

and not depend on time.
8We assumed here that all the individuals have the same labor productivity to simplify the exposition,

but this assumption is not crucial. With heterogeneous skill levels we could show that the competitive
equilibrium coincides with the solution to a different social planner’s problem in which the social planner
maximizes a weighted average of the utilities of the individuals with weights given by ei.
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5.3 Sequential equilibrium

In the previous sections we defined equilibria in a manner following Arrow-Debreu: all trades
are decided on at time zero. In this section, instead, we assume that trades are decided on
sequentially over time and deliveries take place either in the same period t or in future
periods. Future deliveries are especially relevant for financial contracts. For example, a debt
contract is signed at time t, when borrowing occurs, but the repayment arises in one or more
future periods.

Since trades arise sequentially, agents face a budget constraint in every period. This,
however, does not imply that agents need to consume the whole income earned in the period.
They can save by holding assets. In the rest of this section we assume that there is only one
asset, denoted by at, that pays interest at a net rate rt. We will define qtat+1 as the amount
saved at t and at+1 as the amount delivered at t+ 1. This means that the real interest rate
between t and t+ 1 can be defined from 1 + rt+1 = 1/qt.

9

The period resources that the agent does not use for consumption will be used to purchase
assets. If instead consumption exceeds the resources available in the period, the agent will
borrow. Borrowing means that the value of at is negative, in which case the agent will pay
an interest (the interests on borrowing and saving are the same). This will become clear in
the applications.

5.3.1 The endowment economy

Returning to our endowment economy from Section 5.2.1, let us now assume that agents
trade in every period. Agents thus trade an asset that pays the interest rate rt: agent i
enters period t with ai,t units of the asset and receives the endowment yi,t. Therefore, the
total resources available in the period are ai,t + yi,t. These resources are then used in part
for consumption, ci,t, and in part to purchase new units of the asset, qtai,t+1. The budget
constraint in period t is thus

ci,t + qtai,t+1 = yi,t + ai,t.

The agent thus maximizes lifetime utility (5.1) subject to the sequence of budget constraints,
one for every period, and the no Ponzi game (nPg) condition introduced in Section 4.3.1.

The initial asset holdings, which are exogenous, sum to zero:
∫ 1

0
ai,0di = 0. We have the

following.

Definition 5 A sequential competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

and{
a?i,t+1

}∞
t=0

, for each i ∈ [0, 1], and {qt}∞t=0 such that

9This convention is common; in an endowment economy, if alternatively at+1 is saving in consumption
units at t and (1 + rt+1)at+1 is the total return from this saving at t + 1, then r0 cannot be determined in
equilibrium (or, equivalently, it can be set to any value). However, q0 is determined.
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1. for each i,
{
c?i,t
}∞
t=0

and
{
a?i,t+1

}∞
t=0

solve

max
{ct,at+1}∞t=0

∞∑
t=0

βtu(ct)

s.t.

ct + qtat+1 = at + yi,t ∀ t, with a0 = ai,0,

lim
t→∞

(
Πt
s=0qs

)
at+1 ≥ 0 (nPg condition)

2. for all t,
∫ 1

0
c?i,tdi =

∫ 1

0
yi,tdi and

∫ 1

0
a?i,t+1di = 0.

The last two conditions are the market clearing conditions in goods and financial markets.
The first says that the aggregate consumption must be equal to the aggregate quantity of
goods available in every period. The second says that aggregate asset holdings must be zero
in every period. In this economy, agents borrow and lend to one another. Each transaction
therefore represents an increase in one person’s assets and an offsetting decrease in another’s.
When we sum across all the agents, these trades net out to zero.

The equilibrium definition imposes two market clearing conditions, but in fact only one
of them is needed due to Walras’s Law. If we integrate the household budget constraints
across i and impose asset market clearing we arrive at the goods market clearing condition.
Hence goods market clearing is insured by asset market clearing. It is also the case that
goods market clearing implies the asset market clears.10

The optimality conditions can be derived by writing the Lagrangian and taking first-order
conditions, which give

βtu′(ci,t) = λi,t, (5.21)

qtλi,t = λi,t+1, (5.22)

where λi,t is the Lagrange multiplier associated with the budget constraint. Differently from
the first-order conditions in the setup with time-zero trading, the multiplier depends on time
t. This is because we replaced the lifetime budget constraint (which is one constraint) with
the sequence of period budget constraints. Therefore, we have one multiplier associated with
each period budget constraint.

We now show that, despite this difference, we obtain the same optimality conditions.
Using equation (5.21) at time t and t + 1 to eliminate the multipliers in equation (5.22) be
obtain

qt = β
u′(ci,t+1)

u′(ci,t)
.

10If we integrate the budget constraints at time 0 and impose
∫ 1

0
ai,0di = 0 and goods market clearing we

find
∫ 1

0
ai,1di = 0. We can then proceed by induction to show that goods market clearing at date 1 implies

asset market clearing at date 1 and so on.
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This condition must be satisfied at any time t. If we use this condition from time 0
through time t− 1, we obtain

q0 × q1 × · · · × qt−1 = β
u′(ci,1)

u′(ci,0)
× ..× β u′(ci,t)

u′(ci,t−1)
,

which can be rewritten more compactly as

Πt−1
s=0qs = βt

u′(ci,t)

u′(ci,0)
.

The left-hand-side term corresponds to pt in the Arrow-Debreu equilibrium. Therefore,
we obtained the optimality condition (5.3) we derived in the time-zero trade equilibrium.
This illustrates that the Arrow-Debreu price pt is the present value at time zero of one unit
of consumption at time t, discounted by the sequence of interest rates up to time t. It also
shows that pt−1/pt = 1/qt−1 = 1 + rt, that is, the gross interest rate between t − 1 and t is
the ratio between the corresponding Arrow-Debreu prices: the relative price of consumption
goods at t− 1 in terms of goods at t.

The sequential equilibrium thus delivers the same equations determining quantities and,
once translated back into Arrow-Debreu terms, the same prices as well. The literature uses
both, guided by what is convenient in different contexts.

It is instructive to connect the budget constraints in the two setups: at first appearance
they may not look equivalent, but they are. To see this, we start with the budget constraints
at t = 0 and t = 1:

ci,0 + q0ai,1 = ai,0 + yi,0,

ci,1 + q1ai,2 = ai,1 + yi,1.

Using the first equation to eliminate ai,1 in the second equation (or viceversa) we obtain

ci,0 + q0ci,1 + q0ai,2 = ai,0 + yi,0 + q1yi,1.

We use next the budget constraint at t = 2 to eliminate ai,2, then the budget constraint at
t = 3 to eliminate ai,3, and so on. After T substitutions we obtain

T∑
t=0

(
Πt−1
s=0qs

)
ci,t +

(
ΠT−1
s=0 qs

)
ai,T+1 = ai,0 +

T∑
t=0

(
Πt−1
s=0qs

)
yi,t.

We have already shown that Πt−1
s=0qs = pt. Furthermore, as T converges to infinity, the second

term on the left-hand side of the equation converges to something non-negative. Therefore,
taking the limit T →∞ we obtain the lifetime budget constraint

∞∑
t=0

ptci,t ≤ ai,0 +
∞∑
t=0

ptyi,t.

The budget constraint will be chosen to hold with equality given a strictly increasing utility
function; that is, the limit of

(
ΠT−1
s=0 qs

)
ai,T+1 as t approaches infinity will be zero (a strictly

positive amount would violate the TVC discussed in Section 4).
It is straightforward to apply a sequential equilibrium concept to other economies; to save

space, we will only look at the neoclassical growth model, this time without valued leisure.
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5.3.2 The neoclassical growth economy

We can similarly define an equilibrium of the neoclassical growth model in which agents trade
period by period. We simply state the compact equilibrium definition here and leave it up to
the reader to verify that it is equivalent to that described as an Arrow-Debreu equilibrium:
that the allocations coincide and that prices, appropriately defined in comparable terms, do
too. We use the case where labor is set exogenously to ei for agent i, with

∫ 1

0
eidi = 1 so

that aggregate labor supply equals 1.

Definition 6 A sequential competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

and{
k?i,t+1

}∞
t=0

, for each i ∈ [0, 1], and {rt}∞t=0 and {wt}∞t=0 such that

1. for each i,
{
c?i,t
}∞
t=0

and
{
k?i,t+1

}∞
t=0

solve

max
{ct,kt+1}∞t=0

∞∑
t=0

βtu(ct)

s.t.

ct + kt+1 = (1− δ + rt)kt + wtei ∀ t, with k0 = ki,0,

lim
t→∞

1

Πt
s=0(1− δ + rs+1)

kt+1 ≥ 0 (nPg condition);

2. for each t, (Kt, 1) solves maxK,LAtK
αL1−α − rtK − wtL, where Kt =

∫ 1

0
k?i,tdi (and

k?i,0 = ki,0); and

3. for each t,
Ct +Kt+1 = AtK

α
t + (1− δ)Kt,

where Ct =
∫ 1

0
c?i,tdi.

Let us make two remarks. First, the use of Walras’s Law here makes the last requirement
redundant: add consumers’ budgets at each point in time and use the firm’s problem, which
has constant returns to scale, to see this.11 Second, we formulate the firm’s problem as static
here; it is simpler. In it, note that whereas K and L are mere choice variables and need not
have time subscripts, the solution does need to be dated.

5.4 Recursive equilibrium

Just like it is possible to study dynamic optimization problems with recursive methods—
dynamic programming—it is also possible to define equilibria that way. We saw in the
context of optimization that recursive methods make the object of study different: we look
for functions, not sequences. For a maximization problem, having solved a dynamic program

11Walras’s Law was applicable in the Arrow-Debreu formulation too, but then only once—not at each t.
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means that we have a function that we can apply to any value of its argument: the state
variable (which can be a vector). A recursive equilibrium will also focus on functions.

To move slowly toward a general definition, let us first study how recursive methods
can be used to define steady-state equilibria, i.e., equilibria where (aggregate) variables are
constant over time. In the case of equilibria defined as sequences, we did not separately define
steady-state equilibria: steady-state equilibria simply satisfy the definition of equilibria and
have the additional property that all variables (at least aggregates) are constant over time.
For the endowment economy, the case where all individuals’ endowments are constant over
time, all equilibria are steady-state equilibria. For the neoclassical economy, the economy’s
aggregate capital stock needs to have a certain starting value; otherwise, the equilibrium
will not be in steady state from time zero. Steady-state equilibra defined using recursive
methods are also just a subset of all equilibria. However, as we shall see, it is useful to define
steady-state equilibria separately, as a first step.

5.4.1 Steady state

A steady-state equilibrium is one where the aggregate economy is at a rest point. This
means, in particular, that prices are constant. Before proceeding, note that the present
discussion also applies to the case where there is exact balanced growth, in which case the
economy can be transformed into a stationary one whose steady state is then studied (in this
case, wages will be growing along the balanced path but will be constant in the transformed
economy).

Conceptually, now, for the definition of a steady-state equilibrium we will need to specify
the constant prices and aggregates and to provide functions making clear that, at steady
state, agents optimize: they consider behavior that is non-constant over time but choose to
remain constant.

As before, we will go through definitions for different economies, beginning with a case
without production.

The endowment economy

Consider, again, the economy with a continuum of consumers indexed by i, each now with
and endowment that is constant over time, yi. An equilibrium is defined as follows.

Definition 7 A recursive steady-state competitive equilibrium is a q and a set of
functions, V ?

i (a) and g?i (a), and asset values a?i , for for each i ∈ [0, 1] such that

1. for each i, V ?
i (a) solves

Vi(a) = max
a′

u(a+ yi − qa′) + βVi(a
′) ∀a,

with g?i (a) attaining the maximum on the right-hand side for all a;

2. for each i, g?i (a
?
i ) = a?i ; and
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3.
∫ 1

0
g?i (a

?
i )di = 0.

Here, the V ?s and g?s capture individual optimization, given prices (a single q in this
case). The second condition expresses stationarity of individual asset holdings; at the same
time, it does put a sharp restriction on the function. We are, thus, allowing different individ-
uals to start with—and maintain—different holdings of assets. Market clearing is captured
in the third condition. Our equilibrium definition also specifies a distribution of asset hold-
ings, which is required to be constant over time. A special case is that of a representative
agent, where the second condition would read g?(0) = 0 and the third condition would be
superfluous.

Equilibrium characterization The functional Euler equation, which we arrive at after
taking the first-order condition in the dynamic program and then using the envelope theorem,
reads, for all i,

qu′ (a+ yi − qgi(a)) = βu′ (gi(a) + yi − qgi(gi(a))) .

Using stationarity at a = ai, we obtain

qu′ (ai(1− q) + yi) = βu′ (ai(1− q) + yi) .

Hence, q = β. We can now solve for gi from the functional Euler equation: it implies
a− qgi(a) = gi(a)− qgi(gi(a)) and it is easy to see here that g?i (a) = a solves this functional
equation for all i. No matter what asset level an agent has, they choose to keep it and just
consume its accrued interest. This is the permanent-income result we have seen before, now
in recursive form.

Given the simple form of the policy function, we immediately obtain the implied V ?
i s.

They satisfy V ?
i (a) = u(a(1− q) + yi)/(1− β).

Having found all the equilibrium objects, we note, first, that the asset distribution can
be chosen freely subject to market clearing and that all consumers have non-negative con-
sumption. That is, this model has “no predictions” for long-run wealth distributions: any
relative distribution of wealth is sustained over time. Since real-world wealth distribution
have certain distinct features in common—regarding their overall shapes, across time and
countries—this model therefore is not satisfactory. Richer models of wealth distribution that
relate to data are therefore developed and discussed in Chapter 19. Second, we see that the
shape of the utility function, u, does not play a role in any of the characterizations of the
steady state. This is not true if there is balanced growth (in endowments); then, u needs to
have the usual balanced-growth shape.

The neoclassical growth economy

Turning to the neoclassical growth model with optimal saving, let us proceed immediately
to the definition of steady-state equilibrium, of course with the assumption that TFP, At, is
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constant over time.12 We will again consider a continuum of consumers. For simplicity, we
will assume that labor supply is exogenous and equal to ei for agent i, with

∫ 1

0
eidi = 1.

Definition 8 A recursive steady-state competitive equilibrium consists of scalars r
and w and a set of functions, V ?

i (k) and g?i (k), and capital holdings k?i , for for each i ∈ [0, 1]
such that

1. for each i, V ?
i (k) solves

Vi(k) = max
k′

u((1− δ + r)k + wei − k′) + βVi(k
′) ∀k,

with g?i (k) attaining the maximum on the right-hand side for all k;

2. (K?, 1) solves maxK,L F (K,L)− rK − wL, where
∫ 1

0
k?i di = K?; and

3. for each i, g?i (k
?
i ) = k?i .

We see a close similarity between the agent’s problem here and that in the endowment
economy: there exogenous labor income and a constant interest rate. There are two prices,
r and w, but as we shall see they are closely related. Finally, we see that the market-clearing
condition is different: assets sum up to the aggregate capital stock.

Equilibrium characterization For reasons identical to those used in the case of the
endowment economy, we obtain β = 1 − δ + r. This equation determines r. Then we
know from firm maximization that r = FK(K?, 1). This equation determines K?. We also
know that w = FL(K?, 1), which gives us w. The distribution of capital is indeterminate,
subject to adding up to K?. The policy and value functions are given by g?i (k) = k and
V ?
i (k) = u(k(r − δ) + wei)/(1− β), respectively, for all k and i.

5.4.2 Dynamics

Turning to a full equilibrium, we now need to find a way to express, using functions, how
prices and aggregates move over time. We will consider the neoclassical growth model only.13

We will assume that TFP is constant, so as to isolate how these price and quantity movements
are endogenous. We will, again, consider a continuum of households, but now assume as a
benchmark that their asset holdings and labor productivities are the same. This means
that the consumer we look at can be thought of as a representative agent from the outset,
i.e., one among a [0,1] continuum of identical agents. We will revisit the question of actual
heterogeneity at the end. We also begin with the assumption that labor supply is exogenous
and equal to 1.

12Alternatively, it is growing at a constant rate, in which case the analysis requires a transformation of
variables.

13Endowment economies can be considered as well but do not involve the same core issues as the neoclas-
sical model allows us to illustrate.
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Recall that recursive methods involve expressing outcomes as functions of state variables.
A state variable has to be both relevant and predetermined. So, in our economy, what
determines prices and aggregates over time? It is instructive to consider period 0: what
determines prices at that point in time? In the neoclassical model r0 and w0 are determined
by the capital/labor ratio, through the marginal products of capital and labor. Hence, at the
very least these two prices will depend on the period-0 capital stock in the economy: besides
being relevant, the aggregate capital stock is also predetermined. Is there another variable
that qualifies as a state, determining prices? No. Hence, we conclude that two functions
r(K) and w(K) need to be part of our equilibrium.14

Agents will thus take as given r(K) and w(K) when making their decisions. But, given
that prices will move over time, how do they know what prices will prevail in the future?
For this they need the equivalent of the planner’s decision rule for capital: in the context of
a recursive equilibrium, we will label it a law of motion, K ′ = G(K). Thus, agents take G,
r, and w as given functions and then solve their dynamic programming problems. What will
these problems look like? As in the case of the steady-state equilibrium we need to allow
the agent’s choice of capital to deviate from that in equilibrium. Therefore the dynamic
program must read

V (k,K) = max
k′

u((1− δ + r(K))k + w(K)− k′) + βV (k′, G(K)) ∀(k,K), (5.23)

where k is an individual agent’s capital and K is the aggregate capital stock, which they
take as given.

We now define equilibrium:

Definition 9 A recursive competitive equilibrium consists of functions r(K), w(K),
G?(K), V ?(k,K), and g?(k,K) such that

1. V ?(k,K) solves (5.23), for G = G? and g?(k,K) attains the maximum in this problem;

2. for all K, r(K) = FK(K, 1) and w(K) = FL(K, 1); and

3. G?(K) = g?(K,K) for all K.

The second condition does not state profit maximization of the firm explicitly but just uses
the first-order conditions.15 The third condition, labeled consistency, works as a market
clearing condition: it requires that the evolution of the aggregate capital stock is consistent
with the choices of individuals when they each hold the same level of capital.

Is the resource constraint met in our definition? It is. The representative consumer will,
in a recursive competitive equilibrium, consume K(1− δ + r(K)) + w(K)−G?(K), which,
from the firm’s problem and F being CRS, equals F (K, 1) − K ′ + K(1 − δ), i.e., output
minus investment.

14As an alternative to looking at time 0 to gain intuition, consider the planning problem of the economy
under study: the state variable relevant to the planner will then be a state in the recursive equilibrium.

15Alternatively, state that r(K) and w(K) are such that (K, 1) solves maxk,` F (k, `)− r(K)k−w(K)` for
all K.
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Equilibrium characterization Let us also derive the functional Euler equation of the
agent. Taking first-order conditions and applying the envelope theorem (for a marginal
change in k), we obtain (dropping ?s for convenience) that,for all (k,K),

u′ ((1− δ + r(K))k + w(K)− g(k,K)) =

βu′ (g(k,K)(1− δ + r(G(K))) + w(G(K))− g(g(k,K), G(K))) [1− δ + r(G(K))] .

Given r, w, and G, this functional equation determines g(k,K): the behavior of individual
saving when the individual has k, possibly different from aggregate capital, K. Can g be
solved for explicitly? In general, no. However, when u is a power function, again in line
with our general balanced-growth requirements, it is possible to show that it takes the form
g(k,K) = µ(K) + λ(K)k.16 Individual saving is linear in the own holdings of capital: the
marginal propensity to save is λ(K), i.e., independent of the level of k (it only depends on
the aggregate capital stock). This also means that if we were to consider several consumers
and distribute capital among them, how we distribute it would not matter for aggregate
saving. In other words, we have aggregation if u is a power function. Thus, it is not
restrictive to consider a representative agent. This result holds also if different agents have
different endowments of labor: then gi(k,K) = µi(K) + λ(K)k, i.e., the intercept will vary
across individuals but the slope will not. To conclude, if an economy with a power utility
function has a nontrivial distribution of capital among agents, the aggregate law of motion
will only depend on aggregate capital. That is, K is still the aggregate state variable: the
distribution of capital, though predetermined, is not relevant for understanding how prices
are determined.

Turning to how one solves for aggregates, we can also evaluate the above Euler equation
at k = K and use the fact that the resource constraint will hold, along with the expression
for the rental rate function, to obtain

u′ (K(1− δ)K + F (K, 1)−G(K)) =

βu′ (G(K)(1− δ) + F (G(K), 1)−G(G(K))) [1− δ + FK(G(K), 1)] .

This functional equation solves for the evolution of the capital stock. We note that it coin-
cides with the functional equation of the planner’s problem for the same economy: equation
(4.25) of our optimization chapter. As in that case, this equation has to be solved numerically
unless u is logarithmic, F is Cobb-Douglas, and δ = 1.

Before concluding, let us consider the economy with valued leisure: agents have utility
functions u(c)− υ(`). Now aggregate labor supply is endogenous. It is not predetermined in
a given period, so it is not a state variable (neither for the individual nor for the aggregate).
Thus, our state is still (k,K). What is needed now, however, is a function L = H(K)
specifying how aggregate labor supply depends on the aggregate state. Similarly, on the
individual level, we need ` = h(k,K) to denote the policy function for the choice of labor.
The equilibrium, again for the representative-agent case, becomes

16See Appendix 5.A for a proof and a more extensive discussion of conditions under which the solution
has this form.

154



Definition 10 A recursive competitive equilibrium for the economy with valued leisure
consists of functions r(K), w(K), G?(K), H?(K), V ?(k,K), g?(k,K), and h?(k,K) such
that

1. V ?(k,K) solves

V (k,K) = max
k′,`

u((1− δ + r(K))k + w(K)`− k′)− υ(`) + βV (k′, G?(K)) ∀(k,K).

and k′ = g?(k,K) and ` = h?(k,K) attain the maximum in this problem;

2. for all K, r(K) = FK(K,H?(K)) and w(K) = FL(K,H?(K)); and

3. G?(K) = g?(K,K) and H?(K) = h?(K,K) for all K.

This is a straightforward extension of the definition without valued leisure. Notice that
the agent does not use H? in the maximization problem; G? suffices, because r and w now
capture how the labor input changes with K.

It is straightforward, but somewhat tedious, to derive the functional Euler equations;
there will now be an intertemporal condition too determining labor supply. Again, evaluated
at k = K, one finds that the conditions are identical to those of the corresponding planner’s
problem.

Will this economy deliver aggregation too, once u is of the power form? As already
alluded to above in Section 5.2.3, the answer is no, unless labor productivities differ across
agents too and the ratio of the initial capital holding to labor productivity is the same across
all agents.17 If not, the aggregate state variable necessarily becomes the vector of capital
holdings of all agents, not just the sum of these holdings.

5.5 Overlapping generations

We now consider overlapping generations models. The defining feature of these models is
that agents live for a finite length of time but the economy continues after their death with
new generations of agents. Historically, overlapping-generations (OG) models have played an
important role in macroeconomics. They were first introduced by Allais (1947) and later used
for a large variety of purposes: for understanding why fiat money has value and the potential
need for a social security system (Samuelson, 1958) and for understanding government debt
(Diamond, 1965). Interestingly, although most of his later work used dynastic settings,
Lucas’s path-breaking (1972) paper on the Phillips curve is using an OG model. We will
revisit these applications later in the text. In this chapter, we will merely focus on some
features that make OG market economies different than those studied above.

We will restrict attention to the simplest version of an OG setting: one where, each period,
a cohort of people are born and then live for two periods only. That way, cohorts overlap, but

17In this case, this ratio will also stay the same over time.
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only for one period. This is the so-called the two-period life OG setting. Clearly, the two-
period life case is limited in its applicability: for example, it cannot be used for quantitative
studies of the business cycle, as business cycles occur rather frequently (a time period in the
OG model should perhaps be thought of as 25 or 30 years). However, it is of course possible
to construct OG models where people live for an arbitrary (finite) number of periods and
many of the special properties of such models are inherited from the two-period life case.

In our benchmark, we will assume—as is the case in the most commonly used OG model—
that people, though they have children, do not give bequests or any other gifts to them.
Relatedly, they express no altruism toward their offspring and thus maximize their own util-
ity only, defined over consumption (and possibly leisure) in their two periods of life. The
maximization problems are, then, conceptually simple; the finite-horizon settings studied in
Section 4.2, in particular that in 4.2.1, can be immediately applied. The maximization prob-
lems, moreover, are often called life-cycle models, emphasizing that individuals go through
different phases in life and, in particular, that young and old individuals have different
time horizons. Here, we will limit heterogeneity to age and not consider further differences
between people. Thus within each cohort, all agents are identical.

Defining equilibria for OG models is straightforward, too. As for the dynastic setting,
there are three methods—sequence-based (AD and sequential-trade) and recursive definitions
of equilibria—but here, for convenience only, we will focus exclusively on the sequential-trade
setting. We will see that not only are the maximization problems simpler in OG models
but computing equilibria is more straightforward too. However, what we will find is that
equilibria for OG models can (but do not necessarily) have peculiar features. For example,
equilibria may not be Pareto-optimal. In addition, there may be more than one equilibrium.
In this chapter, we will mainly set things up; welfare properties will then be studied carefully
in the next chapter and applications will be discussed in later chapters.

As before, we begin with the endowment case. We will then turn to the neoclassical
growth model. Lastly, we will discuss introducing altruism and bequests. Throughout, we
abstract from population growth.

5.5.1 The endowment economy

Let us assume that the cohort born at t has utility given by

ut(cy, co) = u(cy) + βu(co),

where we evaluate at two arbitrary consumption levels (cy, co) when young and old, respec-
tively. The preferences of generation t = −1, who are old as time begins, are similarly
represented by u−1 (c) = u(c).

We consider endowment sequences given by (ωy,t, ωo,t+1) for cohort t: for all t, where t is
the time period, ωy,t is the endowment of the young and ωo,t the endowment of the old (who
are of cohort t− 1) in that time period.

A sequential equilibrium is defined in much the same way as in our endowment economy
with dynastic agents.
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Definition 11 A sequential competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

, for

each i ∈ {y, o},
{
a?t+1

}∞
t=0

and {qt}∞t=0 such that

1. for each t > 0,
(
c?y,t, c

?
o,t+1, a

?
t+1

)
solves

max
cy ,co,a′

u(cy) + βu(co) s.t. cy + qta
′ = ωy,t and co = ωo,t+1 + a′

and co,0 = ωo,0.

2. for all t ≥ 0, c?y,t + c?o,t = ωy,t + ωo,t.

The last requirement—goods market clearing—can equivalently, using consumers’ budgets,
be written a?t+1 = 0 for all t. To see this, begin in period 0 and roll forward: resource
feasibility at time 0 means, when summing cohort 0’s budget and cohort 1’s first-period
budget, that a?1 must equal 0. Then the same procedure for next period delivers a?2 = 0, and
so on. Intuitively, this is obvious: any given cohort fundamentally only have endowment
income, and saving (or borrowing) when young must mean that another cohort is on the
other side of that transaction; but it cannot be the old who is now alive during their last
period, and it cannot be the young of next cohort, since they have not been born yet.

Equilibrium characterization Having established a?t+1 = 0, a result that is true also in
the dynastic model if all agents have the same endowments, we conclude that (c?y,t, c

?
o,t) =

(ωy,t, ωo,t): autarky. These results are in line with what we found in the dynastic model. Also,
as before, solving for the price only involves evaluating the consumer’s first-order (Euler)
condition, which—evaluated at autarky—reads

qtu
′(ωy,t) = βu′(ωo,t+1)

at time t. If we impose u(c) = c1−σ−1
1−σ , so that (in a slightly more general model) we obtain

results consistent with balanced growth, we conclude that

qt = β

�
ωy,t
ωo,t+1

�σ
. (5.24)

If the endowments are stationary, so that ωy,t and ωo,t do not depend on time, we obtain
that qt is constant and equal to β(ωy/ωo)

σ. Thus, if the endowment when young does not
equal the endowment when old, the interest rate will not just reflect the utility discount
factor β but also the shape of life-cycle income. In particular, if ωy > ωo, which makes
sense if we identify y with “working” and o with “being retired,” then we can even obtain
q > 1, i.e., negative real interest rates, in this model. This is not possible to obtain in the
dynastic endowment model (unless aggregate endowments fall over time at a constant, and
high enough, rate).

The intuition for the possibility of negative interest rates in the OG model is that when
life-cycle endowments decline over time (at a high enough rate), consumption is marginally
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more valuable in the future than now in the absence of being able to smooth income over
time. And in the two-period life OG model no such smoothing is feasible. In a 3-period OG
model there could be borrowing/lending between the young and the middle-aged. It would
be reasonable to think that the life-cycle endowment pattern then has ωy < ωm > ωo, where
ωm is the endowment of the middle-aged. The young then could borrow from the currently
middle-aged, who want to lend. Thus, some smoothing would be obtained and the discount
factor would play a more prominent role again; but full smoothing would not necessarily
materialize and, thus, the OG model continues to give different predictions than does the
dynastic model. Overall endowment growth would also affect the result in the direction of
producing higher real interest rates.

Finally, note that it would be beneficial to transfer resources from the young to the old,
in the case where ωy > ωo. If all young transfer to the current old then it is even possible
for all generations to benefit. This kind of transfer can be thought of as a government-run
pay-as-you-go pension scheme; in fact, this is a key early use of the OG model. Thus, we
have an indication that the market is not efficient here. We will discuss this issue at much
greater length in our welfare chapter: Chapter 6.

5.5.2 The neoclassical growth economy

In the two-period life OG model, the introduction of capital allows consumers to actually
life-cycle save. They are endowed with labor income when young and labor income when old
and, as before, have no initial assets. So if their income as young is higher than their income
when old, they would buy capital when young and rent it out as, old agents, to firms. At
time 0, the capital stock is thus owned by the old at that time.

For concreteness, we let the labor productivity (or alternatively time endowment) of the
young and old at all times be ey and eo, respectively, with ey + e0 = 1. We also restrict
attention to a stationary production function. Growth in productivity is straightforward to
introduce and it is not essential for the key points here. We have the following (where we
use a representative agent within each cohort to economize on notation).

Definition 12 A sequential competitive equilibrium is a set of sequences
{
c?i,t
}∞
t=0

, for

each i ∈ {y, o},
{
k?t+1

}∞
t=0

, {rt}∞t=0, and {wt}∞t=0 such that

1. for each t > 0,
(
c?y,t, c

?
o,t+1, k

?
t+1

)
solves

max
cy ,co,k′

u(cy) + βu(co) s.t. cy + k′ = wtey and co = wt+1eo + (1− δ + rt+1)k′

and co,0 = w0eo + (1− δ + r0)k0;

2. for all t, rt = Fk(k
?
t , 1) and wt = F`(k

?
t , 1), with k?0 ≡ k0; and

3. for all t ≥ 0, c?y,t + c?o,t + k?t+1 = F (k?t , 1) + (1− δ)k?t .

This definition is in line with the one for a dynastic economy with the one difference that
there are two types of agents, only one of which saves in capital at any point in time.
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Equilibrium characterization The focus is on the individual problem. The Euler equa-
tion is entirely standard-looking, so let us proceed immediately to evaluate it after expressing
prices as a function of capital stocks:

u′
(
eyF`(k

?
t , 1)− k?t+1

)
=

βu′
(
eoF`(k

?
t+1, 1) + (1− δ + Fk(k

?
t+1, 1))k?t+1

) (
1− δ + Fk(k

?
t+1, 1)

)
.

Conditional on a value for k?t , this equation solves for k?t+1. Therefore, we have a very
different dynamic system than in the dynastic model, where we always obtained a second-
order difference equation. That is, here, we can “solve forward”: start with k0, solve for k?1,
and so on.

Second, what does a steady state look like? Letting k̄ denote a steady state, we obtain

u′
(
eyF`(k̄, 1)− k̄

)
= βu′

(
eoF`(k̄, 1) + (1− δ + Fk(k̄, 1))k̄

) (
1− δ + Fk(k̄, 1)

)
.

That is, we do not, in general, obtain β
(
1− δ + Fk(k̄, 1)

)
= 1, since consumption may not

end up being fully smoothed. Again, thus, we see that OG models have qualitatively different
implications for long-run interest rates: they can, depending on parameter values (intuitively,
depending on the demand for saving given the life-cycle structure, and depending on firm’s
demand for capital) be either higher or lower than 1/β (in gross terms). We invite the reader
to fully solve the model where u is logarithmic, ey = 1 and eo = 0, F is Cobb-Douglas, and
δ = 1 and verify that (i) capital’s dynamics will be log-linear and converge monotonically
to a steady state; and (ii) the gross steady-state interest rate will be α(1 + β)/(1 − α), a
number which is less than one if α is low enough.

Finally, we also note that although the solution for the model’s dynamics involves only
a first-order difference equation, it is not immediately obvious that, for each kt, there is a
unique value kt+1 solving the Euler equation. In our dynastic model, we obtain a unique
equilibrium so long as it can be obtained as a solution to a planner’s problem, which we
know to be unique under standard assumptions. Here, there is no immediate connection to
a planner’s problem.18

5.5.3 Some model comparisons

We have studied the OG model in its two-period life version. When consumers live for
more than two periods, the model in some ways looks more like a dynastic model; as the
time horizon gets longer, the life-cycle patterns can become less pronounced. Also, solving
for equilibria in OG models with more than two-period lives also does involve difference
equations that are of higher order than one. Still, however, they are conceptually different.
The determination of the long-run real interest rate, for example, remains more complex
than in the dynastic model, where very few parameters matter: without aggregate growth,
the gross real interest rate is 1/β, and with growth at rate γ, it is (1 + γ)σ/β.

18Note also that a planner’s objective in the OG setting would need to involve a social welfare function
across cohorts.
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Random deaths There are other variants of the OG model. One is the perpetual-youth
(or, perhaps, sudden-death) model. There, all individuals face a constant probability of
death between t and t + 1. Thus, a “lucky” individual can live very long, even forever. As
a consequence, anybody alive at t has the same expected remaining lifetime. An individual
who dies will be replaced by a new-born individual, so as to avoid a shrinking population, but
again not as part of a dynasty: this model shares with the basic OG setting that no individual
cares about children. When an individual dies with unspent assets—which is typical—then
these assets can be either seized by the government or given as “random bequests” to the
surviving population. A third alternative—all have been used in the literature—is that
agents can write a form of annuity contracts whereby they obtain a higher than the (safe)
market interest rate if they survive, in return for losing all the money at death; a “bank”
on the other side of this transaction would then on average, if the contract is written with
many individuals, obtain a safe return. The perpetual-youth model inherits some of the
characteristics of the OG model but, at the same time, is a move toward a dynasty model:
as the probability of survival approaches one, the model’s features approach those of the
pure dynasty setting.

Warm glow One can also append an OG model with bequest functions. The idea here is
that people do not exhibit altruism but, rather, they care about the act of giving money away
(typically, to their children). This setting is referred to as one of warm glow : giving makes
one happy (glow). To illustrate, consider the two-period life OG model. The preferences are
now

u(cy) + βu(co) + ϕ(b′),

where ϕ (like u) is an increasing, strictly concave function and b′ is the amount of bequests
given. Thus, the budget constraints for cohort t (assuming a stationary endowment economy
for simplicity) read

cy,t + qtat+1 = ωy + bt and co,t+1 + bt+1 = ωo + at+1.

Here, bt is the bequest inherited from cohort t − 1 (the parents) and bt+1 is the amount
bequeathed to cohort t + 1. Market clearing could again be expressed by requiring that
total consumption equal total endowments period by period; alternatively, one could simply
require at+1 to be zero at all times. Now notice that the old at time 0 have a non-trivial
decision: maximize, by choice of (co,0, b0), βu(co,0) + ϕ(b0) subject to co,0 + b0 = ωo.

The warm glow OG model can be seen as a behavioral model: agents no longer have
preferences over consumption goods (and leisure) but are endowed with utility functions
defined by the act of giving. They are sometimes referred to as examples of impure altruism:
it is not that the parent cares about the child—in fact, no features of the child’s economic
life appear in the bequest motive—but that the parent cares about giving per se. A model
with pure altruism is instead one where the parent cares about the child the way the child
cares about themselves, in which case one can no longer label the model behavioral since now
preferences are defined over goods. If this is true for all cohorts, we can specify the utility
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of cohort t as follows:
u(cy,t) + βu(co,t+1) + β̃ϕ(bt+1),

where
ϕ(bt+1) = u(cy,t+1) + βu(co,t+2) + β̃ϕ(bt+2),

and so on. Notice here that β̃, the weight on the child’s indirect utility, does not have to
equal β. This reveals a recursive structure, which is most easily described with dynamic
programming notation. Assuming a constant interest rate 1/q for simplicity, we obtain

ϕ(b) = max
cy ,co,a′,b′

u(cy) + βu(co) + β̃ϕ(b′),

subject to cy + qa′ = ωy + b and co + b′ = ωo + a′.

In sum, we have seen the perpetual-youth model, which looks more and more like the
dynastic model as the survival probability goes to one. The warm glow model, on the other
hand, can be seen as a behavioral OG model, except in the very special case where ϕ is (a
constant times) the indirect utility function of the next cohort. Then, the model becomes
a dynastic life-cycle model : one where there are life-cycle features but where parents care
about children in a (purely) altruistic way. In this very special case, thus, the basic long-
run features are exactly those of the simpler dynasty model we use in our benchmark. The
long-run interest rate is now given by 1/β̃, and so on.
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Chapter 6

Welfare

The preceding chapter presented examples where the competitive equilibrium allocation
is the same as the solution to a social planner’s problem. These examples illustrate the
First Welfare Theorem of economics, which gives conditions under which a competitive
equilibrium is Pareto optimal. The First Welfare Theorem is a remarkable result—arguably
the most impressive insight that economics has come up with so far. Market mechanisms can
effectively coordinate the activities of large numbers of consumers and firms, who may be
spread across the world and alive at different times. Amazingly, under the conditions of the
First Welfare Theorem (FWT), the actions of these disparate and heterogeneous people are
coordinated in a way that is socially optimal even though each individual is simply pursuing
their private interests. This is Adam Smith’s invisible hand.1

Under the FWT, a competitive equilibrium is Pareto optimal. We focus on the concept of
Pareto optimality because it is widely used as a “minimal” welfare criterion. It is, in particu-
lar, silent on the distributional implications of an allocation. For example, an allocation with
extreme inequality can nevertheless be Pareto optimal. At times, macroeconomists assume
more specific social welfare functions that express a preference for more equal distributions
of resources and we will comment upon this briefly.

While markets can work very well, they can also fail, which is to say that the competitive
equilibrium may not be Pareto optimal. Such failures of the FWT can arise for a number of
reasons, which we will discuss in detail. Our aim is to understand when market economies
work well and when they do not. Indeed, much of modern macroeconomics is concerned
with understanding the potential market failures that affect the economy and understanding
the public policies that might lead to better outcomes. An understanding of the nature of
market failure and how it can be corrected is an important part of evaluating the potential
benefits of policy proposals.

After first reviewing the relationship between Pareto optimality and competitive equilib-
rium (the FWT) in an abstract, general setting, we map it into the more applied macroeco-
nomic settings used in our text. We then go through the most common market failures that

1An inspiring description of the power of markets can be found in the short video available at
https://www.youtube.com/watch?v=67tHtpac5ws
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arise in macroeconomic analysis and indicate how each of these failures involve departures
from the assumptions underlying the welfare theorem. We end the chapter with a short
discussion of the role of government policy.

6.1 The First Welfare Theorem

The First Welfare Theorem says that a competitive equilibrium is Pareto optimal. To make
this statement more precise and to give a sketch of the proof we will consider an abstract
economy with many different goods. These goods could be different commodities or goods
at different dates. Later we will describe how different specific economic environments relate
to this abstract economy.

There is a set I of different consumers, each indexed by i ∈ I, and a set J of firms, each
indexed by j ∈ J . We think of I and J as finite but we will consider them to be infinite in
some extensions that we discuss below. Let x be a vector of consumption levels of different
goods that are traded. The length of the vector thus specifies how many markets there are
in the economy. For now, we will think of the vector length as finite, but it will be relevant
to consider the possibility of infinite vectors later. Moreover, the vector is, at least for now,
allowed to have negative elements. Similarly, y is a vector of production levels of the same
goods and ω is a vector of exogenous endowment levels of the goods. Consumer i is endowed
with ωi and consumes xi while firm j produces yj. Thus, our resource constraint reads∑

i∈I

xi ≤
∑
j∈J

yj +
∑
i∈I

ωi. (6.1)

This inequality applies to each element of the vector so, for every good, the total amount
consumed cannot exceed the endowment plus the amount produced by all the firms.

Let Xi be a set of vectors that are feasible for agent i to consume. For example, if there
are two commodities, then Xi = R2

+ would rule out consuming a negative amount of either
good. Firms have production possibility sets denoted by Yj. We assume that consumers
maximize utility taking their budget constraint, prices, and consumption possibility sets as
given. Utility maximization means they choose a consumption bundle that is not preference-
dominated (as defined by a preference ordering �i) by any other choice available to them.
Similarly, firms maximize profits, taking prices as given, by choosing a production plan in
their production possibility set Yj. Firm profits are given to the consumers that own the
firms with θi,j denoting consumer i’s share of firm j. Each firm is wholly owned by the
consumers so

∑
i θij = 1. Finally, let p be the vector of prices for each good.

Key assumption We will use the weakest assumption under which the First Welfare
Theorem holds: local non-satiation (LNS). LNS expresses that each consumer can always be
made better off by an infinitesimally higher consumption of some good.2

2This notion also presumes that the consumption possibility sets Xi allow small movements in at least
one desirable direction.
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A competitive equilibrium A competitive equilibrium is a consumption allocation {x?i }∀i,
a production allocation {y?j}∀j, and a price system p? such that

1. for each i ∈ I, the consumption choice x?i is in Xi and there is no x ∈ Xi such that
x �i x?i and px ≤ px?i = pωi +

∑
j θi,jpyj;

2. for each j ∈ J , y?j ∈ Yj and there is no y ∈ Yj such that py > py?j ;

3. and the market for each good clears (equation (6.1) holds with equality).

Theorem 6.1 (The First Welfare Theorem) An allocation that is part of a competitive
equilibrium is Pareto optimal.

Proof. The proof is by contradiction. So suppose there exists an allocation {x̃i}∀i, {ỹj}∀j
that is feasible (these values are all in their possibility sets and the resource constraint is
satisfied) and that Pareto dominates the allocation of the given equilibrium. Then, by
definition,

∀i ∈ I : x̃i �i x?i ,
∃ĩ ∈ I : x̃ĩ �ĩ x?ĩ .

Now the first property of a competitive equilibrium combined with LNS can be used to
conclude that

px̃i ≥ px?i

holds for all i. If it were strictly cheaper to buy the new allocation, the consumer could have
spent more to improve on the existing choice and hence that choice could not have been
optimal for the consumer. Moreover, for ĩ it must be that

px̃ĩ > px?
ĩ
,

again because otherwise the original allocation must not have involved consumer optimiza-
tion.

Summing the budget constraints of all consumers we have

p
∑
i∈I

x?i = pω + p
∑
j∈J

y?j ,

where ω ≡ ∑i ωi and we have used the fact that
∑

i θij = 1 ∀j. By the arguments above,
the alternative consumption allocation is more expensive

p
∑
i∈I

x̃i > pω + p
∑
j∈J

y?j .

Furthermore since y?j is profit maximizing for each j, it must be that
∑

j pỹj ≤
∑

j py
?
j so

we have

p
∑
i∈I

x̃i > pω + p
∑
j∈J

ỹj.
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In addition, the alternative allocation is resource feasible. Multiplying equation (6.1) by p
we obtain

p
∑
i∈I

x̃i ≤ pω + p
∑
j∈J

ỹj.

These last two inequalities contradict one another.

Mapping the setting into our macroeconomic models The power of the abstract
proof above is that it can be applied to a large number of contexts. Let us first consider a
static macroeconomic model with one agent with endowments of capital and labor equal to
k and 1, and a neoclassical, constant-returns to scale production function that produces a
consumption good. Preferences could be represented by a standard utility function, which
satisfies LNS because it is strictly increasing. Then x ∈ R3

+ and a typical consumer choice
would be (c, 0, 0). Firms would have (y,−k,−l) ∈ R+ × R2

−, the endowment vector would
be ω = (0, k, 1), and the normalized price vector would be (1, r, w).

The argument can easily be extended to include different types of goods. For example, if
consumers value leisure we can simply treat them as “buying leisure” so that is just another
good for them to consume. Other intermediate goods can be included too, as well as other
resources, such as land. The theorem also applies to endowment economies by specifying the
production possibility sets to only include the zero vector.

In a dynamic setting with T <∞ time periods, goods and services at different dates are
simply additional market goods and all the vectors become correspondingly longer. One can,
in particular, define the vectors as simply containing T times the number of elements in the
static model. As we will see below, the argument also applies to infinite horizon models but
with some additional caveats. In the next chapter we will discuss models with uncertainty
where goods are indexed not just by time, but also by the state of the world. The First
Welfare Theorem applies to those settings as well.

Infinite horizon models We start by considering a case with a finite number of infinitely-
lived consumers. Later in the chapter we will discuss an overlapping-generations economy
where time is infinite but each consumer has a finite life.

All the vectors in the proof above are infinite-dimensional but the competitive equilibrium
is defined as before. A key point here is that for an equilibrium to exist—especially for it
to satisfy its first property—it would have to be that the value of total expenditures of the
consumer is finite, i.e., the dot product of the infinite price vector and the infinite quantity
vector is finite. For an infinite sum, this would require, unless quantities go to zero, that
prices fall sufficiently fast. Typically in our models, prices fall asymptotically at a geometric
rate (equal to β < 1 if there is no growth), which for constant quantities imply a finite
total value. As we shall see below, although this property holds in dynastic models, it does
not hold in some overlapping-generations models. This means that overlapping-generation
models can have very different welfare properties.
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Intuition One issue underlying the First Welfare Theorem is the fact that all consumers
and firms face the same prices. For all consumers the ratio of the marginal utilities of any
two goods will equal the ratio of prices and, as the prices are the same, they all have the
same ratio of marginal utilities. It is therefore impossible to make a marginal change in the
consumption allocation that results in a Pareto improvement. This point can be illustrated
with an Edgeworth box as shown in the top panel of Figure 6.1.

The figure depicts an endowment economy with two consumers and two goods. Their
endowments are indicated by the dot. Given relative prices, we can draw a budget line as
shown by the dashed line. Notice that each consumer will choose a consumption bundle
that makes their indifference curve tangent to the budget line. When we impose market
clearing, the points representing their consumption bundles in the Edgeworth box must
coincide because what is not consumed by Consumer A must be consumed by Consumer
B. Such a situation is marked as a competitive equilibrium in the figure. Notice that the
indifference curves are tangent to the budget line and therefore also to each other. Because
the indifference curves do not intersect, there is no way to move Consumer A to a higher
indifference curve without harming Consumer B. Now consider the lower panel of the figure
where we have imagined the two consumers face different prices. We will discuss several
reasons this could occur, but a simple one is that Consumer A faces a tax on consuming
one of the goods while Consumer B does not. If the consumers face different after-tax
prices they will have different budget lines. As before each consumer chooses a consumption
bundle where their indifference curve is tangent to their budget line. As the budget lines
are different, the indifference curves now intersect and there are alternative allocations that
yield higher welfare as shown by the shaded area in the figure.

Similar logic applies to firm profit maximization. Profit maximization leads firms to set
the marginal rate of transformation equal to the ratio of prices. As firms face the same prices
as consumers, the marginal rate of transformation between any two goods will therefore be
equal to the marginal rate of substitution between any two goods. A marginal change in the
production allocation therefore cannot transform goods in a way that improves consumer
welfare. This point can be visualized as point of tangency between the indifference curves of
the consumers (remember they all have the same slope in equilibrium) and the production
possibility frontier. A marginal change along the production possibility frontier does not
increase consumer welfare.

These intuitive arguments are not as powerful as the more abstract proof above because
they apply to marginal changes in allocations while the abstract proof is global. Nevertheless,
they can be helpful in developing an intuitive understanding for when the First Welfare
Theorem will hold.

How do these ideas apply to macroeconomic models? In the dynastic growth model with
optimal saving, the Euler equation sets the marginal rate of substitution between goods at t
and t+1 equal to the relative price between them, i.e., the real interest rate. As all consumers
face the same interest rate, they all have a common marginal rate of substitution between
t and t + 1 goods. Moreover, as firms rent capital from households at a rental rate that is
equal to the real interest rate, the marginal rate of transformation between goods at t and
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(a) Efficient equilibrium.

(b) Distorted market.

Figure 6.1: Edgeworth boxes depicting an endowment economy with two goods and two
consumers. The top panel shows an efficient equilibrium in which both consumers face the
same prices and have the same budget line. The lower panel shows a distorted market where
the two consumers face different prices.
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t+ 1 is equal to the households’ marginal rates of substitution. Similarly, if we consider the
model with elastic labor supply, the firm will produce at a point where the marginal product
of labor is equal to the wage. The consumer will supply labor such that the marginal rate
of substitution between consumption and leisure is equal to the wage. Eliminating the wage
from these two optimality conditions gives us that the marginal rate of substitution between
goods and leisure is equal to the marginal rate of transformation between goods and leisure.

6.2 Tracing out the Pareto frontier

One useful way to construct a Pareto-optimal allocation is to solve a social planner’s problem
in which the planner maximizes the weighted sum of the agents’ utilities. A solution to such
a problem must be Pareto optimal because if it were not, the Pareto dominating allocation
would increase the planner’s objective function. As we will explain, the solution to this
planner’s problem is closely related to the concept of competitive equilibrium.

For the sake of simplicity, assume a set of infinitely-lived consumers, indexed by i ∈ I,
live in an exchange economy. Each period, there is a single consumption good and each
consumer receives an endowment ωi,t. Each consumer has preferences given by

Ui ≡
∞∑
t=0

βtu(ci,t)

with u′(c) > 0 and u′′(c) < 0. Let pt be the date-0 price of the date-t good. A competitive
equilibrium is a consumption allocation {ci,t}∀i,t and a price system {pt}∀t such that all
consumers are maximizing utility taking prices as given and markets clear. Market clearing
requires that

∑
i ci,t =

∑
i ωi,t for all t.

In the competitive equilibrium with date-0 trading, the consumers maximize their utility
subject to the date-0 budget constraint. The Lagrangian of this problem is

L =
∞∑
t=0

βtu(ci,t)− λi
∞∑
t=0

pt(ci,t − ωi,t)

and the first-order condition for ci,t is

βtu′(ci,t) = λipt.

As the utility function is strictly concave, we can invert u′(·)

ci,t = (u′)
−1 (

β−tλipt
)
, (6.2)

which shows that knowledge of {λi}∀i and {pt}∀t is enough to determine the entire consump-
tion allocation. The Lagrange multiplier λi captures the shadow value of date-0 wealth and
will be decreasing in date-0 wealth.
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Now consider a social planner that seeks to maximize a weighted sum of the utilities of
the consumers. The planner’s objective is∑

i∈I

µiUi,

where µi is the weight on consumer i’s utility. These weights are called Negishi weights or
Pareto weights. The constraint on the planner is the resource constraint∑

i∈I

ci,t ≤
∑
i∈I

ωi,t,

which must hold at each date. The Lagrangian of this problem is

L =
∑
i∈I

µi

∞∑
t=0

βtu(ci,t)−
∞∑
t=0

ψt
∑
i∈I

(ci,t − ωi,t),

where ψt is the Lagrange multiplier on the resource constraint at date t. The first-order
condition of this problem with respect to ci,t is

µiβ
tu′(ci,t) = ψt.

Inverting u′(·) as above yields

ci,t = (u′)
−1

�
β−t

1

µi
ψt

�
, (6.3)

which shows that knowledge of {µi}∀i and {ψt}∀t is enough to determine the entire consump-
tion allocation.

There is a clear symmetry between equations (6.2) and (6.3). If µi = 1/λi and ψt = pt, the
two equations will give rise to the same consumption allocation. Let’s assume that µi = 1/λi.
It must then be the case that ψt = pt because in the competitive equilibrium markets must
clear and in the solution to the planner’s problem the aggregate resource constraint must
hold, which means in both cases the total consumption must equal the total endowment.
By using equations (6.2) and (6.3) we can see that the only way we acheive the same total
consumption at date t is if ψt = pt. It follows that if we have the right Negishi weights,
the competitive equilibrium is optimal in the eyes of a planner that attaches more weight
to those with higher date-0 wealth. This argument is closely related to the First Welfare
Theorem: there are some Negishi weights that make the competitive equilibrium optimal for
the planner, which implies the competitive equilibrium is Pareto optimal.

Now let’s flip the argument in reverse. As we vary the Negishi weights, we will arrive at
different consumption allocations as solutions to the planner’s problem. Each one of these
allocations is Pareto optimal because it solves a planner’s problem—again, if it were not
Pareto-optimal the planner would not choose it. By varying these weights, we can therefore
map out many different Pareto-optimal allocations or in other words we can trace out the

170



Pareto frontier. Similarly, by varying date-0 wealth in the market economy we can generate
different competitive equilibria with different sets of Lagrange multipliers λi. By choosing
the appropriate distribution of date-0 wealth we can engineer a competitive equilibrium that
mimics the solution to the planner’s problem with particular Negishi weights and therefore
gives rise to a particular Pareto-optimal consumption allocation. In this case, the consumers
still trade with one another, but we redistribute resources between them to change the
distribution of consumption.

This procedure of constructing a competitive equilibrium to deliver a particular Pareto-
optimal consumption allocation is closely related to the Second Welfare Theorem. The
Second Welfare Theorem begins with a Pareto-optimal allocation and then gives conditions
under which there exists a competitive equilibrium delivering this allocation as an outcome.
The conditions involve ensuring that consumers’ and firms’ maximization problems have well-
defined solutions, which in turn in general necessitates assumptions of convexity (e.g., the
consumer’s utility function is globally concave). These additional assumptions are typically
met in our macroeconomic applications so they are not a problem per se, but the statement
of a general theorem is more cumbersome so we will not present it here.

Market equilibria, as observed in actual economies, have radically different consumption
levels across agents, so viewed from the perspective of frictionless competitive equilibria and
an additive social welfare function of the sort just described, they correspond to points on
the Pareto frontier with high Negishi weights on the high-consumption agents. The social
welfare function with Negishi weights is just an analytical tool that we can use to construct
different Pareto-optimal allocations. To be clear, the argument we have made here is not
saying that this distribution of consumption is desirable or just but simply that there are
some Pareto weights that could make the planner choose that distribution of consumption.

6.3 Inefficient market outcomes

We will now very briefly, by means of simple examples, cover a number of commonly consid-
ered departures from the abstract frictionless economy considered above. For each case, we
will comment on efficiency properties by describing how the proof of the First Welfare The-
orem 6.1 may or may not go through as well as explaining how the more intuitive marginal
efficiency conditions may or may not hold. We begin with a case where the culprit is not
the market but distortionary taxation and then look at externalities, missing markets, and
monopoly power.

6.3.1 Taxes

First, let us consider lump-sum taxes (in a frictionless economy). Lump-sum taxes do not
have to be equal across agents; the key is that the amount given to agent i does not depend
on the behavior of agent i. From the perspective of the marginal conditions characterizing
optima, since the marginal conditions of competitive equilibria do not involve lump-sum
taxes or transfers, equilibria remain optimal. From the perspective of our abstract proof,
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all lump-sum taxes do is redistribute wealth (and thus “utils”) across agents, i.e., move us
along the Pareto frontier.3

Second, let us consider the two most commonly studied taxes in macroeconomic applica-
tions: taxes on labor earnings and taxes on capital income. Beginning with taxes on labor
earnings, let us consider a tax that is proportional to earnings. Hence, instead of wt an agent
receives wt(1 − τ`) for each unit of hours worked. In an economy where consumers do not
value leisure, this tax does not affect any first-order conditions; hence, it acts as a lump-
sum tax and does not disturb the efficiency properties of equilibrium. However, if leisure is
valued, the marginal rate of substitution between consumption and leisure will differ from
the marginal rate of transformation between consumption and leisure by a factor 1 − τ`.
Similarly, if capital income is taxed, the marginal rate of substitution between goods at t
and t+ 1 will differ from the marginal rate of transformation due to the tax.

What goes wrong? First, intuitively the firms and the households face different (after-
tax) prices and therefore they may not exploit all of the possible trades that they should.
Now looking at our abstract proof of equilibrium efficiency, what goes wrong in trying to use
it? The key is that the tax appears in the equations. Suppose that the p in the proof is the
pre-tax prices. What would not hold is the point where we say the alternative consumption
allocation must cost more: p

∑
i∈I x̃i > pω + p

∑
j∈J y

?
j . This inequality may not hold

because the consumer is maximizing utility with respect to the after-tax prices.4 Hence
the proof does not in general go through. However, the proof is valid when leisure is not
valued, because then the leisure chosen, which is an element in x, is zero, so the fact that
p is different for this good does not matter. This confirms the intuition that a proportional
tax on an inelastic labor supply is non-distortionary.

Similarly, a proportional tax on capital income, e.g., with rt replaced by rt(1− τk), will
appear in the Euler equation and therefore make the marginal rate of substitution between
goods at t − 1 and t differ from the corresponding marginal rate of transformation. In
the proof of the First Welfare Theorem, the relative price of the time t good is higher for
consumers than for producers and hence the proof cannot be completed.

6.3.2 Externalities

An externality arises when one agent’s activity has payoff relevance to other agents yet is not
rewarded by the market. Let us use an example with a negative TFP externality: production
by one firm damages the production carried out in other firms. Consider a static economy
with a representative consumer who values leisure. In particular, the consumer maximizes

3To see this formally, one can consider the government to be one of the consumers in the economy. When
we sum across the budget constraints of the consumers in the proof of the First Welfare Theorem, the
lump-sum taxes will cancel out as the government’s revenue equals the other consumer’s tax payments.

4We cannot just interpret p as the after-tax price because then when we say firms are profit maximizing,
they are not maximizing profits with respect to p.
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u(c, `) = log c−B`1+1/θ/(1 + 1/θ) subject to

c = rk + w`

by choice of (c, `). Output of a typical firm j equals

A(ȳ)kαj `
1−α
j ,

with ȳ = (
∑

j yj)/µ, where µ is the number of firms. Here, A is a decreasing function,
expressing a negative production externality: the higher is total production in the economy,
the lower is the productivity of each firm. Let us also assume that µ is large enough that each
firm j ignores its own impact on ȳ; for simplicity, think of the set of firms as a continuum
on [0, 1], with µ = 1, so that there is a notion of a representative firm. Hence, we can drop
the subscript j and the representative firm solves

max
k,`

A(ȳ)kα`1−α − rk − w`,

thus taking ȳ as given. In this static economy, output is determined by equilibrium in the
labor market. From the consumer, we obtain

w

rk + w`
= B`

1
θ

and the firm’s first-order conditions imply that

r

w
=

α

1− α
`

k
.

Combining the two equations, we obtain (with a small amount of algebra) that the equilib-
rium outcome for hours worked is given by the unique solution to

1− α = B`1+ 1
θ .

A striking feature of this solution is that it does not depend on the strength of the externality
as captured by the function A: A does not appear in the equation.5

The efficient allocation, on the other hand, is given by the solution to

max
`,y

log y −B `1+ 1
θ

1 + 1
θ

s.t. y = A(y)kα`1−α.

Here, the first-order conditions (with λ denoting the multiplier on the constraint) are

B`
1
θ = λ(1− α)A(y)kα`−α and

1

y
= λ

(
1− A′(y)kα`1−α) ,

5This particular feature, which follows because income and substitution effects cancel in the labor-supply
specification, makes the example stark but is not necessary for the arguments here.

173



which delivers
1− α

1− A′(y)kα`1−α = B`1+ 1
θ and y = A(y)kα`1−α

as two equations in the two unknowns ` and y. The first of these equations can be compared
to the equilibrium outcome: the equilibrium is not optimal, unless A′(y) = 0, i.e., unless
there is no externality. Intuitively, in their input choices, firms do not take into account how
their production hurts others, and they should.

What goes wrong? To see how our abstract proof of the First Welfare Theorem would
go wrong in this case, first note that an equilibrium with externalities would be defined by
letting the Yjs—each firm’s production possibility set—be endogenous and interdependent:
Yj = Yj((yj′)j′ 6=j), where (yj′)j′ 6=j is the vector of choices of other firms.6 A key step in our
abstract proof was that for each j, pỹj ≤ py?j , from profit maximization. This no longer
follows, since the alternative allocation implies a different choice set for firm j, as given by
Yj = Yj((yj′)j′ 6=j). In concrete terms, if other firms scale down their production relative to
that in equilibrium, your choice set improves—your TFP increases—and your original choice
was not optimal.7

The negative externality considered here is closely related to how the externalities due
to climate change are usually modeled. There, the externality is usually assumed to affect
TFP, as in our example here. Rather than occurring through overall production, however,
the externality occurs through carbon emissions, which result from production of a specific
good—energy derived from fossil fuels. Climate change is covered in Chapter 23.

6.3.3 Missing markets: an example with constraints on borrowing

A friction that is commonly studied in macroeconomic applications involves “missing mar-
kets”: restrictions on trade in one way or another. For example, there is no market that
allows workers to buy insurance against unfavorable changes in their salaries because of
the moral hazard that workers will have incentives to collect the insurance payment rather
than work hard. Another example is that households and firms may not be able to borrow
much as they would like. Borrowing constraints are thought to be important constraints
both for firms (for funding their day-to-day operations as well as long-term investments)
and consumers (for purchasing homes and durable goods more generally). These borrowing
constraints ultimately stem from features of the economic environment, such as the difficulty
of enforcing repayment, but are sometimes modeled as simple constraints. We focus on the
case of borrowing constraints here, but the logic applies more generally to settings where
certain goods or agreements for borrowing or insurance are not traded.

Let’s consider a two-agent dynastic endowment economy: a two-type special case of that
presented in Section 5.3.1. The total endowment each period is constant at ω, but let us

6For simplicity here we abstract from your own production lowering your own TFP.
7In the present example, equilibrium profits are zero, and if all other firms decrease their output below

the equilibrium level, your profits can be made positive (and unboundedly large) by simply scaling up your
input choices.
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now assume that agent 1 is endowed with 2ω/3 in odd periods and ω/3 in even periods;
agent 2 thus has ω/3 and 2ω/3 in odd and even periods, respectively (the odd-numbered
agent is rich in odd periods). Let us also assume that both agents have logarithmic utility.
The economy starts in period 0. In a competitive equilibrium with unrestricted markets we
have (i) full consumption smoothing, so that c1,t = c1 for all t and c2,t = c2 for all t; prices
for goods at different dates satisfy pt = βt, i.e., the gross real interest rate is 1/β; and (iii)
c1 =

(
1
3

+ 2β
3

)
ω

1+β
and c2 =

(
2
3

+ β
3

)
ω

1+β
. Consumer 2 is richer, and hence consumes more,

due to an endowment stream that is higher in present value because consumer 2 receives the
larger endowment one period before consumer 1 does.

Note that the unrestricted competitive equilibrium has active borrowing and lending:
agent 1 borrows in even periods and repays in odd periods. Suppose, then, that borrowing is
simply not allowed. In terms of a sequence of budget constraints ct+qtat+1 = ωt+at, where a
is asset holdings and q is price of a one-period real bond delivering 1 unit of consumption next
period, no borrowing means that the consumer is facing an additional constraint: at+1 ≥ 0
for all t. The consumer’s maximization problem then reads

max
{at+1}∞t=0

∞∑
t=0

βt log (ωt + at − qtat+1) and at+1 ≥ 0 ∀t.

Differentiation with respect to at+1 delivers

qt
ct

= β
1

ct+1

+ µt,

where µt is the Kuhn-Tucker multiplier on the borrowing constraint. This multiplier is
non-negative: positive when the constraint binds and zero otherwise. Hence, we conclude
that under a borrowing constraint, the Euler equation generally is an inequality constraint:
qtu
′(ct) ≥ βu′(ct+1). Intuitively, the marginal value of consumption today can be strictly

higher than the consumer could obtain by consumption tomorrow, using market prices, but
the consumer cannot increase consumption today further due to the borrowing constraint.

In our simple example, no borrowing means autarky: consumer 1 always consumes 2ω/3
in odd periods and ω/3 in even periods, with the remainder of the total endowment consumed
by agent 2.8 The allocation is clearly not optimal, since consumption is not smoothed. What
is the prediction for interest rates? In even periods, agent 2 is not constrained so we know
that qt

2ω/3
= β 1

ω/3
when t is even. Hence, qt = 2β: the real interest rate 1/qt− 1 is lower than

under unrestricted borrowing, since the lender needs to be discouraged from lending.9 The
same logic applies in odd periods: qt = 2β. We even see that the real interest rate will be
negative provided that β > 0.5.

8As agent 1 is unable to borrow in period 0, agent 2 has nobody to lend to and cannot save. In period
1, the two agents face the same situation as period 0 with their roles reversed.

9Values of qt above 2β will also constitute equilibria, since all agents are then strictly constrained. How-
ever, we view the case with an interior solution as the interesting one, since it is the limiting equilibrium for
economies with borrowing constraints at+1 ≥ a where a < 0, with a→ 0.
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What goes wrong? Clearly, marginal rates of substitution are not equalized across agents
here. From the perspective of our abstract proof, what goes wrong? As in the case with exter-
nalities, the sets from which agents are choosing will change: they will contain more restric-
tions and they will be endogenous. For example, without borrowing constraints, the main
restriction on the consumption possibility sets is non-negativity. With borrowing constraints,
it will include an additional constraint for each good: c0 ≤ a0 +ω0, q0c1 ≤ ω0 +a0−c0−q0ω1,
and so on. The equilibrium allocation can be dominated by an alternative allocation—say,
one with full smoothing—simply because this alternative allocation is not within the agent’s
consumption possibility set.

Moreover, as we see here, the consumption possibility sets will now also depend on prices,
thus departing conceptually from the abstract setup where the consumption possibility sets
are exogenous. As in the externality example, there is an interdependence between the
possibility sets the agents face. And just like the externality case, the agents will not take
into account how their actions affect the possibility sets that other face. These are pecuniary
externalities—one agent’s choices affect the prices that appear in other agents’ constraints.
As a result of these pecuniary externalities, if a planner were to select the consumption
allocation subject to the budget constraints and borrowing constraints, the planner may
choose a different allocation than the competitive equilibrium because the planner would
take account of the pecuniary externalities.

6.3.4 Lack of commitment

In the dynamic equilibrium models we looked at above, we always assumed that all agents
engaged in intertemporal trade could commit to delivering on their promises. When such
commitment is not available, the allocations are of course affected. One could, for example,
imagine that it is possible to default on debt and that such defaults are not punished in any
way. This would, given that lenders are rational, lead to de-facto borrowing constraints, as
in Section 6.3.3 above. One could also imagine that default can occur but that it is punished,
in which case intertemporal trade generally will occur. Note, however, that the punishment
mechanism per se needs to be committed to and that it is not clear that punishment will be
rational ex post.10 When punishments are assumed in economic models, there is therefore a
presumption that some agent (such as the government) has an ability to commit to it.

Macroeconomic models where consumers cannot fully commit, including where they do
default in equilibrium, exist and are interesting cases of “endogenously incomplete markets,”
but they are not discussed in this text. A more common example involves government policy,
such as the case where governments cannot fully commit to future tax policy; this case is
discussed in Chapter 13 below. In the context of international economics, another important
example is the case where default on sovereign debt (involving lending between countries)
can occur; this is a central example in Chapter 22 on emerging markets.

10“Come home before midnight or I will kill you” may sound like a powerful and purposeful parental threat
to a teenage child, but it is not credible.
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6.3.5 Market power

A well-known case, and also one of great relevance for macroeconomics, is where some agents
in the economy have market power. That is, they can, through their own behavior, affect the
prices they are transacting at. This may occur on the individual level—you may be able to
bargain for a higher salary—or at the firm level—the firm can set the price of its product, or
try to bargain with their input suppliers over those prices. We will discuss examples of both
of these occurrences in the book. When we study labor-market frictions, it will be natural
to discuss bargaining. When we study growth and business cycles, we will study markups,
i.e., how firms with market power set prices above marginal cost.

In macroeconomic models with market power, we will almost always assume that this
power is quite limited: it is limited to an individual transaction and not affecting aggregates.
Thus, for monopoly settings we most often study monopolistic competition, where each firm
holds a monopoly over a specific good but faces competition with a continuum of imperfect
substitutes, with each one playing a negligible role in the aggregate. Similarly, a worker will
be assumed not to have any influence on aggregates in the wage negotiations. Clearly, there
are examples where these assumptions are not appropriate (Apple can likely affect the entire
market for smartphones, and perhaps even world GDP, in their pricing; particularly gifted
vaccine researchers could be seen to have similar powers). But they are likely rare. So let
us now briefly and compactly describe the basic, static model of monopolistic competition
building on Dixit and Stiglitz (1977).

A model with monopolistic competition

Let us assume a representative consumer with preferences defined over a continuum of im-
perfectly substitutable goods and labor effort, L:

U
�
(c(i))1

i=0 , L
�

= u

(�∫ 1

0

c (i)1− 1
ε di

� ε
ε−1

)
− υ(L) ≡ u(C)− υ(L).

This function, as we will see, implies a constant elasticity of substitution ε ≥ 0 across
different consumption goods. We will specialize u to be logarithmic below in an example.

The consumer’s budget is ∫ 1

0

p (i) c (i) di = y,

where y is income. We will now derive a price index by considering how the consumer should
allocate goods in the cheapest way in order to reach a given level of C . So consider

min
(c(i))1

i=0

∫ 1

0

p (i) c (i) di s.t.

�∫ 1

0

c (i)1− 1
ε di

� ε
ε−1

≥ C.
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We obtain, with λ denoting the multiplier for the constraint,

p (i) = λ
ε

ε− 1

�∫ 1

0

c (i)1− 1
ε di

� ε
ε−1
−1 �

1− 1

ε

�
c (i)−

1
ε

= λ

�∫ 1

0

c (i)1− 1
ε di

� ε
ε−1
−1

c (i)−
1
ε = λ

�
c (i)

C

�− 1
ε

. (6.4)

Multiply by c(i) on both sides, sum across goods, and simplify to obtain∫ 1

0

p (i) c (i) di = λC.

That is, λ can be interpreted as a “unit price of C,” the whole basket. What is λ in terms of
primitives? Often the multiplier is merely used to set up and solve a maximization problem
but sometimes it carries important content, such as here, and then it is relevant to compute
its value. To derive a formula for the unit price, use the expression for p(i) again: raise it to
1− ε and sum across i. This delivers

P ≡ λ =

�∫ 1

0

p (i)1−ε di

� 1
1−ε

.

So P , the unit price, is itself a symmetric function that is increasing in all prices and
homogeneous of degree one.

A key other implication of equation (6.4) is that it expresses an inverse demand function:
it expresses a relation between the price of good i and the demand for it, given an overall
level of spending PC. The demand function itself becomes, after solving for c(i) and using
λ = P ,

c(i) = C

�
p(i)

P

�−ε
.

Here we see that the price elasticity of demand is constant and equal to ε. (One can replace
C by y/P , where y is the consumer’s income.)

The demand function is used as a central object in the definition of a monopolistically
competitive equilibrium. We will now state it. We assume that one firm produces each kind
of consumption good and that all production functions are identical and linear in labor:
c(i) = A`(i) for all i. We assume that labor supply is exogenous and equal to 1.

A monopolistically competitive equilibrium For the economy described above, a mo-
nopolistically competitive equilibrium is a consumption allocation {c(i)?}∀i, a labor alloca-
tion {`?i }∀i, a price vector {p?i }∀i, a profit vector {π?i }∀i, and a wage w? such that

1. ({c(i)?}∀i, L?), where L? ≡
∫ 1

0
`?(i)di, solves

max
(c(i))1

i=0,L
u

(�∫ 1

0

c (i)1− 1
ε di

� ε
ε−1

)
− υ(L)
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subject to
∫ 1

0
p?(i)c(i)di = w?L+

∫ 1

0
π?(i)di.

2. for each i, (p?(i), c(i)?, `(i)?) solves the maximization problem

max
p,c,`

pc− w?` subject to c = A` and p = P ?
( c

C?

)− 1
ε

,

where

C? =

�∫ 1

0

c?(i)1− 1
εdi

� ε
ε−1

and P ? =

�∫ 1

0

p? (i)1−ε di

� 1
1−ε

and π?(i) defines the maximum obtained.

Notice (i) that no market-clearing condition is needed as it is satisfied immediately as part
of the firms’ problems; (ii) that firms make profits, which accrue to the consumer; (iii) that
firm i solves a problem that does not depend on i, since all goods are symmetric here (still,
we label the solutions with i); and (iv) that a key input into the firm’s problem is the inverse
demand function, p?(c). We stated this last condition with knowledge of form for the inverse
demand function for each good; this function, of course, has to be consistent with condition
1 of the definition and this was ensured in our derivations leading up to the definition. A
monopolistically competitive equilibrium can thus alternatively be defined to include this
demand function explicitly as an equilibrium object, with the added condition that it is
consistent with consumer maximization.

To see what implications follow from this setup, let us solve the firm’s problem. Substitute
the constraints into the objective, so that it reads

max
c

PC
1
ε c1− 1

ε − w

A
c,

where we have dropped the i due to symmetry and ?s for notational convenience. Clearly,
this is a well-defined problem if ε > 1; if ε ≤ 1, goods are not sufficiently substitutable, and
the monopolist’s problem does not have a solution.11

c = C ·
�
w

A

1(
1− 1

ε

)
P

�−ε
and p =

ε

ε− 1

w

A
;

thus, µ ≡ ε/(ε− 1) > 1 expresses that the firm charges a markup over marginal cost, w/A,
that is constant in percent. Profits π are thus given by (µ− 1)(w/A)c.

The equilibrium is symmetric, so c = C. We can normalize one price, or a combination of
prices, so we set P = 1. We then see that the equilibrium wage has to equal w = A(1−1/ε):

11When ε < 1, infinite profits can be obtained by raising prices toward infinity; the reader is invited to
show this by considering the implied maximization problem. The case ε = 1 is special: since revenues are
then independent of the price, higher prices, and consequently lower quantities sold and therefore production
costs, are always better and no profit maximum exists. Its supremum equals the revenue.
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the wage is below marginal productivity (as ε > 1). Equilibrium work effort and consumption
are then solved from u′(C)w = υ′(L). With a logarithmic u we obtain

A(1− 1/ε) = Cυ′(C/A),

which has a unique solution for C assuming υ(L) is convex and, hence, the right-hand side
is strictly increasing in C.

It is easy to see that the outcome is inefficient. The planner will choose symmetry across
goods and hence simply maximizes u(C)− v(C/A). The outcome is the first-order condition

A = Cυ′(C/A),

whose left-hand side is larger than in the monopolistic case and, hence, output and hours
worked are too low in equilibrium.

What goes wrong with market power? Firms choose inputs taking into account how their
demand is affected. As a result, firms tend to under-produce relative to the optimum, since
that gives them a higher price. Thus, in equilibrium, firms transform labor into consumption
goods at a marginal rate that is higher than the rate at which consumers value leisure relative
to the consumption good. Our abstract proof of the First Welfare Theorem, moreover, cannot
be used directly since an equilibrium with monopoly power is defined quite differently, as we
have seen: some agents do not take p as given.

6.3.6 Quantifying welfare losses

In applied macroeconomic analysis, the aim is most often quantitative. The researcher wants
to go beyond qualitative statements like “the equilibrium is not optimal” to a quantitative
one indicating how much worse, or better, one allocation is than another. There are numerous
ways to do this and we will focus on the most common one here. We will use distortionary
taxes in the context of a representative-agent economy as an example.

So suppose the government has an amount of expenditures—e.g., military purchases—
that it needs to finance with taxes. One option, at least in theory, is to use lump-sum taxes.
Another one is to tax labor earnings at a proportional rate. How much worse is it to use
distortionary taxes? Let us focus on a static model because it is simple; the principles are
the same in a dynamic context.

The procedure is simple. First compute an equilibrium for each of the two tax systems.
Denote the resulting allocations of consumption and hours worked (cl, hl) and (cd, hd) (l for
lump-sum and d for distortionary). Clearly, u(cl, hl) > u(cd, hd). Now it is always possible,
with standard utility functions, to find a ∆ > 0 such that u(cl(1−∆), hl) = u(cd, hd). The ∆
expresses how much, in percent, consumption needs to be decreased in the better allocation
to generate the same utility as in the worse allocation, while maintaining the same hours
choice.

The key in the example is that ∆ has a real interpretation; while one could compute
the difference in consumer “utils” between two allocations, such a measure would not have
an interpretation as “utils” have no meaning per se. There are, of course, alternative ways
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to define a ∆. One could, for example, imagine both reducing consumption and raising
hours worked at the same time. One could also define a ∆ as the percentage increase in
consumption in the worse allocation that would make it as good as the better allocation.
This would deliver a different ∆. One can, finally, define ∆ as an amount of wealth that the
consumer would need to be given as a lump-sum transfer in order to be indifferent between
two allocations.

In dynamic models, the ∆ is defined as a percentage change in consumption in all time
periods. Consumption need not be constant over time in either of the allocations considered,
but a unique ∆ can still be defined: it is the percentage decrease in consumption applied in
every period that would make the consumer indifferent with the worse allocation.

6.4 Overlapping generations

The efficiency properties in overlapping-generations (OG) models require a separate discus-
sion; they have also been thoroughly studied in the literature. We will emphasize the key
results and insights here only. A short summary of the key result is that, first, although
there are no frictions—no markets are missing and distortionary taxes, monopoly power,
and externalities are absent—equilibria can be, but are not necessarily, Pareto-inefficient.
Second, there is a simple litmus test that will tell us whether an equilibrium is efficient or
not; we will provide it (but not prove it).

Before proceeding, let us note that there are models that share properties with overlap-
ping generations models, such as those where people die randomly and new people appear.
Here, equilibria are not necessarily efficient either.

6.4.1 The endowment case

Let us consider a simple example for illustration: there is a representative consumer in each
cohort who lives for two periods. Let us also use a concrete, very simple utility function: for
every generation t ≥ 0 preferences are represented by

ut (cy, co) = log cy + log co

where we evaluate at two arbitrary consumption levels (cy, co). The preferences of generation
t = −1, who are old as time begins, are similarly represented by u−1 (c) = log c.

Let us consider stationary endowment sequences given by:

ωy,t = ωy

ωo,t = ωo.

for all t, where t represents the time period; thus, ωo,t is the endowment of the old (who were
born at t− 1) at time t.

In the competitive equilibrium we consider, trading is sequential and there are no bor-
rowing constraints. With qt being the price of a bond at t, the agent born at t ≥ 0 solves

max
cy , co

log cy + log co
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s.t.
cy + qtco = ωy + qtωo.

It is straightforward to solve this maximization problem. It delivers

cy,t =
1

2
(ωy + qtωo) (6.5)

co,t+1 =
1

2
(ωy/qt + ωo) (6.6)

where we have now given the consumption choices sub-indexes for the time period in which
they occur. Note that the consumer’s saving when young is ωy − cy,t = (ωy − qtωo) /2.

The old agent at time zero maximizes utility subject to the budget co,0 = ωo and hence
the choice is trivially given by the budget.

Market clearing in this overlapping-generations economy for period t = 0 reads

co,0 + cy,0 = ωy + ωo.

Since the old’s choice is given, we conclude that cy,0 = ωy: the young also consumes the
endowment. The bond price that clears the market is q0 = ωy/ωo. It follows that co,1 = ωo:
the old at 1 will consume the endowment in the second period of life as well.

The argument is then repeated and we obtain, period by period, that

cy,t = ωy

co,t = ωo

qt =
ωy
ωo
.

This constant sequence supports the equilibrium where agents do not trade: the prices induce
people to consume their initial endowments.

Let us now plug in specific numbers. Let ωy = 3 and ωo = 1. It follows that qt = 3.
Thus, the gross real interest rate is 1/3; the net interest rate is thus - 67%.

Is this allocation Pareto-efficient? Consider the following alternative feasible allocation:
for all t,

c̃y,t = 2,

c̃o,t = 2.

That is, the alternative allocation c̃ is obtained from a chain of intergenerational goods
transfers that consists of the young in every period giving a unit of their endowment to the
old in that period. Notice that for all generations t ≥ 0, this is just a modification of the
timing in their consumption, since total goods consumed throughout their lifetime remain
at 4. For the initial old, this is an increase from 1 to 2 units of consumption when old. It is
clear, then, that the initial old strictly prefer the new allocation. We need to check what the
remaining generations think about the change. It is clear that since utility is concave (the
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log function is concave), this even split of the same total amount will yield a higher utility
value: log 2 + log 2 = 2 · log 2 = log 4 > log 3 + log 1 = log 3.

We conclude that the competitive equilibrium, which we solved for uniquely, is not Pareto
optimal: it is dominated by an allocation where each cohort gives a transfer when young and
receives one when old. But why is the equilibrium not Pareto optimal? There is no friction:
no agent is prevented from trading, there are no externalities or elements of market power.
We will return to this question shortly, but first let us consider the reverse case: ωy = 1 and
ωo = 3. Now, qt becomes 1/3 each period; the net real interest rate is +67%. Again, let
us consider the alternative (2, 2) allocation: is it a Pareto improvement? For all generations
born at t ≥ 0, the answer is yes, as in the previous example. However, the old at 0 will be
made worse off. Hence, the proposed alternative is not a Pareto improvement. Is there some
other, smarter alternative allocation that does the job? The answer is, in fact, no.

In the overlapping generations model, equilibria are sometimes Pareto-optimal and some-
times not. We will elaborate on the intuition later, but let us instead go back and revisit
our abstract proof of the First Welfare Theorem in Section 6.1. The notation there can,
as in our application, include infinite sequences, and the proof goes through in all parts,
except possibly in one: when summing the budget over all agents, I is now infinite. Prices
should now be viewed as given by the sequence p = {p0, p1, p2, . . . } where pt =

∏t−1
τ=0 qτ .

In our given equilibrium where qt = 3 for all t, then, the present value of the equilibrium
allocation is ωo + (ωy + ωo) + 3 (ωy + ωo) + 32 (ωy + ωo) + . . . and this sum is infinite. Hence,
this proof strategy cannot be used. However, in the equilibrium where qt = 1/3, the present
value is finite, and the proof does go through. Thus, we in fact have a proof that there is no
allocation that can Pareto-improve on the autarkic allocation (cy,t, co,t) = (1, 3) for all t!

When can equilibria where the present-value budget sum across all agents is infinite
be Pareto-improved upon? We cannot rely on the standard proof of the First Welfare
Theorem, but it turns out that there is a general theorem—one provided in Balasko and
Shell (1980)—that gives us the answer. The theorem relies on some assumptions, but these
assumptions are rather weak: aside from regularity conditions and a bounded sequence for
total endowments, they mainly restrict the curvature of consumers’ indifference curves away
from the two extreme cases (linear and kinked). The Balasko-Shell result is: A competitive
equilibrium in an endowment economy populated by overlapping generations of agents is
Pareto optimal if and only if

∞∑
t=0

1

pt
=∞.

The proof is quite involved and we refer the reader to the source. The two special cases

we have looked at are consistent with the theorem: qt = 3 for all t implies that
∞∑
t=0

1

pt
=

∞∑
t=0

3−t = 3/2 is finite, and hence the equilibrium is not optimal; qt = 1/3 for all t implies that

∞∑
t=0

1

pt
=
∞∑
t=0

3t is infinite, and hence the equilibrium is optimal. Now, however, we can also

evaluate the middle case where (ωy, ωo) = (2, 2). Here, since qt = 1 implies an infinite sum,
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our abstract proof cannot be used—as in the (ωy, ωo) = (3, 1) case—but now the theorem
tells us that equilibrium is optimal (a infinite sum of 1s is infinite).

The Balasko-Shell theorem can be applied also to non-constant sequences; indeed, it
applies also for non-constant endowment sequences. An important observation, however, is

that whether
∞∑
t=0

1

pt
is finite or not does not depend on anything but how pt behaves as t

literally goes to infinity. Thus, whenever the gross real interest rate pt/pt+1 converges, we
know that the equilibrium is optimal if and only if the limit net real interest rate is equal to
or above 0.12 Relatedly, if the economy has a finite time horizon, no inefficiency can occur,
no matter how the real interest rate evolves: the present value of the sum of all budgets
is finite in this case, and the standard proof can be used. It is thus the combination of (i)
infinite time and (ii) a corresponding infinite set of cohorts of consumers—each of which has
a finite budget—that can make markets fail.

Third and finally, whenever the equilibrium is sub-optimal, a straightforward government
policy of transferring resources from the young to the old will allow all generations to be made
better off. This is an argument for the introduction of social security as a pure government-
mediated transfer scheme: a “pay-as-you-go” system. The government works like a bank
here: you give it money when young and get it back when old. What allows the government
to achieve a better allocation than markets can deliver? On the one hand, the inefficiency of
the overlapping generations model is a pure market failure, and in that sense a government
can improve on it. But it does require an ability of the government to implement a sequence
of transfers that stretches into eternity. If, in our simple (ωy, ωo) = (3, 1) case transfers
stopped at some point in time, the young in the very last period of transfers will be worse
off by having given something away, with nothing in return.

Let us now provide some intuition for the Balasko-Shell result, and let us continue with
our example and focus on the “toughest” case: ωy = ωo = 2, where a First Welfare Theorem
cannot be proved the standard way and yet applies. First, we restrict attention to stationary
allocations, i.e., allocations such that cy,t = cy for all t and co,t = co for all t. So is there a
stationary allocation that Pareto dominates (2, 2)? Figure 6.2 shows the resource constraint
of the economy, plotted together with the utility level curve corresponding to the allocation
(2, 2).

The shaded area is the feasible set; its frontier given by the line cy + co = 4. It is clear
from the picture with a tangency at (2, 2) (recall that the utility function is log cy + log co)
that it is not possible to find an alternative allocation that Pareto dominates this one. Now,
let us however admit non-stationary allocations: could there be a non-stationary allocation
that dominates (2, 2)? In order to implement such a non-stationary allocation, a chain of
inter-generational transfers would require a transfer from young to old at some arbitrary
point in time t. The agents giving away endowment units in their youth would have to be
compensated when old. The question is how many units of goods would be required for this
compensation.

12For an economy where endowments grow at some net rate g in the limit, a similar theorem applies: the
equilibrium is optimal if and only if the limit interest rate is equal to or above g.
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Figure 6.2: Pareto optimality of (2, 2) allocation
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Figure 6.3: (2, 2) cannot be improved upon

Figure 6.3 illustrates that, given an initial transfer ε1 from young to old at t, the transfer
ε2 required to compensate generation t must be larger than ε1, given the convexity of the
indifference curves. This in turn will command a still larger ε3, and so on. Is the sequence
{εt}∞t=0 thus formed feasible? No: eventually the transfer will exceed the young agent’s
endowment.

In the “simpler” case, where the equilibrium involves a gross real interest rate less than
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one, a constant transfer sequence is always possible: one can select another stationary allo-
cation and it is better for everybody. In the case where the gross real interest rate is above
one, the argument is as illustrated in Figure 6.3, except even harder, because now the young
needs to be compensated even more when old, given that their indifference curves have a
higher slope (in absolute value). So no feasible better path exists here either.

6.4.2 Intertemporal production

Intertemporal production in an overlapping generations economy raises further issues. In
some cases, the introduction of the possibility to save—in the form of “capital”—can help
overcome an inefficiency; in others, it can lead to new market failures. We will keep the
discussion brief and merely provide some illustrations.

Let us start with the endowment economy (ωy, ωo) = (3, 1), where we know that the
equilibrium is not optimal. Suppose that there is a simple storage technology allowing the
consumers to save k ≥ 0 units today and receive χk units in return tomorrow. Clearly,
if χ > 1/3 they will: it gives them a higher return than in the original equilibrium. Is
the resulting equilibrium allocation optimal? We can solve for individuals’ optimal saving
choices by simply setting qt = χ > 1/3 in equations (6.5)–(6.6). This is our equilibrium,
which again is autarky, but with active individual storage.

If we regard the equilibrium allocation as a new endowment point and ask if Pareto
improvements are possible, the answer is given by the Balasko-Shell theorem: improvements
are possible if and only if χ < 1. However, this is not the final answer: here, the answer
is that the equilibrium is actually optimal when χ > 1 but not when χ ≤ 1. In particular,
χ = 1 is not optimal. The reason is shockingly simple. In the equilibrium, all young agents
store 1 unit and, hence, achieve the consumption allocation (2, 2). So far so good; this is in
fact the same allocation for people born at t = 0 and later as that with our social-security
scheme. However, the old at 0 are still consuming only 1 unit, so a Pareto improvement can
be obtained by instead carrying out the social-security scheme: the old at zero are strictly
better off and no-one else worse off (everybody else is indifferent).

The market failure with storage here, and χ = 1, is an example of dynamic inefficiency :
it is possible, by means of different saving choices, to create more resources at at least one
point in time without forsaking resources at any other point in time. The key insight here
is that oversaving can occur in equilibrium. This is different than the market failure with
fixed resources that we looked at before in our overlapping generations model: there, it was
a matter of redistribution, and here, it is intertemporal production that is inefficient, again
despite the absence of frictions.

As we shall see soon, the inefficiency in the special case with a one-for-one storage tech-
nology relies on the linearity of the production technology. If the intertemporal production
technology is instead neoclassical, i.e., if it has decreasing returns to scale, the Balasko-Shell
condition that the equilibrium is efficient if and only if, in the limit, the (gross) real interest
rate is greater than or equal to 1, will be recovered. Let us therefore briefly revisit the neo-
classical model here. Now let us interpret (ωy, ωo) as the endowments of a cohort in labor
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efficiency units. An agent’s budget sets in period t and t+ 1 are then

cy + s = ωywt and co = s(1− δ + rt+1) + ωowt+1,

with s denoting saving. If the utility function is strictly quasiconcave, the saving choice at
t is given uniquely by some function h:

st = h (wt, rt+1, wt+1)

Asset markets clear when st = kt+1, where k denotes the economy’s total capital stock: the
young buy the entire capital stock for the next period. Competitive pricing of inputs as
usual implies rt = F1 (kt, ωy + ωo) and wt = F2 (kt, ωy + ωo). Thus, our equilibrium can be
computed as the solution to the non-linear first-order difference equation

kt+1 = h (F2(kt, ωy + ωo), F1(kt+1, ωy + ωo), F2(kt+1, ωy + ωo)) .

This equation implicitly determines kt+1 as a function of kt. We then have the following result
that allows us to check whether the equilibrium savings choices are dynamically efficient.

Theorem 6.2 Define Rt = 1 − δ + F1(kt, ωt), where ωt is the total labor endowment at t.
Then {kt}∞t=0 is dynamically efficient if and only if

∞∑
t=0

[
t∏

s=1

Rs (ks)

]
=∞.

The theorem, whose assumptions are suppressed in the statement for brevity, relies in part
on a proof of production efficiency that is similar in spirit to the proof of Pareto efficiency
of an overlapping generations allocation with fixed resources.13 The key point, however, is

that it is the same condition as under fixed endowments:
t∏

s=1

Rs (ks) = 1/pt, where pt is our

Arrow-Debreu price of consumption good at t in terms of consumption good at 0.
To obtain intuition, it is instructive to restrict attention to steady states, i.e., solutions

to
kss = h (F2(kss, ωy + ωo), F1(kss, ωy + ωo), F2(kss, ωy + ωo)) .

Clearly, from the theorem, a steady state is efficient if and only if R = F ′(kss, ωy+ωo)+1−δ ≥
1, that is, if the net interest rate is non-negative.14 Let us start with the case of inefficiency.
When F ′(kss, ωy + ωo) + 1 − δ < 1, an alternative saving plan is possible where savings at
time t are reduced by a small amount ε > 0. This frees up resources for consumption at t.
At t+ 1, there are now fewer resources available, but the reduction is less than ε, given that

13The assumptions underlying it are that the sequence {Rt}∞t=0 be uniformly bounded above and below
away from zero and on the production-function curvature being bounded as follows: 0 < a ≤ −f ′′t (kt) ≤
M <∞ ∀t, ∀kt, where ft(k) is defined as F (k/ωt, 1) and F is assumed to have CRS.

14In a balanced-growth version of this economy, the efficiency requires the interest rate not to be below
the growth rate.
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the marginal return to saving was strictly less than one. However, suppose that at t + 1,
saving is again decreased by ε relative to the given steady state: then resources are freed up
this period as well on net (there is less production, by less than ε, but also less saving, by ε).
This procedure is repeated and, as a result, there is strictly more available to consume at
all points in time beginning with period t. Now suppose there is a steady state with a gross
return one or greater than one. If one were to try to create more resources at some point
t by reducing saving by ε, the resources available at t + 1 would be reduced by more than
ε.15 The future reductions in saving required to keep resources at least as high as before will
have to grow over time and will finally, become infeasible. The proofs of these statements,
which are available Appendix 6.A, are the key behind understanding the logic of the theorem
above.

In conclusion: in the overlapping generations model, equilibria—with or without production—
can be efficient or inefficient. The key condition for efficiency, which holds rather generally,
is that the asymptotic net real interest rate be non-negative or, in the case of growth, no
less than the rate of growth.

6.5 Optimal government policy

We have now seen a number of examples of how markets may deliver inefficient outcomes. A
natural suggestion in each of these cases is to propose a government policy to improve on the
allocation. In the case of distortionary taxes, the origin of the inefficiency is in government
policy itself, but in the other cases, what could we, as macroeconomic analysts, tell the
government?

But let us start with the tax case, because it is still interesting. In particular, it is
often argued, and for good reasons, that lump-sum taxes are hard to implement in practice.
Thus, tax analysis could be carried out by comparing tax policies that are deemed feasible to
implement. For example, in a dynamic model one can compare proportional taxes on labor
earnings to proportional taxes on capital income: which is the better system from a welfare
perspective, and by how much? Such an approach is referred to as Ramsey analysis, after
Frank Ramsey’s early work (in 1927). The approach is, however, somewhat problematic
since it is often not clear which policies are feasible and which are not. Ramsey taxation will
be studied in Chapter 13.

The case of externalities is well understood; here, Pigou (1920) suggested a tax, or
transfer, that would counteract the distortion and cancel its effects exactly. In the example
of pollution, the externality could be corrected by charging a per-unit output tax on firms
equal to what the externality would be, evaluated at the optimal allocation, and it would
deliver the optimal allocation as an equilibrium outcome. Similarly, positive externalities
can be encouraged with per-unit subsidies where they occur. A different path here would
be to follow Coase: assign property rights so that the side effects of agents’ actions can be
incorporated as market transactions. This path can, potentially, be easier to take, since

15If the net return is initially zero, it will raise above zero when we reduce saving.
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there is no need for the government to compute what an appropriate tax rate would be:
once property rights are assigned and enforced, the property value and the price its owner
will charge for its use will be determined by markets and, in the absence of further frictions,
lead to an optimal allocation. Sometimes, however, as in the case of damages due to climate
change, ownership cannot be assigned: the earth’s atmosphere is not possible to own.

Monopoly distortions that result in inefficiently low production are easy to handle in
principle: one can, for example, subsidize production at a per-unit rate. Again, this requires
a calculation of the appropriate tax rate, which requires much detailed knowledge. There-
fore, whenever it is possible, anti-trust regulation can be used to minimize the presence of
monopoly pricing. Monopoly power, finally, can play another role in the economy: it can
provide incentives to invent new products if, namely, there is patent protection (or it is diffi-
cult for other reasons to imitate the product). Invention is typically costly so to incentivise
inventors one might wish to exclude others from using an invention. Thus, regulating against
monopoly has drawbacks too; we will study this issue in Chapter 11.

6.5.1 Missing markets and the “chicken model”

What about the missing markets case? Recall the endowment economy where endowments
alternated between agents and no borrowing was allowed. Here, a reasonably simple pol-
icy would seem to be available to the government: each period, tax the agent with a high
endowment and transfer the proceeds to the other agent, so as to achieve full consumption
smoothing. Both agents would then be better off, at least if the transfer is small enough.
Similarly, in the context of missing insurance markets, the government could simply com-
pensate people who received bad shocks and tax the luckier ones to finance the transfers.
Is it reasonable to propose such a policy? This is not so clear. In reality, when a market
is missing, it is usually missing for a reason. That reason could, for example, be problems
of private information or moral hazard. If borrowing/lending and insurance are so benefi-
cial, why do they not materialize, in the cases where they appear not to be present?16 A
consequence of this point is that it is entirely conceivable that there would be negative side
effects of the governments intervention: those side effects that made markets missing in the
first place.

The above considerations have given rise to the concept of a “chicken model” of govern-
ment. The model here refers to an argument for government intervention in markets and
goes as follows. Assume that (i) people like chicken; (ii) the market economy cannot produce
chicken; and (iii) the government can produce chicken. The result then follows: the govern-
ment should produce chicken. From our perspective, the lesson should be: in cases where
government intervention is proposed, think about which friction is at work, and whether it
is one that the government is likely to be able to deal with well, or better than the market.
Sometimes the answer is likely yes, and other times no.

Clearly one kind of approach available here would be to try to model the causes of

16Think about whether you should write an insurance contract with your fellow graduate students, making
sure that your post-graduation salaries are all the same, after taking transfers between you into account.
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frictions, such as private information, explicitly. Thus, analysis following the work of Mir-
rlees (1971) has been used to study optimal taxes and transfers when markets appear to
be functioning imperfectly. Another reason why some markets may not exist is a lack of
commitment, as discussed in Section 6.3.4 above.

6.5.2 Redistribution policy

The discussion so far centered around minimizing frictions. In practice, a separate aim is
often redistribution, i.e., the idea is not to Pareto-improve on the given allocation but rather
to achieve a more equitable distribution of consumption even if some agents are made worse
off. In macroeconomic models with heterogeneity, some of which will be studied later in this
book, researchers often adopt a social welfare function to guide policy choices. In such cases,
the welfare weights on different agents would represent the policymaker’s preferences but, of
course, not necessarily those of the researcher.

An often used social welfare function is an additive (“utilitarian”) formulation. The
most common assumption then is that the utilities of the agents are weighted equally.
Clearly, equal weights would amount to equal consumption in an economy where direct,
non-distortionary redistribution is available. Hence, equal weights embody a strong desire
for equality. If taxes are distortionary, then equal weights still express the same desire but
the optimal level of redistribution will typically not fully eliminate consumption inequality.

An argument for equally-weighted utilitarian social welfare functions that have been
used is the “behind-the-veil-of-ignorance” notion. So imagine that a person, before they
are born into a household somewhere in the world, possibly also without knowing what
genetic skills they will have once born, is asked to consider potential distributional policies.
Then redistribution could potentially be viewed as an optimal insurance scheme; in concrete
terms, maximize πu(cA) + (1− π)u(cB) subject to a resource constraint πcA + (1− π)cB =
πωA + (1− π)ωB, where ωA > ωB would be the market incomes of the two types of agents;
π is the fraction of people who will be born as A types. Clearly, this optimization problem
embodies equal weights and delivers cA = cB. The insurance solution cannot be offered
by markets, since the agents are not around to sign the contract before they are born, but
governments can nevertheless carry out a policy which achieves the insurance outcome. Is
this therefore a chicken model of government? Not so much; it is more seen a potential
guiding philosophical principle with which you may agree or disagree.
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Chapter 7

Uncertainty

Many aspects of economic life are not fully predictable. For example, at the aggregate level,
technologies and policies can change in unpredictable ways. Life is even more uncertain at
the individual level due to the unpredictability of income, health, and other events. We now
introduce the main techniques that macroeconomists use to incorporate uncertainty into our
analysis of the economy.

This chapter covers several issues. First, we introduce analytical tools that are helpful
in analyzing stochastic economies. These tools include mathematical concepts related to
stochastic processes as well as economic concepts related to decision making under uncer-
tainty. We then use these tools to analyze the social planner’s problem for a version of the
neoclassical growth model with stochastic productivity. This important example is intro-
duced in Section 7.3. We then discuss how agents trade with each other in an uncertain
economic environment and present the competitive equilibrium of the stochastic neoclas-
sical growth model. Finally, we briefly present an environment with incomplete insurance
markets.

7.1 Stochastic processes

A stochastic process is a collection of random variables indexed by time. Suppose at each
date t there is a random outcome Xt. The collection of these random variables {Xt : t ∈ T }
is a stochastic process, where the set T is the span of time we are interested in. When
modeling an economy with uncertainty, we typically assume that some fundamental features
of the economy follow an exogenous stochastic process. For example, we often assume that
the level of productivity fluctuates over time and is modeled as an exogenous stochastic
process. This randomness in fundamentals generates randomness in endogenous variables.
Our economic model determines the stochastic process these endogenous variables follow.
We will now introduce some general properties of stochastic processes before turning to a
few of the main types of processes used by macroeconomists.
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7.1.1 Properties of stochastic processes

When working with stochastic processes we often need to take expectations of them. One
way to think about the expectation of a random variable Xt that is part of a stochastic
process is to imagine multiple realizations of the entire stochastic process {X(i)

t : t ∈ T , i ∈
1, · · · , I}, where i indexes the different realizations. Taking the expectation across i (i.e.,
add using probability weights) then gives the unconditional expectation. A related concept
is a conditional expectation given information up to some point in time. For example we
could suppose we have observed the realization of the stochastic process up to date t and
then imagine different possible realizations for t+ 1 and later dates. Taking the expectation
of Xt+1 across these different realizations is then an expectation conditional on information
through date t. We often use Et[Xt+1] to denote such a conditional expectation. To be clear,
Et[Xt+1] means the expectation of Xt+1 conditional on all information available at date t,
not just the realization of Xt observed at date t. A very useful property of expectations is
the law of iterated expectations, which for any dates t < s < τ says

Et [Es [Xτ ]] = Et [Xτ ] .

A proof of the law of iterated expectations appears in the appendix.
In addition to expectations, we are often interested in the second moments of a stochastic

process. These second moments are captured by the autocovariances. The j-th autocovari-
ance is given by E [(Xt − µt)(Xt−j − µt−j)] where µt is the unconditional expectation of Xt.

Many economic theories assume or imply stochastic processes that are stationary. A
process is covariance stationary if neither the unconditional expectations nor the autoco-
variances depend on time t. In practice, stationarity means that the consequences of a shock
to the process eventually fade. If this were not the case, as time goes by, the effects of all
the shocks that have occurred would accumulate and the distribution of Xt would change,
e.g., become more and more dispersed, as t increases.

In most cases we look at, a stationary process will be ergodic. For an ergodic process,
observing a long time series allows us to understand the distribution of the stochastic process.
For example, the unconditional expectation of Xt is the expectation across different possible
realizations of Xt. For an ergodic process, an average of a long time series (1/T )

∑T
t=1 Xt

will converge to E[Xt] as T → ∞.1 Ergodicity is useful because in practice we often have
data on a single long time series.

A stochastic process is (first-order) Markov if its current value summarizes all the avail-
able information that is useful for predicting its future realizations. For example, the con-
ditional distribution of Xt+1 conditional Xt is the same as the conditional distribution of
Xt+1 conditional on {Xτ}τ≤t, in which case knowledge of Xτ for τ < t does not add any
relevant information beyond that contained in Xt. More formally, a Markov process satisfies
Pr[Xt+k = x|Xτ∀τ ≤ t] = Pr[Xt+k = x|Xt] ∀t, k ≥ 0. In dynamic programming, it is con-
venient if a single state variable summarizes the process. For this reason, macroeconomists
often work with Markov processes.

1See Hamilton (1994) for the conditions under which a stationary process is ergodic.
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Over time, a deterministic sequence might converge to a particular value. A stochastic
process, on the other hand, might continually be subject to random shocks and therefore not
settle down to a particular value but nevertheless there is a sense in which it can converge.
A stationary distribution (or invariant distribution) π̄(X) of a Markov process X has the
property that if Xt ∼ π̄(X) then Xt+1 ∼ π̄(X).

7.1.2 Markov chains

Let xt be a random variable that takes on values in the discrete set X = {x1, x2, · · · , xN}.
If xt follows a Markov process, the probability that a particular xt+1 occurs depends only
on xt and not on earlier values. A Markov process with a discrete state space is called a
Markov chain. As xt takes on discrete values, we can summarize the process in terms
of a transition matrix. Suppose the probability of moving from state i to j is given by
Pij. We can then collect these transition probabilities in a matrix P . Row i represents the
probabilities of states 1 through N occurring next period conditional on the current state
being i. As exactly one of these states will occur, these probabilities must sum to one. By
this logic, each row of P must sum to one.

In addition to the transition matrix, a full description of the stochastic process also
requires knowing the initial distribution over the states. We will represent this distribution
as a 1×N vector of probabilities π0 such that the ith element of π0 gives Pr[x0 = xi].

Given the initial distribution π0, the transition matrix determines the probability distri-
butions for all xt for t ≥ 1. We have

Pr[x1 = xj] =
N∑
i=1

Pr[x1 = xj|x0 = xi]× Pr[x0 = xi] =
N∑
i=1

Pij × [π0]i

where [π0]i is the ith element of π0. Notice that this sum is the product of π0 against the
ith column of P . Repeating this logic for each j = 1, · · · , N we have π1 = π0 × P. This
relationship generalizes to πt+1 = πt × P and by repeated substitution we have

πt+k = πt × P k.

This is a very useful property of Markov chains: the conditional distributions k periods
ahead can be found by raising the transition matrix to the power k.

For a Markov chain, a stationary distribution π̄ is one for which π̄ = π̄×P. If we transpose
this definition we have π̄′ = P ′ × π̄′ and we can see that the stationary distribution is the
eigenvector of P ′ associated with a unit eigenvalue.2

To give an example with an economic interpretation, suppose workers can be employed or
unemployed. Unemployed workers find jobs with probability f ∈ (0, 1) and lose (or separate

2A transition matrix will always have a unit eigenvalue. As the rows of P sum to one, we know 1 = P1,
where 1 is a column vector of ones. This equation says P has a unit eigenvalue and the eigenvalues of P and
P ′ are the same.
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from) jobs with probability s ∈ (0, 1). Then we can represent the transitions across the
employed/unemployed states by the transition matrix

P =

�
1− s s

f 1− f

�
,

where the first state represents being employed and the second represents being unemployed.
As the stationary distribution has two probabilities that sum to one, there is only one
unknown. Let ū be the stationary (steady state) unemployment rate so that we have π̄ =[

1− ū ū
]
. The eigenvector of P ′ associated with a unit eigenvalue solves�

−s f

s −f

��
1− ū
ū

�
=

�
0

0

�
.

Or, equivalently,
ū = s(1− ū) + (1− f)ū.

The steady state unemployment rate is equal to the mass of employed who separate plus the
mass of unemployed who remain unemployed. Solving this equation yields

ū =
s

s+ f
.

Notice that there is a unique stationary distribution of this economy. Suppose we start our
economy with an unemployment rate u0. As time goes by, it is also straightforward to check
that the unemployment rate will converge to ū regardless of what u0 we start with.3

When will a Markov chain more generally converge to a unique stationary distribution?
It is not always the case, as the following examples demonstrate. Consider a Markov chain
with a transition matrix equal to the identity matrix. No matter what initial distribution we
start with, the distribution will forever remain stationary so there is not a unique distribution
although it converges immediately. As another example, consider the Markov chain with
transition matrix given by

P =

�
0 1

1 0

�
.

This Markov chain has a unique stationary distribution of [1/2, 1/2], but unless we start
with that distribution, the Markov chain will never converge to it. To see this, suppose we
start with probability mass p 6= 1/2 on the first state and 1− p on the second. The mass on
the first state will oscillate between p and 1− p forever.

3We obtain ut+1 = s(1 − ut) + (1 − f)ut = s + (1 − f − s)ut. By repeated substitution we see that
ut = s(1 + λ+ λ2 + · · ·+ λtu0), with λ ≡ 1− f − s, which will converge to s/(s+ f) since both s and f are
strictly between 0 and 1.

194



A simple necessary condition for convergence and uniqueness is that from each state there
is a positive probability of moving to any other state. This condition is actually substantially
stronger than we need. Weaker conditions are as follows. State j of a Markov chain is said
to be reachable from state i if there is some n such that Pr(xn = x̄j|x0 = x̄i) > 0. A
Markov chain is said to be irreducible if all states are reachable from all other states. State
i of a Markov chain is said to be aperiodic if there is some n such that for all n′ ≥ n
Pr(xn′ = x̄i|xn = x̄i) > 0. A Markov chain is aperiodic if all states are aperiodic. An
irreducible Markov chain has a unique stationary distribution, π̄, and if it is aperiodic then
limt→∞ π0P

t = π̄ for all π0.

7.1.3 Autoregressive processes

We now turn our attention to stochastic processes with continuous distributions. A very
common formulation is the autoregressive process of order one or AR(1) process for short.
The stochastic process xt follows an AR(1) if it satisfies

xt = ρxt−1 + bεt + (1− ρ)µ (7.1)

where xt ∈ R, ρ, b, and µ are scalar coefficients, and εt is a stochastic process that satisfies
Et−1 [εt] = 0, Et−1 [ε2

t ] = 1, and Et−1 [εtεt+s] = 0 for all s > 0.4 We call the process (7.1) an
AR(1) because xt depends on just one lagged value xt−1.

We can calculate moments of this process by expressing xt as a moving average of past
ε’s. Through repeated substitution we arrive at

xt = µ+ bεt + ρbεt−1 + ρ2bεt−2 + · · ·

= µ+ b
∞∑
s=0

ρsεt−s.

If |ρ| < 1, the effect on xt of shocks, ε, in the distant past vanishes and the process is station-
ary. Taking an unconditional expectation we see E[xt] = µ since E [εt−s] = E [Et−s−1 [εt−s]] =
0 for all s. The unconditional variance of xt is given by

Var [xt] =
∞∑
s=0

(bρs)2 Var [εt−s] =
b2

1− ρ2
,

where we have used the fact that the ε’s have unit standard deviation and are uncorrelated

4The assumption that εt has unit variance is a normalization as the parameter b scales the effects of εt
on xt.
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across time. Similarly, the covariance of xt and xt+j is

Cov (xt, xt+j) = E [(xt − µ) (xt+j − µ)]

= E

[(
b
∞∑
s=j

ρs−jεt−s+j

)(
b
∞∑
s=0

ρsεt+j−s

)]
= b2

(
ρj + ρj+2 + ρj+4 + · · ·

)
=

b2ρj

1− ρ2
.

The correlation between xt and xt+j is therefore ρj. In summary, the parameter µ determines
the level of the process, the parameter b determines the volatility of the process, and the
parameter ρ determines the persistence of the process.

7.1.4 Linear stochastic difference equations

We now will generalize our autoregressive specification to allow for vector-valued random
variables. Let xt be a column vector in Rn. Let εt be a random variable in Rm. The
stochastic process εt is assumed to satisfy

Et [εt+1] = 0 (7.2)

Et
[
εt+1ε

′
t+1

]
= I (7.3)

Et
[
εt+1ε

′
t+s

]
= 0 ∀s > 1. (7.4)

The second condition says the elements of εt are uncorrelated with each other and have
unit standard deviation. The third condition states that εt is uncorrelated across time. We
assume that xt follows a linear stochastic difference equation:

xt = Axt−1 +Bεt + C. (7.5)

The n × n matrix A controls how xt−1 affects xt. If all the eigenvalues of A are smaller
than 1 in absolute value, then the effects of past shocks will eventually fade and xt will be a
stationary process. The n×m matrix B captures the effects of εt on xt.

5 Lastly, the n× 1
vector C affects the mean of xt as we describe next.

The unconditional expectation of xt is

µ ≡ E [xt] = AE [xt−1] + C = Aµ+ C.

Solving this equation yields µ = (I − A)−1C. Similarly, let Γ(0) be the unconditional
covariance matrix of xt. The definition of a covariance matrix gives us

Γ(0) = E [(xt − µ)(xt − µ)′]

= E [A(xt−1 − µ)(xt−1 − µ)′A′ +Bεtε
′
tB
′]

= AΓ(0)A′ +BB′, (7.6)

5The assumption reflected in (7.3) that the εt are uncorrelated with each other and have unit standard
deviations is a normalization since the matrix B can rescale their standard deviations and impart correlations
across their effects.
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where we have used the fact that εt is independent of xt−1.6

We are often interested in the behavior of a stochastic process following a particular
event. For example, we might be interested in how the economy would behave following
a TFP shock. In this thought experiment, we suppose no further shocks occur. Using
C = µ− Aµ, rewrite (7.5) as

xt − µ = A(xt−1 − µ) +Bεt.

Suppose there is a particular shock εt at t and then no future shocks. Repeated substitution
yields

xt+h − µ = Ah+1(xt−1 − µ) + AhBεt.

The effect of εt on xt+h is given by AhBεt. This change in the future evolution of the process
is called the impulse response of xt to the shock εt. The function F(h) = AhBε is the
impulse response function of x to the particular shock ε. The impulse response function
tells us how x responds to the shock as a function of the time since the shock has occurred.
We saw some examples of impulse responses in the deterministic, non-linear Solow model in
Section 3.5.2. If the Solow model is extended to include stochastic shocks, the results in this
section would apply only to a linear approximation to the Solow model.

7.2 Choice under uncertainty

We will now begin our discussion of how agents make choices under uncertainty. In this
section we start by introducing a framework for modeling uncertainty in a way that can
introduce uncertainty without restricting ourselves to a specific stochastic process. We then
discuss preferences over risky consumption outcomes. Risk aversion is an important aspect
of preferences in an uncertain environment and we will demonstrate the implications of risk
aversion through a portfolio choice problem.

7.2.1 Stochastic events

To incorporate uncertainty into economic theory, it is often convenient to define a stochastic
event that determines all the risky outcomes. The idea here is that there are many different
ways the world may take shape in the future and our uncertainty is that we do not know
which of these “worlds” we live in. As our theories are typically dynamic, we need to allow
for our uncertainty to resolve over time. Let ωt ∈ Ωt be the stochastic event realized at
date t and let ωt = {ω0, ω1, · · · , ωt} ∈ Ωt be the history of events up to date t. To give
an example, suppose your income each month can either be high or low. The event ωt
determines whether your income is high or low in month t and ωt gives a list of all the past
events from which we can infer your past incomes. Figure 7.1 shows an example of how these
stochastic events could unfold for t = 0, 1, 2 when there are two possible realizations of ωt at
each date: ωt ∈ {0, 1}.

6Equation (7.6) is a Lyapunov equation and can be used to solve for Γ(0). Many software packages are
available to solve such equations.
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ω1 = {0,0}

ω0 = {0}

ω2 = {0,1,1}

ω2 = {0,1,0}

ω2 = {0,0,0}

ω1 = {0,1}

ω2 = {0,0,1}

ω1 = 1

ω1 = 0

ω2 = 0

ω2 = 0

ω2 = 1

ω2 = 1

Figure 7.1: Example event tree.

The probability that history ωt will be realized at date t from the perspective of date
0 is given by πt(ω

t). The conditional probability of ωt given ωτ for t > τ is πt(ω
t|ωτ ). An

outcome at date t is a function of the history up to date t. For example, the balance in
your bank account reflects not just the randomness in your current income, but also the
fluctuations in your previous incomes (as well as the changes in spending they induce). We
could write your assets as at(ω

t) to indicate that it depends on the whole history of events
leading up to date t.

7.2.2 Expected utility and risk aversion

We now extend the preferences we introduced in Chapter 4 to incorporate uncertainty ac-
cording to expected utility theory. Thus, utility over stochastic events is then a convex linear
combination of a function u(c), where c is random, with the linear coefficients being the
probabilities with which the different outcomes for c are realized. Applied to the context
of preferences over time, suppose {ct(ωt) : ∀t, ωt} and {c̃t(ωt) : ∀t, ωt} are two consumption
processes. We will say the c process is preferred to the c̃ process if and only if

∞∑
t=0

∑
ωt∈Ωt

πt(ω
t)βtu(ct(ω

t)) >
∞∑
t=0

∑
ωt∈Ωt

πt(ω
t)βtu(c̃t(ω

t)).

In many situations, we will not write the stochastic events explicitly because the time sub-
script on the variables is sufficient to keep track of which histories they depend on. Using
that notational convention, the above statement would be

E0

∞∑
t=0

βtu(ct) > E0

∞∑
t=0

βtu(c̃t).
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As we get started, however, it is useful to be explicit about the histories.
Risk aversion is a fundamental concept of choice under uncertainty that will allow us to

explain, among other things, why consumers buy insurance and why savers hold diversified
portfolios. Risk aversion is the idea that a less risky consumption stream is preferred to a
more risky stream with the same expected consumption. Mathematically, risk aversion is
implied by Jensen’s inequality when u(·) is concave. If u(·) is linear, then the consumer ranks
consumption streams by the expected level of consumption and is said to be risk neutral.

The curvature of u(·) determines the level of risk aversion. The coefficient of absolute
risk aversion is defined as −u′′(c)/u′(c). A more concave utility function leads to higher risk
aversion. The second derivative is normalized by the first derivative to capture the change in
curvature as utility changes.7 The coefficient of absolute risk aversion refers to the attitude
towards changes in consumption of a given (absolute) size. The constant absolute risk
aversion (CARA) utility function is given by u(c) = − exp(−αc). For this utility function,
the coefficient of absolute risk aversion is α at all levels of consumption.

Alternatively, the coefficient of relative risk aversion measures a consumer’s attitude to
proportional changes in consumption. It is defined as −cu′′(c)/u′(c). Our power utility
function

u(c) =
c1−σ − 1

1− σ ,

motivated by its consistency with exact balanced growth, has a constant coefficient of relative
risk aversion. Taking derivatives, we see the coefficient of relative risk aversion is simply σ.
As the coefficient of relative risk aversion is the same at all levels of consumption, these
preferences are also known as the constant relative risk aversion (CRRA) utility function.

In most macroeconomic applications, the CRRA function is used because, as we have
discussed, it is the only one consistent with balanced, long-run growth. From the perspective
here, using a CRRA function means that decisions about risks today and one hundred years
ago—when the level of consumption was much lower—would have been made the same way
if the risks were the same in percentage terms.

Recall from Section 4.2.4 that the elasticity of intertemporal substitution is the elasticity
of consumption growth with respect to the real interest rate. More precisely, the consump-
tion Euler equation for power utility implies d log[ct+1/ct]/dRt+1 = 1/σ, thus implying that
the elasticity of intertemporal substitution actually equals the inverse of the coefficient of
relative risk aversion. The intuition here is that both of these features of the utility function
are determined by the curvature of the utility function. If the utility function displays strong
diminishing marginal utility, then a consumer will be unwilling to accept higher consumption
in one state of the world in exchange for low consumption in another state of the world (i.e.,
risk aversion is high). Similarly, the consumer will be unwilling to accept low consumption
in period t in exchange for high consumption in period t + 1 (i.e., is unwilling to substi-
tute intertemporally). Intuitively put, one single parameter guides the desire for smoothing

7In expected utility theory, a positive affine transformation of a utility function represents the same
preferences. That is, the utility function v(c) defined by au(c) + b for constants a > 0 and b is equivalent to
the utility function u. Normalizing the coefficient of risk aversion by u′(c) makes the coefficient of absolute
risk aversion invariant to such an affine transformation of u.
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consumption across time and states of nature.8

7.2.3 Portfolio choice

A simple portfolio choice problem can help illustrate the differences between the two concepts
of risk aversion introduced above. Suppose an individual has W > 0 units of wealth at date
0 to allocate between a risk-free asset and a risky asset. The assets will pay off at date 1
and the individual will consume the proceeds. The (gross) return on the risk-free asset is
known to be Rf while the return on the risky asset is unknown and denoted Z. Let A be
the assets invested in the risky asset while W − A are invested in the risk-free asset. The
investor’s decision problem is

max
A

E0

[
u
(
Rf (W − A) + ZA

)]
.

The first-order condition of this problem is

E0

[
u′
(
Rf (W − A) + ZA

) (
Z −Rf

)]
= 0.

Suppose the investor’s utility function is the CRRA utility function u(c) = c1−σ/(1− σ).
The first-order condition of the portfolio choice problem becomes

E0

�(
Rf (W − A) + ZA

)−σ (
Z −Rf

)�
= 0.

Rearranging we arrive at

E0

��
Rf

�
1− A

W

�
+ Z

A

W

�−σ (
Z −Rf

)�
= 0,

where we have brought W−σ outside the expectation because it is known at date 0. This
equation determines A/W as a function of σ, Rf , and the distribution of the risky asset
return. Notice that the solution for A/W does not depend on W , which means that at any
level of wealth, the investor will allocate the same fraction of savings to risky assets: the rich
and the poor choose the same risk exposure.

Now suppose the investor has the CARA utility function u(c) = − exp(−αc). The first-
order condition then becomes

E0

[
α exp

{
−αRfW

}
exp

{
−α
(
Z −Rf

)
A
} (
Z −Rf

)]
= 0.

We can bring exp
{
−αRfW

}
outside the expectation because it is known at date 0 to arrive

at

E0

[
exp

{
−α
(
Z −Rf

)
A
} (
Z −Rf

)]
= 0.

8There is a generalization of the power-function preferences that allows one to separate risk aversion from
intertemporal substitution using two separate parameters. This case will be discussed in Chapter 14 below.
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This equation gives a solution for A that does not depend on W . In this case, the investor
allocates a particular level of savings (an absolute number of goods or dollars) to risky assets
regardless of their wealth. This means that the rich have a lower risky share than do the
poor.

In the data, as we shall see in Chapter 14, the rich on average choose a higher risky share.
Neither of these simple models can match this fact but the CRRA case is more in line with
the data.

7.3 The stochastic growth model

We can now use the tools of choice under uncertainty and stochastic processes to analyze
a stochastic version of the neoclassical growth model. As briefly discussed in Chapter 3
above, in this model, total factor productivity (TFP) is assumed to follow an exogenous
stochastic process. The fluctuations in TFP then give rise to endogenous fluctuations in
output, consumption, and investment; the model was first studied, as a planning problem,
in Brock and Mirman (1972), and then became a workhorse framework macroeconomics,
and we devote Chapter 12 below to it. Through this important example, we will discuss how
our methods for dynamic optimization can be extended to allow for uncertainty.

7.3.1 A two-period economy

To begin, suppose the economy exists for two periods. In period 0, the level of TFP in period
1 is not known. Let ω1 be the stochastic event in period 1. Let π1(ω1) be the probability of
ω1. TFP at date 1 is given by A1(ω1).

The economy is inhabited by a representative household with expected utility preferences
that ranks consumption streams according to

U = u(C0) + β
∑
ω1∈Ω1

π1(ω1)u (C1(ω1)) , (7.7)

where C1(ω1) is the level of consumption if ω1 occurs. In period 0, the economy is endowed
with K0 units of capital, which are used to produce Y0 = Kα

0 units of output. This output
is then used for consumption and investment subject to the date-0 resource constraint

K1 + C0 = Kα
0 + (1− δ)K0. (7.8)

In period 1, the value of ω1 becomes known and the economy produces Y1(ω1) = A1(ω1)Kα
1 .

As there are no further periods, there is no reason to invest in capital so the resource
constraint in period 1 is

C1(ω1) = A1(ω1)Kα
1 + (1− δ)K1. (7.9)

The first important thing to note is that A1, Y1, and C1 are all functions of the event ω1.
From the perspective of date 0, agents do not know A1 and therefore they cannot know how
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much will be produced or consumed. When we formulate a decision problem in date 0, the
agents will not choose specific values for Y1 and C1, but rather they will choose a plan for
how they will respond to each realization of ω1. This is an important feature of optimization
under uncertainty: the choice variable is a contingent plan for actions following each history
of stochastic events.

The planner’s problem for this economy is to choose C0, K1, and {C1(ω1) : ∀ω1} to
maximize (7.7) subject to (7.8) and (7.9). We can form the Lagrangian as

L = u(C0)+β
∑
ω1∈Ω1

π1(ω1)u (C1(ω1))− λ0 [K1 + C0 −Kα
0 − (1− δ)K0]

−
∑
ω1∈Ω1

λ1(ω1) [C1(ω1)− A1(ω1)Kα
1 − (1− δ)K1] ,

where λ0 and the λ1’s are Lagrange multipliers on (7.8) and (7.9), respectively. As (7.9)
must hold for each realization of ω1 we treat that as a separate constraint for each ω1. We
therefore have separate Lagrange multipliers for each ω1 and we use the sum to include all
of them in the Lagrangian.

Taking the first-order conditions for this problem, we have

u′(C0) = λ0

λ0 =
∑
ω1∈Ω1

λ1(ω1)
(
αA1(ω1)Kα−1

1 + 1− δ
)

βπ(ω1)u′(C1(ω1)) = λ1(ω1) ∀ω1.

The second line is the first-order condition for K1. On the right-hand side we have a sum
over all possible realizations of ω1 because when the planner chooses K1 they do not know
which ω1 will occur so they need to take into account how K1 affects output and consumption
after each one. In contrast, the third line is the first-order condition with respect to C1(ω1)
for a specific ω1 and there is one such equation for each ω1.

Combining the first-order conditions to eliminate the Lagrange multipliers we have

u′(C0) = β
∑
ω1∈Ω1

π(ω1)u′ (C1(ω1))
(
αA1(ω1)Kα−1

1 + 1− δ
)
.

This is the stochastic consumption Euler equation for the planner. The left-hand side is
the marginal utility loss in date 0 from saving one more unit. The right-hand side is the
expected marginal utility gain in period 1 from saving one more unit. Notice that we
sum over ω1 and weight the outcomes by π1(ω1) so we are taking an expectation. The
term αA1(ω1)Kα−1

1 + 1 − δ is the marginal increase in resources from increasing K1 and
uC (C1(ω1)) is the marginal utility of consuming more. The former is the return on saving,
which is stochastic as it depends on TFP. The latter reflects the fact that the return on
capital is valued differently after different realizations of ω1. This is due to diminishing
marginal utility—when TFP is high, consumption will be high and the marginal value of
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consuming more is low. The uncertainty in TFP generates uncertainty in C1(ω1), which in
turn generates uncertainty in marginal utility.

The Euler equation brings us to another important point about dynamic optimization
under uncertainty that turns out to be general: the return to saving is evaluated differently
in different states of the world. We do not just focus on the expected return, but instead a
weighted average that accounts for the different value of resources in different situations.

7.3.2 An infinite-horizon economy

We now consider an infinite-horizon version of the model. At each date t there is a realization
ωt and the date-0 probability of a history ωt is given by πt(ω

t). The representative household
has preferences given by

U =
∞∑
t=0

∑
ωt∈Ωt

πt(ω
t)βtu

(
Ct(ω

t)
)
. (7.10)

Unlike the two-period model, consumption at date t now depends on the whole history of
stochastic events. At each date, a stochastic TFP is realized and used to produce output

Yt(ω
t) = At(ω

t)F (Kt(ω
t−1), Lt(ω

t)),

where Lt(ω
t) is the labor input and At(ω

t) is total factor productivity. The production
function is twice continuously differentiable in K and L, is strictly increasing and strictly
concave in both arguments, and is constant returns to scale. Note that the capital that is
used in production at date t, denoted Kt, is selected at date t − 1 and therefore can only
depend on the information that is available at the time it is selected. Therefore Kt is a
function of ωt−1, not ωt.

The economy is endowed with one unit of labor each period and we assume, for simplicity,
that there is no preference for leisure so that labor supply is inelastic and equal to one. The
aggregate resource constraint at date t is

Kt+1(ωt) + Ct(ω
t) = f

(
At(ω

t), Kt(ω
t−1)
)
, (7.11)

where we have defined f (A,K) ≡ AF (K, 1) + (1− δ)K. The economy begins with an initial
endowment of capital, K0. Negative capital holdings are not possible.

The planner’s problem for this economy is to maximize (7.10) subject to (7.11) where
the constraint applies to each t and each ωt. The Lagrangian of this problem is

L =
∞∑
t=0

∑
ωt∈Ωt

{
πt(ω

t)βtu
(
Ct(ω

t)
)
− λt(ωt)

[
Kt+1(ωt) + Ct(ω

t)− f
(
At(ω

t), Kt(ω
t−1)
)]}

.

When we take the first-order conditions of this problem a key point is that our choice of
Kt+1(ωt) will affect production in t + 1 for all histories ωt+1 that are possible given that
we have already reached ωt. For example, refer back to Figure 7.1 and suppose we have
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reached ω1 = {0, 0} at date 1 and we are choosing K2(ω1). This choice of capital will affect
production at date 2 for histories {0, 0, 0} and {0, 0, 1} because these are possible following
ω1. This choice of capital will not affect production for histories {0, 1, 0} or {0, 1, 1} because
these are not possible given ω1. The first-order condition for Kt+1(ωt) is therefore

λt(ω
t) =

∑
{ωt+1|ωt}

λt+1(ωt+1)fK
(
At+1(ωt+1), Kt+1(ωt)

)
, (7.12)

where the notation {ωt+1|ωt} indicates that we sum over the histories ωt+1 that are possible
given ωt. The first-order condition with respect to Ct(ω

t) is

πt(ω
t)βtu′

(
Ct(ω

t)
)

= λt(ω
t).

Using this to eliminate the Lagrange multipliers in (7.12) we arrive at the consumption Euler
equation for this problem

u′
(
Ct(ω

t)
)

= β
∑

{ωt+1|ωt}

πt+1(ωt+1|ωt)u′
(
Ct+1(ωt+1)

)
fK
(
At+1(ωt+1), Kt+1(ωt)

)
, (7.13)

where we have defined the conditional probability πt+1(ωt+1|ωt) = πt+1(ωt+1)/πt(ω
t). The

consumption Euler equation has the same interpretation as in the two-period economy. The
right-hand side has a weighted average of the returns on savings with weights corresponding
to the marginal utility of consumption in different states of the world.

In many applications, the time subscripts on variables are sufficient to indicate the history
of events they depend on in which case we can rewrite (7.13) as

u′ (Ct) = βEt [u′ (Ct+1) fK(At+1, Kt+1)] . (7.14)

The Et indicates we are taking conditional expectation just as our sum over {ωt+1|ωt} does.
We can now use equation (7.11), at (t, ωt) and at all the nodes in the following period,

to eliminate consumption from the Euler equation (7.13). In the deterministic model, we
followed the corresponding method and arrived at a second-order difference equation in
capital. Here, we obtain a second-order stochastic difference equation in capital, which holds
at all nodes in the event tree. In the deterministic model, we also had a transversality
condition—as a second-order difference equation and an initial value for capital leave one
degree of freedom to choose capital—and we could then pin down a solution to the difference
equation. With uncertainty, the situation has much of the same structure: a transversality
condition must be added to determine a solution, and it has the same interpretation as
before: it is a self-imposed constraint not to over-accumulate at infinity, expressed as an
expected present value.9

9In the case with stochastic shocks, there is still just one degree of freedom given the first-order conditions.
To see this intuitively, the Euler equation at any node (t, ωt) can be used to solve for kt+1(ωt) as a function
of kt(ω

t−1) and an expression involving future values kt+2(ωt, ωt+1) and substituted into the previous Euler
equation. When repeated infinitely many times, we have a first equation involving k0 and k1(ω0) only—the
latter is the only remaining degree of freedom.
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Clearly, solving for a stochastic sequence of capital levels appears daunting. Closed-form
solutions exist in special cases, but only under very special assumptions; one is when the
utility function is logarithmic, the production function is Cobb-Douglas, and δ = 1. For
that case it is possible to verify that a constant saving rate is optimal. In other cases, one
must apply numerical methods to solve the model. One such approach is to linearize the
model around the steady state of the deterministic model; we show how to do this in Section
7.3.4. If non-linearities are believed to be important, a way forward is to solve the model
numerically in a dynamic-programming version of the model. We now look at how it is
formulated.

7.3.3 A recursive formulation

We will now analyze a recursive version of the same economy. To do so, we will assume that
TFP follows a first-order Markov process so we only need to keep track of the most recent
realization in order to know the distribution of its future realizations. As recursive modeling
keeps track of the history of the economy explicitly through well chosen state variables, it
is customary not to use histories of stochastic events (ωt) in this context. Following this
convention, we let π(A′|A) be the probability of A′ occurring next period given the current
TFP A. The planner’s problem can now be expressed as the following Bellman equation

V (A,K) = max
C,K′≥0

{
u(C) + β

∑
A′

[π(A′|A)V (A′, K ′)]

}

subject to

K ′ + C = f(A,K).

The difference compared to dynamic programming under certainty is that now the Bellman
equation has an expectation over continuation values. In the next period, there will be a
value of having states (A′, K ′) but A′ is not known yet. As in the case with certainty, the
recursive formulation delivers the same solution as the sequential formulation of the problem.
It may seem surprising that this works out since here we are only taking expectations one
period into the future, while in the sequential formulation we take expectations of outcomes
far in the future. However, the two sets of expectations are actually the same. In the
recursive formulation V (A′, K ′) is a random variable that includes a term E[V (A,′′K ′′)|A′].
By the law of iterated expectations, the expectation of this term conditional on A becomes
E[V (A,′′K ′′)|A]. The same logic applies for the value function at all future dates.

To analyze the recursive economy, we can proceed with the same steps as we would for the
recursive economy without uncertainty. We can substitute the constraint in to the Bellman
equation

V (A,K) = max
K′

{
u (f(A,K)−K ′) + β

∑
A′

[π(A′|A)V (A′, K ′)]

}
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and take the first-order condition with respect to K ′ to obtain

u′(C) = β
∑
A′

π(A′|A)VK(A′, K ′). (7.15)

The envelope condition gives us

VK(A,K) = u′(C)fK(A,K).

Using this to eliminate the derivative of the value function in (7.15) we obtain a similar
consumption Euler equation as we had before

u′(C) = β
∑
A′

π(A′|A) [u′(C ′)fK(A,K)] .

We can then rewrite this Euler equation as a functional equation that determines the savings
policy function. To do so, let g(A,K) denote the choice of K ′ as a function of states (A,K).
Then write the resource constraint as C = f(A,K)−g(A,K). Substituting these definitions
into the Euler equation we have

u′ (f (A,K)− g (A,K)) = β
∑
A′

π(A′|A)

u′
�
f(A′, g(A,K))− g(A′, g(A,K))︸ ︷︷ ︸

=C′

�
fK(A′, g(A,K))

 .
(7.16)

This equation must hold for all (A,K) and it implicitly defines the function g(A,K) that is
the solution to the planner’s problem. In the next section, we will use this functional Euler
equation to derive a complete solution to the planner’s problem.

7.3.4 Solving the model via linearization

Section 7.3.3 derived a functional Euler equation that the solution to the planner’s problem
must satisfy. In this model, productivity follows an exogenous stochastic process. We will
now show how we can use a linear approximation to the functional Euler equation to derive a
linear stochastic difference equation that the endogenous variables in the model must follow.
We will then use the properties of linear stochastic difference equations from Section 7.1.4
to derive properties of the planner’s solution.

We will now assume that TFP follows an AR(1) process given by A′ = ρA+ (1−ρ)Ā+ε′

with Et[ε′] = 0. We will approximate the behavior of the economy around the deterministic
steady state, which is the same notion of a steady state we have studied before. Now that
we have shocks in the model, the interpretation of the steady state changes. The economy
will never converge to the steady state if it is constantly hit by shocks.10 The deterministic

10In addition, the average value of variables will not coincide with those at the deterministic steady state
if the model is non-linear. As the shock variance becomes smaller and smaller, however, they will become
increasingly similar and, in the limit where the shock variance is zero, coincide.
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steady state is the point the economy would converge to if all shocks take their unconditional
expectation forever and the agents in the model expect this.11

We thus take a linear approximation of (7.16) around the steady state. For a variable
X we will use the notation X̂t ≡ Xt − X̄, where X̄ is the steady state value.12 Our linear
approximation (which is tedious but straightforward to derive) is

(fK − gK)K̂ + (fA − gA)Â = E

 fK
�
(fK − gK)

�
gKK̂ + gAÂ

�
+ (fA − gA)Â′

�
+ u′

u′′

�
fKKgKK̂ + fKKgAÂ+ fKAÂ

′
� ∣∣∣∣∣∣A

 ,
where all derivatives are evaluated at the steady state. Notice that Â′ = ρÂ + ε′ so the
distribution ofA′ givenA is determined by the distribution of ε. We will write the expectation
as summing over ε′ and substitute in for A′. Because this is a linear equation, we can pass
the expectation operator inside the right-hand side to obtain

(fK − gK)K̂ + (fA − gA)Â = β

 fK
�
(fK − gK)

�
gKK̂ + gAÂ

�
+ (fA − gA)(ρÂ+ E[ε′])

�
+ u′

u′′

�
fKKgKK̂ + fKKgAÂ+ fKA(ρÂ+ E[ε′])

�  .
As E[ε′] = 0, it is as if there is no uncertainty and Â′ is treated as if it is known to
be at its expected value ρÂ. This is a general feature of analyzing a stochastic economy
through linearization known as certainty equivalence—once one linearizes the economy,
only expected values matter. In particular, the variance of the exogenous shock does not
influence outcomes.

Recall that equation (7.16) must hold for all values of A and K. The equation above is a
linear approximation to (7.16) and must hold for each K̂ and each Â. The only way this can
be true is if the coefficients on K̂ on the left-hand side equal those on K̂ on the right-hand
side and, similarly, the coefficients on Â match. Imposing that these coefficients match gives
us two equations that allow us to solve for gK and gA. Conveniently, one equation contains
gK only. Therefore, starting with the coefficients on K̂ we have

(fK − gK) = β

�
fK(fK − gK)gK +

u′

u′′
fKKgK

�
.

Rearrange to obtain

g2
K −

�
1 + β−1 +

u′

u′′
fKK
fK

�
gK + β−1 = 0. (7.17)

11That the agents perceive the environment to be deterministic is a subtle but important point. There
is an alternative notion of a steady state in which the agents in the model perceive there to be risk but
ex post all the shocks are realized at their unconditional means. Such a steady state is sometimes called a
“stochastic steady state” or a “risky steady state.”

12Previously in the text, we used this notation for deviations in logs; both linear and log-linear deviations
are used in practice.
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Figure 7.2: Quadratic equation to determine gK in the linearized stochastic growth model.

where we have used βfK = 1, which follows from the steady state Euler equation. Equation
(7.17) is a quadratic equation in gK . The equation will have one root less than one and one
root greater than one. To verify this, note that the coefficient on g2

K is positive so (7.17)
is an upward facing parabola as shown in shown in Figure 7.2; the quadratic intersects the
y-axis at β−1, which is positive; and at gK = 1 the quadratic takes the value − u′

u′′
fKK
fK

, which
is negative if the utility and production functions are both strictly increasing and strictly
concave. The quadratic therefore takes the form shown in Figure 7.2 and has one root
between 0 and 1 and one greater than 1. The relevant root is the smaller one, because it is
the one that is consistent with the transversality condition. The root above one is explosive
in that any initial condition or shock has an increasing effect on the economy.

Solving for gA is more straightforward because matching coefficients on gA leads to a
linear relationship with the solution

gA =

�
fK − gK + 1− ρ+

u′

u′′
fKK
fK

�−1 �
(1− ρ)fA − ρ

u′

u′′
fKA
fK

�
.

We have solved for the derivatives of the savings policy rule. The level of the policy rule is
determined by the requirement that (K̄, Ā) is a steady state so we have

K ′ = K̄ + gK(K − K̄) + gA(A− Ā). (7.18)

If we augment this equation with

A′ = Ā+ ρ(A− Ā) + ε′, (7.19)

we have a system of two linear stochastic difference equations and we can apply the techniques
described in Section 7.1.4 to analyze the behavior of the economy.

For a numerical illustration of the properties of the stochastic growth model we will make
some specific assumptions about the production function and the parameters of the model.
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We assume f(A,K) = AKα + (1− δ)K, with α = 0.3, δ = 0.02. The persistence of TFP is
ρ = 0.95, the standard deviation of the innovations is 0.5%, and Ā = 1. Finally, we assume
u(c) = log(c) and β = 0.99.

With our parameterized solution to the model we can generate random draws of {εt}Tt=0

and iterate equations (7.18) and (7.19) forward to simulate the behavior of the economy.
Notice here that we are simulating the behavior of the state variables. Given the state vari-
ables it is straightforward to calculate the simulated path for output (using the production
function) and the simulated path for consumption (using the aggregate resource constraint).
Simulated paths for these variables are shown in Figure 7.3(a). Notice how TFP and output
exhibit much more high-frequency variation than do capital and consumption. Consump-
tion is smooth because of the diminishing marginal utility of consumption—when output is
high, it is preferable to save some of the extra resources to consume them later rather than
consume all of them when marginal utility is low. Capital is smooth because it reflects the
accumulation of savings over many periods—one period of high investment will not make
a big percentage difference to the capital stock. Panel (b) of Figure 7.3 shows the impulse
response functions following a one standard deviation shock to TFP. Kt is pre-determined
so it does not respond in the period the shock occurs. Therefore, on impact of the shock,
output increases by the same percentage amount as TFP. Consumption increases, but not
as much as output as some of the increase in output is directed to increased savings. Over
time, capital increases and the increase in output exceeds that of productivity.

Figure 7.3(c) shows the results from simulating the economy for a long time and forming
a histogram with the simulated data on the capital stock. The solid line in the figure shows
the theoretical unconditional distribution of the capital stock as calculated from equation
(7.6).13 As the figure shows, the economy fluctuates in the vicinity of the steady state.
Sometimes capital drifts higher, sometimes lower, but it tends to return towards the steady
state level. Panel (d) of the figure shows why this is the case. The figure plots g(A,K) as a
function of K for two levels of A—one high and one low. The dashed line is the 45-degree
line. For low K and high A, the savings policy rule is above the 45-degree line and the
capital stock will increase. Similarly, for high K and low A, the savings policy rule is below
the 45-degree line and the capital stock will decrease. As A fluctuates, the savings policy will
shift up and down leading the capital stock to fluctuate. But note that for high A and high
K, or low A and low A, the savings policy intersects the 45-degree line. These intersections
imply that capital will not move out of this range (unless A gets even higher or even lower).

7.4 Competitive market trade under uncertainty

We will now begin to discuss market interactions in an uncertain economy and in the next
section we will use these theoretical tools to analyze a decentralized equilibrium of the

13Specifically, we simulated the economy using Gaussian random variables for ε. As the dynamics of the
economy are linear, the distribution of the state variables is also Gaussian. We use (7.6) to solve for the
unconditional covariance matrix A and K. We have plotted a Gaussian distribution with the unconditional
variance of K and a mean equal to the steady state capital stock.
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(a) Simulated sample paths (b) Impulse response functions

(c) Distribution of K (d) g(K,A) for two levels of A

Figure 7.3: Numerical illustration of the stochastic growth model.
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stochastic growth model. Before we get to that, we will first discuss how models of trade
under uncertainty allow us to analyze the way agents insure themselves by sharing risks
between them.

Broadly speaking, we can classify economic models of trade under uncertainty into two
groups: complete markets models and incomplete markets models. In models with complete
markets, agents can buy and sell goods with contracts tailored to every possible state of
the world. They can write a contract for how they will behave after every possible history
ωt. This means that any possible risk can be insured at some price. In incomplete markets
models, some of these contracts are not available—some risks can not be insured against.
In this chapter, we will mostly focus on complete markets models. We start here because
it is simpler, not because it is more realistic, but we will introduce an incomplete markets
environment in Section 7.6.

Suppose the economy is populated by a set I of infinitely-lived households; this set could
be the continuum [0,1], as in most of Chapter 5, or it could be a different, perhaps smaller
set. Each household has expected utility preferences given by

∞∑
t=0

∑
ωt∈Ωt

πt(ω
t)βtu

(
ci,t(ω

t)
)
,

where ci,t(ω
t) is the consumption of household i ∈ I after history ωt ∈ Ωt. We do not spell

out the nature of ωt just yet, as it depends on the population details (the nature of the set
I). We assume u is strictly increasing and strictly concave. Each household is endowed
with a stochastic income stream that depends on the stochastic event. In particular let the
income of household i at date t after history ωt be yi,t(ω

t). The good is perishable, meaning
that it cannot be stored from one period to the next and must be consumed in the period
it arrives in the economy. A consumption allocation is feasible if the total consumption of
goods at t and ωt is equal to the total endowment of goods∑

i∈I

ci,t(ω
t) ≤

∑
i∈I

yi,t(ω
t).

We will begin by considering a market structure in which there is trade only at date 0.
For each date t and history ωt, there is a contract that says the seller will pay the buyer one
unit of good at that date if that history has been realized, and nothing otherwise. These are
called Arrow securities. We will denote the date-0 price of obtaining one unit of goods after
history ωt as pt(ω

t). This price is denominated in terms of date-0 consumption.
The decision problem of household i is to choose a contingent plan of {ci,t(ωt) : ∀t, ωt}

to maximize the expected utility preferences subject to the budget constraint

∞∑
t=0

∑
ωt∈Ωt

pt(ω
t)ci,t(ω

t) =
∞∑
t=0

∑
ωt∈Ωt

pt(ω
t)yi,t(ω

t).

This budget constraint says the date-0 cost of the consumption plan is less than the date-0
value of the income process. It is as if the agent, at date 0, sells claims to all their future
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income and then uses those funds to buy consumption goods to be delivered at future dates
if particular histories occur.

Formally, we have the following.

Definition 13 An Arrow-Debreu competitive equilibrium is a set of stochastic se-
quences

{
c?i,t(ω

t) : ∀t, ωt
}

, for each i ∈ I, and {pt(ωt) : ∀t, ωt} such that

1. for each i,
{
c?i,t(ω

t) : ∀t, ωt
}

solves

max
{ct(ωt):∀t,ωt}

∞∑
t=0

∑
ωt∈Ωt

βtπ(ωt)u(ct(ω
t)) s.t.

∞∑
t=0

∑
ωt∈Ωt

pt(ω
t)ci,t(ω

t) =
∞∑
t=0

∑
ωt∈Ωt

pt(ω
t)yi,t(ω

t)

2.
∑

i∈I c
?
i,t(ω

t)di =
∑

i∈I yi,t(ω
t)di for all (t, ωt).

To characterize the equilibrium, the Lagrangian of household i is

L =
∞∑
t=0

∑
ωt∈Ωt

βtπt(ω
t)u(ci,t(ω

t))− λi
[
∞∑
t=0

∑
ωt∈Ωt

pt(ω
t)
(
ci,t(ω

t)− yi,t(ωt)
)]
,

where λi is the Lagrange multiplier on the date-0 budget constraint. The first-order condition
of household i with respect to ci,t(ω

t) is

βtπt(ω
t)u′(ci,t(ω

t)) = λipt(ω
t) (7.20)

We can understand several properties of the equilibrium consumption allocation from the
first-order condition.

Insurance Consider equation (7.20) for two different values of ωt, call them ωt and (ωt)′

and take the ratio of these two equations to arrive at

βtπt(ω
t)u′(ci,t(ω

t))

βtπt((ωt)′)u′(ci,t((ωt)′))
=

λipt(ω
t)

λipt((ωt)′)
.

If the prices satisfy pt(ω
t) = p̄t× πt(ωt) with p̄t > 0, which we call actuarially fair prices,

we have

u′(ci,t(ω
t)) =u′(ci,t((ω

t)′))

ci,t(ω
t) =ci,t((ω

t)′),

where the second line follows from u(·) being strictly concave.14 With actuarially fair prices,
the households will buy full insurance and consumption does not depend on ωt. Full insurance
is, of course, only feasible in equilibrium if total resources do not vary across the different
values of ωt so in general, prices have to adjust to reflect not just probabilities, but also
relative scarcity, across states.

14In a static context, an actuarially fair gamble is one in which the expected payoff is equal to the cost
of the gamble. To adapt this definition to a dynamic context, let’s say prices are actuarially fair if the
price of any payoff at date t is equal to the price of any other payoff at date t that has the same expected
payoff. The condition pt(ω

t) = p̄t × πt(ωt) imposes this definition. To see this, consider a set of payoffs at
different histories that can arise at date t given by xt(ω

t). The date-0 value of such a portfolio of claims is∑
ωt xt(ω

t)pt(ω
t) = p̄tE[xt(ω

t)], which only depends on the date and the expected payoff.
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Risk sharing For some ωt, take the ratio of equation (7.20) for household i and household
j

uc(ci,t(ω
t))

uc(cj,t(ωt))
=
λi
λj
.

Now solve for the consumption of household i in terms of that of household j

ci,t(ω
t) = u−1

c

�
λi
λj
uc(cj,t(ω

t))

�
.

Goods market clearing requires
∑

i ci,t(ω
t) =

∑
i yi,t(ω

t), so we obtain∑
i

u−1
c

�
λi
λj
uc(cj,t(ω

t))

�
=
∑
i

yi,t(ω
t). (7.21)

Equation (7.21) relates the consumption of household j to the aggregate supply of goods and
the Lagrange multipliers of all the households. Importantly, those Lagrange multipliers are
constant across time so cj,t(ω

t) varies over time as a function of aggregate income not as a
function of yj,t. This is a very important result for complete markets models: all idiosyncratic
risk is insured away and consumption fluctuations only reflect aggregate risks.

Aggregate and idiosyncratic risks Aggregate risks lead to movements in aggregate
variables such as aggregate income or aggregate consumption while idiosyncratic risks af-
fect an individual’s circumstances but do not affect the aggregate. One person becoming
unemployed is an example of an idiosyncratic shock while an event that changes the un-
employment rate is an example of an aggregate shock. If the set of consumers, I, is finite
then an individual shock, by definition, is an aggregate shock, albeit a small one if I has
many elements. If I = [0, 1], then the set is (even uncountably) infinite and one individual’s
shock is truly idiosyncratic, unless it is synchronized/correlated with the shocks of others.
To illustrate, an interesting case is precisely that where the shock is “employment” (say, with
income ye for the individual) or “unemployment” (with income yu < ye). The date-t shock
ωt would then specify a whole function taking, for each i ∈ [0, 1], the value e or u. The whole
event tree would even be hard to imagine. A special case is where individuals’ employment
outcomes are independent draws with probabilities πe and πu = 1−πe, respectively. Then if
we can appeal to a law of large numbers there would be no aggregate uncertainty: aggregate
resources would be a deterministic value πeye + πuyu. However, each individual faces uncer-
tainty, though in this case markets can allow full insurance. This kind of model, where the
law of large numbers is assumed to hold, is often used in macroeconomics.15 Now imagine
that πe is random: an aggregate shock, which itself could, e.g., take on two values (say,
high or low) as well vary over time. Then individuals’ shocks are correlated, though if one
conditions on the aggregate shock (high or low unemployment), their shocks can be thought
of as purely idiosyncratic and uncorrelated. Our notation involving I and ωt is abstract and
meant to capture all these possibilities.

15Such an assumption involves mathematical subtleties; see, e.g., Uhlig (1996).
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Sequential trading We can implement a complete set of markets with an alternative
trading arrangement in which agents only trade securities that pay off in the next period
and then trade again every period. This parallels our two ways to define equilibrium in
deterministic contexts in Sections 5.2–5.3: we now merely have stochastic sequences.

For each event ωt+1 that can occur at t + 1, there is an asset traded at t that pays one
unit at t + 1 if that event occurs and zero otherwise. These are known as Arrow securities.
Let qt(ωt+1|ωt) be the price at t of a unit of consumption at t+ 1 if event ωt+1 occurs. This
price can depend on the history leading up to date t, ωt, and is denominated in terms of
consumption after history ωt. Let ai,t+1(ωt+1) be the amount of this asset held by household
i. The budget constraint of the household is then

ci,t(ω
t) +

∑
ωt+1

qt(ωt+1|ωt)ai,t+1(ωt+1) ≤ yi,t(ω
t) + ai,t(ω

t). (7.22)

Financial wealth, ai,t(ω
t), becomes a state variable for the household’s problem. This wealth

allows the household to consume more than its income stream in the current period and
future periods. When financial wealth is negative, the household must consume less than its
income either now or in the future.

While agents only trade assets that pay off one period in the future, they can use these
asset prices to value payoffs further in the future. One unit of goods at t + 2 after history
ωt+2 has a value in date t of qt+1(ωt+2|ωt+1) × qt(ωt+1|ωt). In this product, the first term
discounts the unit of goods back to t + 1 and the second term discounts it from t + 1 to t.
In general, we can define these discounts recursively as

q̃tτ+1(ωτ+1) = qτ (ωτ+1|ωτ )q̃tτ (ωτ )

with q̃tt(ω
t) = 1. While the households do not trade assets for dates τ > t+ 1 at date t, they

do correctly anticipate the prices that will prevail in the future and the q̃ terms reflect these
expectations.

At date 0, we assume that households have no financial wealth positive or negative
because we assume that no trades have occurred prior to date 0 and so no household has a
financial claim on any other household. Similar to models without uncertainty, the no Ponzi
game constraint requires that the household could repay if it consumes nothing forever

ai,t(ω
t) ≥ −

∞∑
τ=t

∑
ωτ

q̃tτ (ω
τ )yi,τ (ω

τ ). (7.23)

Notice that this constraint rules out Ponzi games: it is the “natural borrowing limit,” dis-
cussed in Section 4.3.1, now applying state by state.

We can now write the household’s problem as

max
{ci,t(ωt),ai,t(ωt)}∀t,ωt

∑
t

∑
ωt

βtπt(ω
t)u(ci,t(ω

t))

such that (7.22) and (7.23) hold for all t and ωt.
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A competitive equilibrium is a consumption allocation ci,t(ω
t) for all i, t, and ωt; asset

positions ai,t(ω
t) for all i, t, and ωt; a price system qt(ωt+1|ωt) for all t, ωt+1 and ωt such that

(i) for all i, the consumption-savings plan is optimal taking the prices, borrowing constraints,
and ai,0 = 0 as given; (ii) for all t and ωt, the goods markets clear:

∑
i (ci,t(ω

t)− yi,t(ωt)) = 0;
(iii) for all t and ωt, the asset market clears

∑
i ai,t(ω

t) = 0.

Definition 14 A sequential competitive equilibrium is a set of stochastic sequences{
c?i,t(ω

t) : ∀t, ωt
}

and
{
a?i,t+1(ωt) : ∀t, ωt

}
for each i ∈ I, and {qt(ωt) : ∀t, ωt} such that

1. for each i,
({
c?i,t(ω

t) : ∀t, ωt
}
,
{
a?i,t+1(ωt) : ∀t, ωt

})
solves

max
{ct(ωt):∀t,ωt},{at+1(ωt):∀t,ωt}

∞∑
t=0

∑
ωt∈Ωt

βtπ(ωt)u(ct(ω
t))

subject to

ci,t(ω
t) +

∑
ωt+1

qt(ωt+1|ωt)ai,t+1(ωt+1) = yi,t(ω
t) + ai,t(ω

t) (7.24)

and (nPg)

ai,t(ω
t) ≥ −

∞∑
τ=t

∑
ωτ

q̃tτ (ω
τ )yi,τ (ω

τ ) (7.25)

2.
∑

i

(
c?i,t(ω

t)− yi,t(ωt)
)

= 0 and
∑

i a
?
i,t+1(ωt) = 0 for all t and ωt.

Here, requirement 2 has two conditions (for each date and state); one of these implies the
other.

As in the case of certainty, the equilibrium allocation under sequential trading is the
same as the one that arises with date-0 trading. To prove this, the key step is to add the
stochastic sequence of budget constraints, multiplied by the appropriate prices, to arrive at
a time-zero consolidated constraint (after using the nPg constraint). Then, after seeing how
the prices in the two settings map into each other, it becomes clear that the consumers solve
the same problems in the two equilibrium definitions.

Spanning and complete markets Arrow securities are a convenient modeling device,
but they are not recognizable as assets that we normally trade. Most real-world assets pay
off in more than one state of nature. A system of markets would still be complete if we can
construct portfolios of the available assets that have payoffs equivalent to a full set of Arrow
securities.

Suppose there are S states of the world that might be realized at date t + 1 and there
are N assets traded at each date. We can construct the S × N payoff matrix D that lists
what each asset pays in each state. A portfolio is a vector θ ∈ RN that lists the weights on
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each asset. The S × 1 vector listing the payoff of a portfolio θ in each state of the world is
given by Dθ.

The range of the matrix D is the space of all possible payoffs that can be constructed by
making portfolios of the N assets. Let

M≡
{
z ∈ RS : z = Dθ for some θ ∈ RN

}
.

IfM = RS, the system of markets is complete. In this sense, a complete market means that
one can construct a portfolio with any conceivable payoff vector. A system of markets will
be complete if and only if rank(D) = S. If this rank condition is satisfied by the N assets,
we say the assets span the payoff space. If a system of markets is complete, there are
portfolios {θA

j }Sj=1 such that DθA
j pays one unit if state j occurs and zero units otherwise.

The portfolios {θA
j }Sj=1 are the Arrow securities.

7.5 Competitive equilibrium in the growth model

We now use the framework of trade under uncertainty we just developed to define a com-
petitive equilibrium for the stochastic growth model. We will state all of the assumptions
here even though some of them were already introduced in Section 7.3.

We assume, for simplicity, that all individuals are identical. The representative household
is endowed with k0 units of capital and one unit of labor that is supplied inelastically. The
intertemporal utility function is ∑

t

∑
ωt

βtπt(ω
t)u(ct(ω

t)).

Output is produced according to

yt(ω
t) = At(ω

t)F (kt(ω
t−1), 1),

where F has the usual neoclassical properties. The aggregate resource constraint is

kt+1(ωt) + ct(ω
t) = (1− δ)kt(ωt−1) + yt(ω

t).

Turning to markets, the representative household accumulates capital and rents it to a
representative firm in a spot market at price rt(ω

t). The total, gross, return is rt(ω
t) + 1− δ,

thus also inclusive of the undepreciated capital. Similarly, the household rents its labor to
the firm in a spot market at a price wt(ω

t).
The firm’s problem is exactly as we have discussed before and results in the first-order

conditions

rt(ω
t) = At(ω

t)Fk(kt(ω
t−1), 1) (7.26)

and

wt(ω
t) = At(ω

t)F`(kt(ω
t−1), 1). (7.27)
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The household’s budget constraint is

ct(ω
t) + kt+1(ωt) = (rt(ω

t) + 1− δ)kt(ωt−1) + wt(ω
t).

We could allow the household to trade Arrow securities contingent on ωt+1 but, without
another party to trade with, the representative household must have a zero position in each
security in equilibrium. Therefore, although the consumer faces incomplete markets here, a
full set of state-contingent assets would not change the equilibrium allocation. The household
cannot hold a negative capital position, k ≥ 0, but we will assume this constraint does not
bind.

The Lagrangian of the household’s problem is

L =
∞∑
t=0

∑
ωt∈Ωt

{
βtπt(ω

t)u(ct(ω
t))− λt(ωt)

[
ct(ω

t) + kt+1(ωt)− (rt(ω
t) + 1− δ)kt(ωt−1) + wt(ω

t)
]}
.

Taking the first-order conditions with respect to ct(ωt) and kt+1(ωt) we have

βtπt(ω
t)u′(ct(ω

t)) = λt(ω
t)

λt(ω
t) =

∑
ωt+1|ωt

(rt+1(ωt+1) + 1− δ)λt+1(ωt+1)

and combining these we arrive at an Euler equation of

u′
(
ct(ω

t)
)

= Et
[
βu′
(
ct+1(ωt+1)

)
(rt+1(ωt+1) + 1− δ)

]
. (7.28)

A competitive equilibrium of this economy is a set of stochastic processes

{rt(ωt), wt(ωt), ct(ωt), kt+1(ωt)}∀t,ωt

such that ct(ω
t) and kt+1(ωt) are optimal in the household’s problem given the prices, the

prices are set by competitive profit-maximizing firms in accordance with equations (7.26)
and (7.27) and the resource constraint is satisfied.

Definition 15 A sequential competitive equilibrium is a set of stochastic sequences
{c?t (ωt) : ∀t, ωt} and

{
k?t+1(ωt) : ∀t, ωt

}
and {(rt(ωt), wt(ωt) : ∀t, ωt} such that

1.
(
{c?t (ωt) : ∀t, ωt} ,

{
k?t+1(ωt) : ∀t, ωt

})
solves

max
{ct(ωt):∀t,ωt},{kt+1(ωt):∀t,ωt}

∞∑
t=0

∑
ωt∈Ωt

βtπ(ωt)u(ct(ω
t))

subject to the nPg constraint and

ci,t(ω
t) + ki,t+1(ωt+1) = (rt(ω

t) + 1− δ)kt(ωt−1) + wt(ω
t) (7.29)
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2. for all t and ωt,

rt(ω
t) = At(ω

t)Fk(k
?
t (ω

t−1), 1) and wt(ω
t) = At(ω

t)F`(k
?
t (ω

t−1), 1)

3. for all t and ωt,

k?t+1(ωt) + c?t (ω
t) = (1− δ)k?t (ωt−1) + At(ω

t)F (k?t (ω
t−1), 1).

In this definition of equilibrium the last condition is superfluous. This is, as in the determin-
istic case, because a constant returns to scale production function is homogeneous of degree
one and by Euler’s theorem we therefore have

rt(ω
t)kt(ω

t−1) + wt(ω
t) = At(ω

t)F (kt(ω
t−1), 1) = Yt(ω

t).

If we substitute this into the household budget constraint we arrive at the aggregate resource
constraint, which is the goods market clearing condition.

The competitive equilibrium allocation is the same as we obtain from the planner’s prob-
lem. If we substitute equation (7.26) into (7.28) and we arrive at the same Euler equation
as we obtained in the planner’s problem, equation (7.13). Furthermore, if we substitute
into (7.26) and (7.27) into the household budget constraint, we obtain the same resource
constraint as applies to the planner’s problem.

The equivalence between the planner’s solution and the competitive equilibrium alloca-
tion is not affected by adding uncertainty to the model. Indeed, there is nothing funda-
mentally different about an economy with uncertainty as compared to a deterministic one.
Instead of indexing goods just by time, we now index goods by time and histories. As a
result, the first and second welfare theorems continue to apply.

In Section 7.3 we used the functional Euler equation to solve the planner’s problem for
the stochastic growth model. Due to the equivalence between the competitive equilibrium
and the planner’s problem, the solution we found is also the solution to the competitive
equilibrium. In fact, in Appendix 7.A we formulate a recursive competitive equilibrium and
derive the exact same functional Euler equation as we found for the planner’s problem.

7.6 An incomplete-market economy

In this chapter, we have mostly focused on competitive equilibria with complete markets. If
a system of markets is incomplete, i.e., if some insurance contracts are not available, then the
planner’s problem and the competitive equilibrium will not coincide in general. In this case,
the first welfare theorem fails to hold because some markets are missing (the markets for
those insurance contracts). Here we will just give a brief introduction to incomplete-market
models and return to this topic in later chapters.

Consider a consumer with preferences given by

E0

∞∑
t=0

βtu(ct).
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The consumer receives a stochastic income stream yt and can borrow or save in an asset that
pays gross interest 1+r, which is known and constant. Here we just describe the consumer’s
decision problem and we will take r as given.

Letting at be the agent’s assets at the start of period t and q = 1/(1 + r), the budget
constraint is

qat+1 + ct = at + yt.

We assume there is some lower limit to how much the consumer can borrow, at+1 ≥ a,
where a could be the natural borrowing limit (the amount the consumer could repay if they
received the lowest possible income realization in all future periods) or some more restrictive
borrowing constraint.

If we assume the endowment process is a first-order Markov process, the consumer’s
problem can be stated recursively as

V (a, y) = max
a′≥a
{u(a+ y − qa′) + βE [V (a′, y′)|y]} .

The first-order condition of this problem is

u′(c)q = βE [Va(a
′, y′)|y]

and the envelope condition is
Va(a, y) = u′(c).

Combining these we have the Euler equation

u′(c) = (1 + r)βE [u′(c′)|y] .

This is an example of an incomplete-market environment because the single asset cannot
insure the consumer against the income risk. In other terms, using the single asset with
a constant return, the consumer can borrow and save but the payoff of their portfolio is
independent of their income in the next period. As a result, their consumption will fluctuate
in response to the realizations in their individual endowment. However, the consumers
can partially self insure. They can accumulate savings that they can spend down if they
receive low endowments in the future. In this way the consumer can partially smooth their
consumption. However, they will not in general choose to fully smooth their consumption.
To see this, suppose a consumer wished to have a perfectly smooth consumption path. The
only way they could do this is to set their consumption to a level that would be sustainable
if they received the lowest possible income realizations at all future dates. If they choose a
higher level, there would be a chance that they would be unlucky and have to reduce their
consumption. But this extremely conservative plan will not be optimal even for a consumer
with very high risk aversion. Instead, the consumer will choose to adjust their consumption
level in response to the endowments they receive. In Chapter 9 we study problems of self
insurance in much more detail.

The top panel of Figure 7.4 plots the decision rule a′ = g(a, y) for a version of this
model in which income can take two values each period. When income is high, the con-
sumer accumulates savings up to the point ā where the upper line crosses the 45-degree line.
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(a) Decision rule for net saving g(a, y)− a

(b) Simulated stationary distribution of assets

Figure 7.4: Decisions rules and stationary distribution for the incomplete-
market consumption-savings problem.
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When income is low, the consumer spends down their savings until it reaches the borrowing
constraint. If the consumer begins with initial assets above ā, they will continuously spend
down their assets regardless of their income until their assets reach ā. So in the long run the
consumer will have asset holdings on the ergodic set [a, ā]. Within this set, however, the con-
sumer will sometimes be moving towards higher asset levels (when they have high income)
and will sometimes be moving towards lower levels (when they have low income). Contrast
this saving rule with what we found in our deterministic steady state endowment economy
in Section 5.4.1 where the decision rules were a′ = g(a) so they are simply the 45-degree line.
In Figure 7.4, the decision rule of high-income consumers has a slope less than 45 degrees
but an intercept above the 45 degree line while the decision rule of low-income consumers is
on the 45-degree line at a but has a slope less than 45 degrees. The fact that the decision
rules are above and below the 45-degree line is the source of partial insurance—those with
high income put some of their “extra” resources into savings while those with low income
draw down their savings.

Now suppose we simulate a large number of consumers each solving this decision problem
and each receiving their own independent endowment process. The simulation produces a
distribution of consumers over asset levels that reflects the fact that some consumers have
been lucky and received many high endowments and some have been unlucky. Moreover, as
consumption is a function of the consumer’s assets and income, the simulation also produces
a distribution of consumption levels. At a point in time, the distribution of asset holdings
will depend in part on the distribution of asset holdings in the previous period. In the long
run, the distribution will converge to a stationary distribution. The bottom panel of Figure
7.4 plots the stationary distribution of assets for our simulation.

In some contexts the complete market and representative agent assumptions are sensible
simplifications of reality, but when they are not we often turn to incomplete-market models
that build on the framework we have just presented. Such models can be used to study a
wide range of issues and we will return to this topic in the chapters that follow.
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Chapter 8

Empirical strategies and quantitative
macroeconomics

We often have questions that require quantitative answers. Can a certain theory explain the
amount of growth or volatility we see in the data? How do the benefits of a proposed policy
compare to the costs? Quantitative answers require empirical evidence. Perhaps there is
evidence that directly speaks to question of interest. More often there is not and we need to
bridge the gap between the available evidence and the answer to our question with theoretical
models or assumptions.

The types of questions we contemplate typically require estimates of causal effects that
measure the consequences of changing one aspect of the economy holding the other economic
fundamentals constant. A key challenge for economists, and macroeconomists in particular,
is that it is often impossible to perform experiments on the economy. Instead, we have to
estimate these causal effects using data that reflect equilibrium outcomes in which many
variables are jointly determined and responding to a variety of different shocks. In this
chapter we will discuss four different strategies to address this challenge.

We start with two strategies that impose relatively fewer assumptions on the analysis
starting with natural experiments. While we usually cannot perform experiments on the
economy it may be the case that there is variation in the data that is effectively exogenous
with respect to the other variables of interest. If we can find such natural experiments, then
we can estimate causal relationships more or less directly. We then turn to techniques for
identifying causal effects from time series data. A vector autoregression (VAR) is a statistical
tool that expresses the dynamic evolution of a group of time series in terms of the lags of
the same time series. In a structural VAR, we add additional identifying assumptions to
a VAR to uncover patterns in the data that can be given a causal interpretation.

The last two strategies we consider rely closely on economic theory in the form of a fully-
specified model. A model can be used as a laboratory in which we can perform experiments
to measure causal effects and experiment with proposed policies. The key issue then is how
we use data to inform the model and its parameters. Structural estimation treats the
model as the data generating process and selects parameters to best explain the observed
data. The strategy of calibration considers each parameter of the model and seeks evidence
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that speaks to the value of that parameter. When we calibrate a model, we do not presume
that the model explains all of the variation in the data we observe.

The rest of this chapter will demonstrate these four different strategies and how they
would answer the question “how does GDP respond to an increase in government spending?”
The answer to this question is often summarized by a single quantity known as the “fiscal
multiplier.” In section 8.1, we begin by setting out the core issue we face in identifying an
exogenous change in government spending in order to estimate the fiscal multiplier. We then
turn to the empirical strategies.

8.1 The identification challenge

The “fiscal multiplier” refers to the causal effect of an increase in government spending (Gt)
on output (yt). By causal effect we mean Gt increases independently of other forces affecting
the economy. Suppose we have time series data on Gt and yt, we could simply look at how
strongly the two co-move. However, to estimate a causal effect rather than a correlation we
need the increase in spending to be exogenous with respect to other variables of interest. For
example, it could be the case that an increase in productivity creates more resources and
the economy chooses to spend more on public goods. In that case, the increase in output is
not caused by the increase in spending.

In order to illustrate the identification challenge, we will consider a simple static model
of the economy. The economy is populated by a representative household with preferences

Ut = log ct −
`1+ψ
t

1 + ψ
+ γηt logGt, (8.1)

where ct is consumption, `t is labor supply, Gt is spending on public goods. The parameter
γ determines the steady state preference for public goods while ηt is an exogenous fiscal
shock that shifts the value of public goods over time. For instance, government purchases
may be especially useful in a time of war, which would correspond to an increase in ηt. The
economy produces goods out of labor according to yt = At`t where At is an exogenous TFP
level. Goods can be used for consumption or public goods so we have yt = ct +Gt. Suppose
a planner chooses {ct, `t, Gt} to maximize the household’s utility subject to ct + Gt = At`t.
The solution to this problem results in the first order conditions

At
ct

= `ψt

Gt = γηtct.

Using aggregate resource constraint to eliminate ct = yt − Gt and production function to
eliminate `t = yt/At we obtain

yt = At

�
1− Gt

yt

�−1/(1+ψ)

(8.2)

Gt =
γηt

1 + γηt
yt. (8.3)
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Figure 8.1: Equilibrium of supply curve (eq. 8.2) and fiscal rule (eq. 8.3).

Eq. (8.2) reflects the supply side of the economy. This equation depends on G/y due to
wealth effects on labor supply. As more resources are devoted to the government and fewer
to consumption, the marginal utility of consumption rises relative to the marginal disutility
of work leading the planner to increase labor supply. Eq. (8.3) is the fiscal policy rule—Gt

increases if yt or ηt increase. An increase in ηt clearly raises the benefit of public spending.
An increase in yt lowers the opportunity cost of allocating resources to Gt rather than ct.
Figure 8.1 plots these two relationships between G and y.

The fiscal multiplier is the change in output (in levels) divided by the change in spending
(in levels). A fiscal multiplier equal to one means that one dollar more of spending raises
GDP by one dollar. Crucially, the change in spending must be exogenous because the fiscal
multiplier is meant to be a causal effect—it answers the question “what would happen if
G increases ceteris paribus?” One way to calculate the fiscal multiplier in a model is to
replace the spending policy rule with one in which G is simply exogenous. One would then
consider the equilibrium response of output to exogenous changes in G. Graphically, the
fiscal multiplier is the slope of the supply curve in Figure 8.1. An alternative approach to
calculating the fiscal multiplier is to find an exogenous force that shifts the fiscal policy rule.
In our model, the fiscal shock ηt is an exogenous shift of the fiscal policy rule. We can then
calculate the fiscal multiplier as (dyt/dηt)/(dGt/dηt). Or, in words, the change in y induced
by a change in η scaled by the change in G that was induced by η.

Defining the fiscal multiplier in a dynamic economy

225



In a dynamic economy, a change in spending can be more or less persistent and the
persistence of spending will matter for how the economy reacts. Moreover, an increase in
spending at one date will lead to a change in output on impact and at subsequent dates.
In this dynamic setting, the fiscal multiplier is not a single number, but depends on the
details of the expected path of Gt and involves an impulse response of yt.

a The literature
has used several methods to reduce this complexity to one dimension. Blanchard and
Perotti (2002) define the multiplier as the ratio of the peak output response relative to
the peak spending response. Alternatively, others follow Mountford and Uhlig (2009) in
calculating the cumulative multiplier that integrates the impulse response of GDP and
divides by the integral of the change in spending.

aMoreover, the response of yt may depend on the state of the economy in which we start the
experiment although in this chapter we will focus on first-order approximations to the dynamics of the
economy that do not capture this state dependence.

Now suppose we have data on Gt and yt over time. These data reflect movements in At
as well as ηt. Changes in At shift the supply curve while changes in ηt shift the fiscal rule. As
both of the curves in Figure 8.1 are subject to unobserved shocks, the empirical relationship
between yt and Gt does not reveal the slope of either curve. In order to calculate the fiscal
multiplier, we need to isolate shifts in the fiscal rule that move the economy along the supply
curve. The empirical strategies that follow all must confront this identification challenge.

8.2 Natural experiments

To assess the fiscal multiplier, we need a shift in fiscal policy that is unrelated to the state of
the economy. Some of the largest changes in fiscal policy have occurred at times of war. It is
reasonable to argue that these wars were not caused by economic conditions and so changes
in government spending due to wars can be treated as exogenous. This is an example of using
a natural experiment for identification. Given our knowledge of the economy, we may be
able to find an exogenous variable (e.g. war spending) that is correlated with the endogenous
variable of interest (e.g. total government spending). In our system (8.2)-(8.3), we seek a
variable zt that is correlated with Gt but uncorrelated with At.

A series of papers has used exactly this strategy of studying military spending to measure
the fiscal multiplier. One challenge this strategy has to overcome is that the change in
spending may have been known ahead of time. If wealth effects on consumption and labor
supply are important mechanisms in the transmission of fiscal shocks to the rest of the
economy, these effects should occur when the agents learn about the change in fiscal policy
rather than when the spending actually occurs. For example, it may be clear that war is on
the horizon before the government increases spending. Therefore the economic impact of the
war spending may be felt before the spending occurs. To overcome this challenge, Ramey
(2011) measures the change in the expected present value of defense spending each quarter by
reading historical newspaper articles to understand the timing of information about military

226



Figure 8.2: Change in the expected present value of military spending computed by Ramey
(2011).

spending. This data is shown in Figure 8.2 where we see that there were large changes in
expected military spending in WWII and the Korean War. Ramey estimates the impulse
responses of government spending and GDP to this news and uses those impulse responses to
estimate the fiscal multiplier. She finds a multiplier near 1 when the sample period includes
WWII and multipliers near 0.7 when WWII is excluded.

From natural experiments to impulse response functions: local projection

Let zt be the measure of military spending news. As zt is exogenous, we could simply
regress output yt on zt. But perhaps there is a delay between the defense spending
news and the output response. We could then regress yt+h on zt to estimate how output
responds to spending news h periods after the news arrives. By varying h we can trace
out a whole impulse response function. This procedure is called a local projection or
Jordà (2005a) projection.

Analyzing a natural experiment often requires using unconventional data sources. For
example, Ramey used historical newspaper articles to construct her dataset. This is an
example of the narrative approach in which one uses qualitative sources to obtain information
that helps identify particular shocks or other developments in the economy. Romer and
Romer (1989) is a well-known example within modern macroeconomics.1 Their study sought
to identify exogenous changes in monetary policy by reading transcripts of Federal Reserve

1See also Romer and Romer (2023) for a review and update of this work.
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meetings in order to find dates at which policy was changed despite the fact that policymakers
felt that economic activity was at an appropriate level.

An alternative natural experiment strategy exploits the fact that military spending does
not occur uniformly across an entire country but is concentrated in some regions. Using
records of military purchases to understand the locations of military suppliers, Nakamura
and Steinsson (2014) are able to construct a measure of military spending at the level of U.S.
states. They show an increase in national military spending leads to a disproportionately
large increase in spending in some states as compared to other states. A fiscal multiplier can
then be estimated from the output movements in states with more spending relative to the
output change in the states with less spending. The identifying assumption is that the U.S.
government does not enter wars because of regional differences in the economic performance
of U.S. states. Nakamura and Steinsson estimate a multiplier of 1.5. The regional data
provide useful evidence on the effects of government spending on the economy. It is worth
noting, however, that a multiplier across states is not directly comparable to an economy-
wide multiplier. When government spending increases at the national level, there may be
changes in national taxes, interest rates, or commodity prices. But these general equilibrium
effects are common across states and therefore do not contribute to the estimated regional
multiplier. For example, if the war spending is financed by national taxes, the tax impact will
be the same (or similar) across states and therefore will not be part of the regional multiplier
but it will be part of the national multiplier. Nakamura and Steinsson (2014) argue that the
large regional multiplier they find is consistent with Keynesian theories in which an increase
in demand leads to an economic expansion because it is the increase demand that differs
across states.

Natural experiments are often compelling because they isolate changes in the economy
that are plausibly exogenous. Often times, this requires narrowing our focus to particular
types of variation in the economy and we may worry that these events are not representative
of the phenomenon as a whole. For example, it is possible that a general increase in gov-
ernment consumption has a different impact on the economy than military spending does.
Moreover, there is no guarantee that we can find a convincing natural experiment for our
question of interest. Therefore we may want to consider alternative empirical strategies.

8.3 Structural Vector Autoregressions

One option is to use the time series of aggregate government spending and ask how surprise
innovations to this series affect the economy. The challenge here is that the surprise in
spending may reflect an endogenous response of spending to some other development rather
than a fiscal policy shock. The literature on structural vector autoregressions (VARs) seeks
to overcome this challenge in order to uncover causal relationships in time series data.

Consider the process

B0Yt = B1Yt−1 +B2Yt−2 + · · ·+BJYt−J + εt, (8.4)

where Yt ∈ Rn is a vector of observed data, Bj is an n×n matrix of coefficients, and εt ∈ Rn is
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an i.i.d. stochastic innovation. Each equation in this system expresses a relationship between
the current Yt and lags of Yt plus an error term. In a structural vector autoregression
we give the equations and shocks a causal interpretation. We would like to think of one
equation shifting without affecting other equations. For example, a TFP shock only shifts
the production function without affecting other equations in the model.2 We assume the
structural shocks are uncorrelated with one another. It is without loss of generality to
assume that the covariance matrix of εt is the identity matrix as we can rescale the Bj’s by
the standard deviations of the shocks.

To make things concrete, consider a log-linearized version of (8.2) and (8.3)

ŷt =
χ

1 + χ
Ĝt +

1

1 + χ
Ât (8.5)

Ĝt = ŷt +
1

1 + γ
η̂t (8.6)

where χ ≡ 1
1+ψ

Ḡ/ȳ

1−Ḡ/ȳ . The shock in each equation has a clear interpretation: the first is a

shock to the supply-side of the economy while the second is a shock to fiscal policy. The
equations in the system cannot be estimated directly due to endogeneity concerns. In the
first equation, Gt is correlated with At because it is determined by the solution the whole
system, which depends on At. But if we could estimate this system, it would provide us
with most of the information we need to calculate the fiscal multiplier because it tells us the
causal effect of logG on log y.3

While we cannot estimate the structural system (8.4) directly we can transform it by
premultiplying by B−1

0 to obtain the reduced-form VAR

Yt = B−1
0 B1︸ ︷︷ ︸
A1

Yt−1 +B−1
0 B2︸ ︷︷ ︸
A2

Yt−2 + · · ·+B−1
0 BJ︸ ︷︷ ︸
AJ

Yt−J +B−1
0 εt︸ ︷︷ ︸
ut

. (8.7)

As we have now eliminated the contemporaneous variables from each equation, we can
estimate the equations of (8.7) via OLS, but the shocks we recover are not the structural
shocks ε. Instead, the reduced-form residuals ut are linear combinations of the structural
shocks with weights given by B−1

0 . If our goal is to understand how a shift in fiscal policy
affects the economy, we need to isolate a fiscal policy shock so the reduced-form VAR itself
does not allow us to answer the question of interest.

As we assumed Var(εt) = I, it follows that Var(ut) = B−1
0 B−1′

0 . In this way, the estimated
covariance matrix of ut gives us information about B0. However, it does not give us all the
information we need. Let F be some orthogonal matrix, which means F ′F = I. Then for

2In this context, the word “structural” is used in the manner it used in the study of simultaneous equation
models in econometrics. In the structural system, the equations and shocks are given a causal interpretation.
In other contexts, the term “structural” has a different meaning and refers, instead, to parametric models
that are explicitly derived from economic theory.

3The system (8.5)-(8.6) is written in logs while the fiscal multiplier is defined in levels. We can convert
from logs to levels by multiplying the estimated effect in logs by ȳ/Ḡ. Appendix 8.A.2 verifies this in the
context of the model here.
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any candidate solution b such that bb′ = Var(ut) there is an alternative solution bF ′ that also
satisfies bF ′Fb′ = Var(ut). To resolve this problem, we need more information that allows
us to eliminate all these rotations F except for one. This information does not come from
the estimated reduced-form VAR but from identifying assumptions.

The matrix Var(ut) has dimension n×n but it is symmetric so it only contains n(n+1)/2
distinct values. To determine all of B0 we need an additional n2 − n(n + 1)/2 restrictions
on B0.4 These restrictions are identifying assumptions that must be motivated by theory or
other data besides that contained in Yt.

In our example system (8.5)-(8.6), we have n = 2 so we need one restriction on B0. Our
theoretical model implies that the coefficient on ŷt in (8.6) is equal to 1 and we could use that
as our identifying assumption. How does restricting a coefficient to 1 solve the identification
problem? By defining ĝt ≡ Ĝt − ŷt, we could rewrite (8.5)-(8.6) as

ŷt = χĝt + Ât (8.8)

ĝt =
1

1 + γ
η̂t. (8.9)

While Gt is endogenous, eq. (8.9) makes clear that our theory asserts that gt is exogenous
and we can then attribute any movements in gt to fiscal shocks. There is then no endogeneity
problem in eq. (8.8) because gt is exogenous.

Recursive identification

The system (8.8)-(8.9) is an example of recursive identification. There is one equation
that has no contemporaneous variables on the right-hand side, which allows us to identify
shocks to the variable on the left-hand side of that equation. We can then treat that
variable as exogenous in other equations and identify shocks to equations that only have
exogenous variables on the right-hand side. In a larger system we could potentially
identify all the shocks in a series of steps.

A recursive identification scheme is also called “Cholesky” or “triangular” identifi-
cation. Recall that a Cholesky decomposition of a real positive definite matrix M gives
a lower-triangular matrix L such that LL′ = M . If we order the variables in Yt so that
the first variable does not depend on any other contemporaneous variable, the second
variable may depend on the first but no other conteporaneous variables and so on, then
a Cholesky decomposition of the covariance matrix VAR(ut) gives B−1

0 .

Eq. (8.9) imposes the restriction that ĝt does not depend on ŷt. In an application with
lagged variables, we could allow ĝt to depend on lags of ŷt. So the identifying assumption only
restricts the immediate impact of the shocks and not the dynamic relationships between the

4We are simply counting equations and unknowns here: the unrestricted B0 has n2 unknowns but due to
symmetry B−1

0 B−1′
0 = Var(ut) only provides n(n+ 1)/2 equations. We therefore need to impose additional

equations (“restrictions”) to determine B0.
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variables. This is the appeal of structural VARs, we can allow the dynamics of the economy
to be quite flexible.

When we impose that certain elements of B0 are equal to zero, we call those “timing
restrictions” because we are imposing that certain variables do not depend on others within
the same period but they can depend on those other variables with a delay. Blanchard and
Perotti (2002) use timing restrictions to identify fiscal policy shocks in a structural VAR.
They assume that fiscal policymakers cannot immediately (within a quarter) observe current
GDP and adjust fiscal policy because data on GDP only arrives after the quarter is complete
and because it takes time to pass legislation to adjust policy. This argument motivates a
specification in which the contemporaneous response of spending to GDP is restricted to zero.
Blanchard and Perotti’s results are somewhat sensitive to the details of the specification but
the multipliers they find are generally around one.5

From natural experiments to impulse response functions: structural VAR

Let zt be an exogenous variable, say a measure of military spending news. One way of
computing impulse responses to shocks to zt is to include zt as an exogenous variable in
a VAR. Specifically, one could use a recursive identification scheme with the assumption
that zt does not respond to any of the other variables in the system (i.e. it is ordered
first). In her study of military spending, Ramey (2011) estimates the impulse responses
by including the military news as an exogenous series in a structural VAR. With sufficient
data, this approach will yield the same impulse response functions as a local projection
(see Plagborg-Møller and Wolf, 2021).

Timing restrictions are not the only route to identification in a structural VAR. One
approach that is widely used now is to use a natural experiment as an instrumental variable
to identify a shock of interest in the VAR. In another approach, Uhlig (2005) proposed
imposing restrictions on the signs of the responses of some variables following the shock of
interest. Alternatively, Blanchard and Quah (1989) used the identifying assumption that only
supply shocks can affect GDP in the long-run while demand shocks can lead to temporary
fluctuations—a so-called “long-run restriction.”

The appeal of VARs is that they impose relatively few assumptions on the dynamics of the
economy. Relative to natural experiments, they tend to rely on identification assumptions
that may be less credible. On the other hand, they also have some limitations. They are
silent about the economic mechanisms that determine the observed dynamics nor do they
speak to the welfare consequences of shocks or policy responses. Moreover, they do not
readily incorporate information from micro-level data.

5Recall that Blanchard and Perotti define the multiplier as the ratio of the peak output response to the
peak spending response.
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8.4 A model of fiscal policy

The final two empirical strategies we will discuss make use a of a structural model of the
economy. A model can be viewed as an analytical tool that allows us to make sense of data
and reach conclusions that are not immediately clear from the data alone. This is both the
appeal of using models and the concern with using models. In some cases, the data do not
speak directly to the question of interest because the type of experiment we are interested
in has never occurred. We then have no choice but to use assumptions, typically in the form
of a model, to extrapolate from the data we have observed to the question we are interested
in. On the other hand, we may worry that the model assumptions drive our conclusions
without a solid grounding in facts. To alleviate this concern, we need to use a model that
allows for the economic channels that are most relevant to our question and allows the data
to determine the relative strengths of these channels.

In our analysis of the fiscal multiplier, the static model presented in Section 8.1 only allows
for one choice for the economy after an increase in government spending: the economy can
work more or consume less. If we allow for investment, there is another possibility: the
economy could reduce investment to free up resources for the government. In this section
we will expand our model to incorporate this margin of adjustment. While the expanded
model is a step in the right direction, it omits the distortionary effects of taxes and it omits
Keynesian channels that are sometimes considered important in determining the effects of
fiscal policy.6

8.4.1 The model

The main change we will now make relative to Section 8.1 is to include capital and invest-
ment. We will also now analyze a competitive equilibrium rather than a planner’s solution
because the model’s implications for prices and payments to capital and labor are useful
when calibrating the model.

A representative household has the preferences

E0

∞∑
t=0

βtUt,

where Ut is given in (8.1). Output is produced according to the production function

yt = Atk
α
t `

1−α
t . (8.10)

Goods can be used for consumption by households, consumption by the government, or
investment. Letting It denote investment, capital accumulates according to kt+1 = (1 −
δ)kt + It and the aggregate resource constraint is yt = ct + It + Gt. Combining the two we
have

yt = ct + kt+1 − (1− δ)kt +Gt. (8.11)

6Chapter 13 discusses tax distortions and Chapter 16 will discusses new Keynesian models of the business
cycle.
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For a given level of production, an increase in Gt will reduce the resources available for
private consumption and investment.

We assume that households accumulate capital and rent it and their labor to firms in spot
markets at rental rate rt for capital and wage wt for labor. Households must pay lump-sum
taxes in amount Tt. The representative household’s budget constraint is

ct + kt+1 = (1 + rt − δ)Kt + wt`t − Tt.

The government uses the tax revenue to finance its purchases so the government budget
constraint is Tt = Gt. Imposing taxes on the household will affect their choices as they must
consume less, save less, or work more in order to pay the taxes. However, as the taxes are
imposed lump-sum, they do not affect the marginal returns to work and saving and therefore
do not distort the household’s choices away from the socially efficient choices.

There are two exogenous processes in this economy, which we assume follow AR(1) pro-
cesses with unit mean

At = (1− ρa) + ρAAt−1 + εA,t (8.12)

ηt = (1− ρη) + ρηηt−1 + εη,t. (8.13)

where εA,t and εη,t are i.i.d. with zero mean and variances σ2
A and σ2

η, respectively.
The household’s problem is to choose consumption, savings and labor supply to maximize

its utility subject to its budget constraint taking the prices and taxes as given. The solution
to this problem follows the same steps as in Section 7.5 so we will simply state the optimality
conditions

1

ct
= βEt

�
(1 + rt+1 − δ)

1

ct+1

�
(8.14)

wt
ct

= `ψt . (8.15)

Eq. (8.14) is the consumption Euler equation under uncertainty. Eq. (8.15) is the first order
condition for labor supply that equates the utility of working an extra unit of time and
consuming the income to the marginal disutility of working more.

The representative firm’s problem is to maximize profits by hiring labor and capital and
using these inputs to produce. As usual, the firm’s first order conditions equate marginal
products and input prices

rt = αyt/kt (8.16)

wt = (1− α)yt/`t. (8.17)

We will assume that the government chooses taxes and spending to maximize the welfare
of the representative household. In doing so, the government can anticipate that taxes cause
households to change their behavior. Chapter 13 will discuss this type of interaction between
the government and the private sector in more detail. Here we note that the solution to the
government’s problem satisfies the same first order condition as the planner’s problem, which
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equates the marginal benefit of spending to the marginal cost of the household consuming
less

γηt
Gt

=
1

ct
. (8.18)

An equilibrium of this economy is a set of stochastic processes {kt, ct, yt, `t, Gt, rt, wt, At, ηt}
that satisfy equations (8.10)-(8.18). In what follows we will discuss functional forms and pa-
rameter values for the model. Once those elements are in place, we can compute a solution
to the model via several methods. To analyze the dynamics of the economy, we will use a
linear approximation around the deterministic steady state as discussed in Section 7.3.4.7

8.4.2 The fiscal multiplier

To develop intuition for the fiscal multiplier in this model, we can begin by supposing that
investment does not respond to the change in spending. As investment is unchanged, there
are only two ways to free up the resources for the extra spending: work more or consume less.
If the economy simply consumes less, then output is unchanged and the fiscal multiplier will
be zero. On the other hand, if the economy simply works more, then output increases one-
for-one with spending and the multiplier will be one. From the perspective of households,
an increase in government spending means an increase in taxes and therefore it induces a
negative wealth effect that causes them to consume less and work more so the actual outcome
is somewhere between these two extremes and the fiscal multiplier will be between zero and
one.

If we allow investment to respond, there is a third way to pay for the government spending:
invest less. If the economy invests less, it can free up resources for the government but at the
cost of having a smaller capital stock in the future. With less capital in the future, output
is lower. By reducing investment the households have extra resources that they can use to
consume more and work less. To the extent they work less, the fiscal multiplier will be lower.
If the change in government spending is short-lived, reducing investment will help to smooth
consumption—the economy reduces the capital stock to finance the government and then
builds the capital stock back up once the government spending returns to normal. However,
if the spending shock is highly persistent, then this “borrow from the future” strategy is not
as effective because the economy needs to finance the government now and in the future.

8.5 Structural estimation

Structural estimation treats the economic model as a statistical model of the data we observe.
For different configurations of the structural parameters, the observed data are more or
less likely to have occurred. Using likelihood methods (maximum likelihood or Bayesian
estimation) we can then estimate the parameters of the model from the observed data. To

7See Appendix 8.A.1 for how to calculate the steady state of this model.
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start, we will continue with the simplified model from Section 8.1 before generalizing to the
richer model from Section 8.4.

To estimate the model with likelihood methods we need to make assumptions about how
the shocks are distributed. For the sake of discussion, let us suppose At and ηt are i.i.d.
with densities pA and pη. Suppose further that our observable variables are time series of
government spending and output from dates 1 to T . We then ask how likely these data were
for a given set of parameters. For a given date t, we can use (8.2) and (8.3) to solve for the
values of At and ηt that are implied by the observed yt and Gt

At = yt(1−Gt/yt)
1/(1+ψ)

ηt =
Gt/yt

γ(1−Gt/yt)
. (8.19)

The likelihood of these observations is then Prob(Gt, Yt|ψ, γ) = pA(At) × pη(ηt) and the
likelihood of the full sample is then

Prob({Gt, Yt}Tt=1 |ψ, γ) =
T∏
t=1

(pA(At)× pη(ηt)) .

Maximum likelihood estimation treats the likelihood function above as the objective function
to maximize. Bayesian estimation uses Bayes rule to derive a posterior probability distribu-
tion of the parameters conditional on the data. Doing so requires a prior distribution of our
beliefs over the parameters before observing the data. Once we have estimated the param-
eters, we can differentiate (8.2) to find the implied fiscal multiplier (see Appendix 8.A.2 for
a derivation of the fiscal multiplier in this model).

It is worth considering how structural estimation resolves the identification challenge
discussed above. Eq. (8.3) imposes a functional form on the fiscal rule that implies the G/y
ratio is not affected by TFP shocks. Therefore, any changes in G/y are due to fiscal shocks.
We are then able to infer the fiscal shocks from movements in G/y as shown in eq. (8.19).
A reasonable criticism of this approach is that the functional form assumption for the fiscal
rule may be mis-specified, leading to mis-identification of the fiscal shocks.

Calculating the likelihood for the static model is straightforward because we can solve
for ηt and At directly from the model equations. In actual applications this typically won’t
be possible in part because there are unobserved state variables. For example, with the
production function yt = Atk

α
t `

1−α
t , if kt and At are unobserved, then we cannot say if

output per hour is high because At is high or because kt is high. The process of using
observed data to infer to the position of an unobserved state is known as filtering.

We will give a brief overview of how one can use filtering techniques to construct the
likelihood for the expanded model with capital. The model has three state variables (kt, At,
and ηt). We do not observe At or ηt. While we have measures of the capital stock, they are
likely contaminated by substantial measurement error so we often treat kt as unobserved,
too. We will suppose we can observe the time series of yt and Gt.

The solution the model provides a policy rule for investment in the form

kt+1 = f(kt, At, ηt).
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This rule, along with the laws of motion for the stochastic processes (8.12) & (8.13), define
a stochastic difference equation for the state vector Xt ≡ (kt, At, ηt)

′

Xt+1 = F (Xt, εt+1)

where εt+1 ≡ (εA,t+1, εη,t+1)′ is a vector of shocks. Similarly, we can use the other equations
of the model to express the observed data Yt ≡ (yt, Gt)

′ in terms of the states and we can use
Yt = H(Xt) to represent this relationship. The functions F and H are non-linear functions
that depend on the model parameters. If we linearize these equations we obtain

X̂t+1 = A(θ)X̂t + B(θ)εt+1 (8.20)

Ŷt = C(θ)X̂t, (8.21)

where A(θ), B(θ), and C(θ) are coefficient matrices that depend on the model parameters,
which we collect in the vector θ, and X̂ is the deviation of X from steady state.

It is common to assume that ε is a Gaussian random variable because this allows us to use
a particularly convenient filtering algorithm: the Kalman filter. We will specifically assume
ε ∼ N(0, I). The Kalman filter generates estimates of the state at date t give information
through t − 1. These estimates are uncertain and the linear-Gaussian framework implies
Xt ∼ N(Xt|t−1, Pt|t−1), where Xt|t−1 is the conditional mean of Xt given information through
date t − 1 and Pt|t−1 is the covariance matrix that reflects our uncertainty over Xt. Given
(8.21), we then have a distribution over Yt that is also Gaussian with a mean C(θ)Xt|t−1 and
covariance matrix C(θ)Pt|t−1C(θ)′. This gives us the likelihood of Yt given data through t−1.
We then can form the likelihood of full sample by applying this same logic to all dates t:

Prob({Yt}Tt=1|θ) =
T∏
t=1

N
(
Yt | C(θ)Xt|t−1 , C(θ)Pt|t−1C(θ)′

)
,

where N (Y |µ,Σ) is the density of multivariate normal distribution with mean µ and co-
variance Σ evaluated at Y .8 Once we have constructed the likelihood we can proceed with
maximum likelihood or Bayesian estimation of the parameter vector θ.

To review, we have described a widely-used method for structurally estimating macro
models. For a given θ, one solves for a linear approximation to the dynamics of the econ-
omy. One then uses the Kalman filter to filter the observed data, estimate the unobserved
state, and construct the likelihood. Use of the Kalman filter assumes the shocks to the
model are Gaussian. There exist methods for handling non-linear and non-Gaussian models,
but the tractability of the Kalman filter leads linear-Gaussian models to be used in many
applications.

Structural estimation treats the model as the data generating process. We next turn to
calibration, where the goal is not to fully explain the data, but rather the gauge the strength
of the key mechanisms embedded in the model.

8Notice that we require a belief about the initial distribution of X1 given no data (i.e. X1|0 and P1|0).
In stationary models, it is common to assume that the initial state is drawn from the system’s invariant
distribution.
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Limited-information estimation

In this section, we have focused on likelihood methods or “full-information” estimation
because that is a very common approach to structural estimation within macroeco-
nomics. However, one could also consider limited-information methods that use par-
ticular moments of the data as estimation targets. One might estimate a structural
parameter by a single equation from a larger model and estimating it by the generalized
method of moments. One needs to make identifying assumptions or find instruments to
obtain consistent estimates of the parameters and a benefit of specifying the full model
is that the argument for identification can be laid out in concrete terms. For example, in
our static model, eq. (8.9) makes clear that ĝ can be treated as exogenous and estimating
(8.8) by OLS will give us a consistent estimate of χ. Knowledge of χ and the steady-
state G/Y ratio allows us to calculate the fiscal multiplier (see Appendix (8.A.2)).

8.6 Calibration

Suppose we have some data of interest. This could be simple moments we calculate such
as the volatility of GDP or it could be the result of some other analysis such as a study of
a natural experiment. We can then ask if the mechanisms embedded in the model are able
to account for this data of interest. To answer that question, we need parameters for the
model. One option is to use the data of interest in picking the parameters, but this is not be
so compelling as it only tells us that there exist some parameter that can explain the data.
Instead, we might seek other source of information about the parameters. Then, with the
parameters already set, we compare the model to the data of interest. This is the approach
taken in calibration. In calibrating a model, we must be clear about what mechanisms our
model uses to explain the data of interest and then take care to choose the parameters of
the model with information that speaks to the strength of the relevant mechanisms.

In our analysis of fiscal policy, the data of interest could be the empirical estimates
discussed above, which put fiscal multiplier near one. Section 8.4 highlighted several consid-
erations that are important to the size of the fiscal multiplier. The multiplier will be larger
if households are more willing to vary their labor supply than their consumption. The fiscal
multiplier will also be larger if the economy is unwilling or unable to reduce investment. As
we calibrate the model, we should pay special attention to the parameters that affect these
channels as they ultimately will determine the fiscal multiplier.

Chapter 3 has already discussed a calibration strategy for some of the parameters in
our model. The parameter α determines the share of aggregate income that accrues to
capital, which we observed to be in vicinity of 1/3. Chapter 3 also uses the average ratio of
investment to capital, which was found to be 0.076, to calibrate the depreciation rate. The
model presented here does not have population growth or trend productivity growth, so the
only reason to invest in steady state is to replace the depreciated capital. The 0.076 ratio
is for annual investment (a flow variable e.g. the investment spending over the course of a
year) relative to the value of the capital stock (a stock variable e.g. the value at the start
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of the year). For the analysis of short-run dynamics, we often specify a model time period
to be one quarter of a year. In quarterly terms, the investment-capital ratio is 0.076/4 =
0.019 and we will set the depreciation rate δ = 0.019.9 From the Euler equation, we can see
that the steady state return to capital is determined by 1/β. Using (8.14) and (8.16) we
obtain β = (1 + αȳ/k̄ − δ)−1. Inserting the observed capital-output ratio10 of 3.3 × 4 into
this equation yields β = 0.994.

The preceding parameters are quite closely connected to empirical counterparts, which
allows for a straightforward calibration strategy. The inverse elasticity of labor supply, ψ,
is more difficult to calibrate. The Frisch elasticity of labor supply is the percentage change
in labor supply following a percentage change in the wage holding the marginal utility of
consumption constant. With the preference specification used in the model, the Frisch
elasticity is exactly 1/ψ. A natural way to calibrate this parameter is to look for data on
transitory changes in wages and see how much labor supply reacts. Wage fluctuations can
reflect changes in labor supply as well as changes in labor demand. To identify the slope of
the supply curve, we need to isolate changes in wages that are not themselves a reflection of
labor supply shocks. One line of literature uses changes in tax rates as a source of variation
in after-tax wages. This literature tends to find relatively small labor supply elasticities on
the order of 1/2 so ψ ≈ 2 (see Chetty, 2012).11

In our model, a key mechanism is that the government imposes a lump-sum tax on
households that makes them poorer and may cause them to work more through a wealth
effect. The parameter ψ also determines the strength of this wealth effect in addition to
the Frisch elasticity. We therefore want to be sure that our choice of ψ implies a reasonable
magnitude for this wealth effect on labor supply. The ideal evidence on wealth effects on
labor supply would involve random variation in wealth unrelated to other developments in
the economy. Changes in wealth due to aggregate events, like an economic boom, are not
ideal because the change in the economy that led to the boom may have also affected other
aspects of the economy such as wages. Several studies have looked at the labor supply of
individuals who win lottery prizes. Golosov, Graber, Mogstad, and Novgorodsky (2021) use
data on lottery winners and compare their labor supply before and after they win. The
authors find that winning $100 leads, on average, to a $2.30 drop in annual earnings. What
does this imply for ψ? Solving eq. (8.15) for ` and differentiating with respect to c we obtain
d`
dc

= − 1
ψ
`
c
. We can multiply both sides by 4w to obtain the change in annual earnings. If

we assume households smooth their consumption perfectly, they will consume the annuity
value of their extra wealth. So receiving $100 causes them to increase their consumption by

9The true depreciation rate is lower as some of the observed investment is explained by a growing economy.
One could then argue that we should set δ lower, but we chose not to do that. If the economy invests less
to finance government spending, it will move away from its steady state capital-output ratio. In reality, the
decline in the capital-output ratio will reflect both depreciation and a growing economy. We will capture
both forces here by having a higher depreciation rate.

10As discussed in Chapter 2, the value of the capital stock relative to annual GDP is about 3.3. We
multiply by 4 to express the ratio in terms of quarterly output rather than annual output.

11Some take the view that aggregating across a population of households changes the effective labor supply
elasticity for the representative household. We will discuss this possibility in Chapter 12.
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r/(1 + r)× $100. Putting these pieces together we have

change in annual earnings = −$2.30 = − 4

ψ

w`

c

r

1 + r
$100.

We will use a quarterly interest rate of r = 1%. The ratio w`/c is quarterly earnings over
quarterly consumption. Among households that work, this ratio is somewhat above 1 due
to the life-cyle savings profile and we will set it to 1.2. Solving for ψ, we find ψ = 2.1. This
is reassuring in that a value of ψ near 2 is consistent with evidence on the Frisch elasticity
and with evidence on wealth effects.

In steady state, (8.18) becomes γ = Ḡ/c̄. In the US data from 1994 to 2023, the ratio of
public consumption to private consumption has fluctuated in the range of 25% to 30%, while
it was higher in the past (see Chapter 13 for data on the government’s role in the economy).
We will set γ = 0.3.

The model specifies exogenous stochastic processes for At and ηt. As our goal is to
quantify the fiscal multiplier, we are interested in the economy’s response to an exogenous
change in fiscal policy, which we will generate with a shock to ηt. The presence of technology
shocks will lead to consumption volatility and generate precautionary savings motives, which
will have a small bearing on the fiscal multiplier. When we use a linear approximation of the
model equations to analyze the economy, we implicitly assume these precautionary motives
away. As a result, the economy’s response to a fiscal shock will be the same regardless of
whether or not technology shocks are included in the model. Additionally, the linear solution
scales one-for-one with the size the shocks so the magnitude of the fiscal shock will not affect
the fiscal multiplier. It follows that we do not need to specify ρA, σ2

A or σ2
η. The fiscal

multiplier does, however, depend on the persistence of the fiscal shock ρη. Our approach will
be to report the fiscal multiplier for a range of values of ρη.

Figure 8.3 shows the impulse responses to a fiscal shock (a positive realization of εη).
12

We have assumed that the shock is fairly persistent (ρη = 0.9) and Gt remains elevated for
several years. In response to the shock, the economy works more, consumes less, and invests
less. Quantitatively, we see that the bulk of the adjustment comes through investment
and the change in labor supply is quite small. Initially, the increase in labor supply raises
output. Over time, the decline in investment reduces the capital stock and, after 5 quarters,
output falls below steady state. The cumulative fiscal multiplier—integrating the output
and spending responses over the first 12 quarters—is close to zero.

In a sensitivity or robustness analysis we consider alternative calibrations and document
how our conclusions are or are not affected by reasonable changes in the parameters. Figure
8.4 shows that this conclusion is sensitive to the persistence of the spending shock. As
ρη increases, reducing investment is less effective in smoothing consumption leading labor
supply to adjust more resulting in a larger multiplier. Similarly, if ψ is smaller, so labor
supply is more elastic, more of the adjustment occurs through labor supply and the fiscal
multiplier is larger.

12We have scaled the shock so that Gt rises by one unit on impact, but this is just a normalization given
the linear solution method.
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Figure 8.3: Impulse responses for 12 quarters following a fiscal shock.

Figure 8.4: Cumulative fiscal multiplier over the first 12 quarters.
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Model validation

Suppose that you have calibrated your model, but you still have additional empirical
evidence that is relevant to your question. How can you incorporate this extra evidence
into your analysis? One option is to ask whether your calibrated model can also match
the additional facts. This step is called “model validation.” The evidence employed
in model validation is often related to the question of interest and perhaps less closely
related to specific parameters. The point of model validation is to determine whether
the model’s answers can be trusted.

Earlier in the chapter we found fiscal multipliers closer to one while here we find multi-
pliers closer to zero. From this analysis, it appears that wealth effects are unable to explain
fiscal multipliers as large as those in the empirical estimates. We should note that this con-
clusion depends on the full model and it may be that wealth effects could be more powerful
within a different model. Another possibility is that the model we consider here omits certain
channels that make fiscal policy more powerful in stimulating output. The Keynesian view
of fiscal policy is that it stimulates household incomes leading consumption to increase. This
view contrasts quite strongly with the neoclassical view where government spending induces
a negative wealth effect and a reduction in consumption.13

To conclude this section, we can draw some general principles for calibration. (i) (Model
choice) In calibrating a model, one has to make choices and the guiding principle is to obtain
an accurate account of the strength of the main forces at play in the analysis. In order to
make these choices, one must understand the economics of the problem. (ii) (Discipline in
parameter selection) Wherever possible, one should seek evidence that speaks directly to
the strength of the mechanisms at the heart of the analysis. Microeconomic studies that
cleanly isolate quasi-experimental variation in the economy are often an attractive source
of information about the strength of mechanisms. (iii) (Robustness) It is important to
determine, and report, to what extent the quantitative results are sensitive to the parameter
values chosen and to the exact way in which the model formalizes the mechanism in focus.

The conclusions one draws from a calibrated model are of course shaped in large part by
the model itself. This is by design. Thus, the calibration example here asks about how large
a fiscal multiplier would be if one only considered the mechanisms captured by the model at
hand. The question is thus a partial one, to the extent one thinks the model lacks important
elements. For example, if one thinks a Keynesian demand mechanism could be important
then a next step is to add elements to the model, again by careful selection of parameters
relevant to the demand mechanism and evaluate again.

13Chapter 16 discusses New Keynesian theories of the business cycle, which allow an increase in the demand
for goods to increase output. Gaĺı, López-Salido, and Vallés (2007) develop a New Keynesian model of fiscal
policy and obtain fiscal multipliers near one.
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8.7 Taking stock

We have described some of the main methods that macroeconomists use for empirical and
quantitative analysis. A reasonable question is “which one should I use?”

Macroeconomists increasingly value natural experiments as sources of identification. These
natural experiments could occur at the national level, as in the military spending example
above, or at a micro-economic level, as in the lottery winner example discussed in Section
8.6. In many cases, the natural experiment does not directly answer the question of interest,
but it provides useful information about the economy that we can use as a calibration target
for a model.

The strength of VAR analyses is that they place fewer restrictions on the dynamics of
the economy than do typical structural models. For example, in Figure 8.3 we see that in
our model a government spending shock induces an immediate increase in output that then
fades and a persistent decrease in consumption. These patterns are inherent to the model.
If we calibrate or structurally estimate the model, the data will not be able to change these
conclusions.

Models take center stage when we lack data. Our discussion of calibration is a good
example—we can use data on capital, investment, and output from the national accounts
along with data on how labor supply responds to taxes and lottery winnings to investigate
a question about government spending. Models are also central when we are interested in
understanding mechanisms at work in the economy.

It is worth noting that researchers often use multiple empirical methods in the same study.
Natural experiments are often used to establish empirical results that may be explained by
a structural model or may serve as a calibration target for a structural model. Regardless of
which method you use, the success of your argument hinges on making a clear and compelling
connection between your conclusion and the evidence that supports it.
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Part II

Applications
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Chapter 9

Consumption

Gianluca Violante
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9.1 Introduction

Household consumption is a key determinant of welfare and, as a result, it plays a funda-
mental role in many areas of macroeconomics, such as growth, business cycles, inequality,
taxation, and asset pricing. The growth of aggregate consumption over time is an unequiv-
ocal sign of augmented prosperity of a society. Because its fluctuations over the business
cycle are costly to households, both fiscal and monetary policy go to great lengths in or-
der to stabilize aggregate consumption expenditures. The distribution of consumption in
the population is a credible measure of inequality in standard of living across households,
more so than income. Crucial objectives of redistributive and social insurance policies are
that of supporting a minimum level of consumption above poverty for all households, and
that of limiting the pass through of income losses to household spending (and thus, to their
well-being). Finally, consumption choices of investors over time and across states determine
stochastic discount factors which price assets in financial markets.

In light of this centrality, it is not surprising that the theory and empirics of consumption
choices has, historically, attracted so much attention from economists. As Deaton (1992a)
puts it, in the preface of his book, attempts by economists to understand the saving and
consumption patterns of households have generated some of the best science in economics.
The desire to microfound the empirical relation between consumption and income, which
contradicted the simple Keynesian consumption function where expenditures are modelled
as a linear function of current income, led to some of the first examples of forward-looking
dynamic optimization (Modigliani and Brumberg, 1954; Friedman, 1957) and, since then,
led to gradual enrichment of the optimization framework. At the same time, the ever wider
availability of large microeconomic data sets on income and expenditures (first survey data,
now administrative data) created fertile grounds for the application of state-of-the art econo-
metric techniques to test models and quantify key magnitudes. In the last 30 years, this
theoretical and empirical advances have been incorporated into general equilibrium models
with heterogeneous households that constitute one of the main workhorses for the study of
business cycle, inequality and government policy in macroeconomics.

This chapter offers an introduction to this vast literature. It emphasizes the theoretical
advancements in this field, but it also makes an attempt to relate models to data. The chap-
ter is organized as follows. Section 9.2 derives consumption allocations under two extreme
financial market structures: autarky and complete markets. It then argues that the empirical
evidence suggests a market structure in between these two which offers “partial insurance”
against income shocks, and introduces an economy where only a non-state-contingent bond
is traded. Section 9.3 studies in some depth the optimal intertemporal consumption/saving
problem of a household who can save and borrow through this asset, the so called “in-
come fluctuation problem”. We start from the deterministic case, and then we analyze the
stochastic case with random income fluctuations. The permanent income hypothesis, where
certainty equivalence holds and risk plays no role for consumption allocation, is a special
case of this environment. We then move beyond certainty equivalence and analyze envi-
ronments where risk matters for consumption and saving. We analyze the two sources of
precautionary saving, prudence and occasionally binding borrowing constraints, and explain
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how they induce concavity in the consumption function. In Section 9.4, we combine a con-
tinuum of households facing income fluctuation problems, and study how they give rise to
an endogenous joint distribution of income, consumption, and wealth. We then characterize
the stationary equilibrium of these economies, first without and then with production. This
last section extends the analysis of Section 7.6.

Because of space constraints, we omit developing a number of interesting and important
topics related to consumption. For example, business cycles and asset pricing, life-cycle
patterns, information frictions, consumer durables and housing, bequest, habits, and non-
standard preferences. Some of these topics will be covered in later chapters, such as Chapters
12, 14 and 19. We also refer the reader to the surveys by Hall (1988), Muellbauer (1994),
Browning and Lusardi (1996), Attanasio (1999), Browning and Crossley (2001), Campbell
(2003), Attanasio and Weber (2010), Meghir and Pistaferri (2011), Piazzesi and Schneider
(2016), Kaplan and Violante (2022), and the thematic books by Deaton (1992a) and Jappelli
and Pistaferri (2020) for additional material.

9.2 Consumption under autarky and full insurance

Consider an endowment economy with aggregate uncertainty, as the one outlined in Chapter
7 of the book. Let ωt ∈ Ω (a finite set) be the realization of a stochastic event (e.g., an
aggregate shock) at date t. Let ωt = {ω0, ω1, ..., ωt} be the history of events until time
t, with ωt ∈ Ωt ≡ Ω × Ω × ... × Ω, the t + 1 Cartesian product of Ω. Each history ωt

has unconditional probability of occurring π (ωt). We assume all households have rational
expectations, i.e. they forecast by using the true probability distribution. The economy is
populated by a continuum of measure one of infinitely-lived households indexed by i who
are endowed with stochastic income yi,t (ωt) such that∫ 1

0

yi,t
(
ωt
)
di = Yt

(
ωt
)
,

where Yt (ωt) is the (random) aggregate endowment of the economy. Each realization ωt ∈ Ω
corresponds to a particular value of the aggregate endowment and a particular distribution
of it across households.1

Households are expected utility maximizers, with period utility u (ci,t (ωt)), where ci,t (ωt)
is consumption of individual i upon realization of history ωt. We assume that u satisfies
standard properties, i.e. u′ > 0 and u′′ < 0. Let Ct (ωt) =

∫ 1

0
ci,t (ωt) di denote aggregate

consumption. Aggregate feasibility implies that aggregate consumption equals the aggregate
endowment along each history

Ct
(
ωt
)

= Yt
(
ωt
)

for all t, ωt ∈ Ωt.

1For example, with I = 2 and ωt ∈
{
ωL, ωH

}
, we could have a configuration where Y

(
ωL
)

= 2, Y
(
ωH
)

=
4, and y1

(
ωL
)

= 2, y2

(
ωL
)

= 0, y1

(
ωH
)

= 1, y2

(
ωH
)

= 3. Thus, the aggregate endowment in state H is
larger than in state L, but type 1 is better off in state L and type 2 in state H.
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The individual consumption allocation that arises in the equilibrium of this economy
depends on market arrangements. We consider two extreme benchmarks: autarky and full
insurance.

Under autarky, there is no insurance market which allows individuals to trade across
states, and no storage technology to transfer resources across time (e.g., the endowment is
fully perishable). In this economy, an individual i who receives a random stream of income
shocks

{
{yi,t (ωt)}ωt∈Ωt

}∞
t=0

has no other choice than consuming their income in every state:

ci,t
(
ωt
)

= yi,t
(
ωt
)
, for all t, ωt ∈ Ωt. (9.1)

and equation (9.1) is also their budget constraint. Under autarky there is full pass-through
of individual income shocks into consumption, or no consumption smoothing whatsoever.

Consider now the other end of the spectrum of market arrangements: complete markets
(also called full insurance or full risk-sharing), introduced earlier in Section 7.4. Under this
arrangement, households can trade a complete set of Arrow securities. This market structure
allows every individual i to achieve any transfer of income across states and across time, as
long as these trades respect the time-zero Arrow-Debreu budget constraint

∞∑
t=0

∑
ωt∈Ωt

pt
(
ωt
) [
ci,t
(
ωt
)
− yi,t

(
ωt
)]

= 0. (9.2)

The Arrow-Debreu competitive equilibrium for this economy was defined in Section 7.4,
where it is shown that for any pair of households (i, j) ,

u′ (ci,t (ωt))

u′ (cj,t (ωt))
=
λi
λj
, for all t, ωt ∈ Ωt, and (i, j) , (9.3)

with λi and λj representing Lagrange multipliers on their lifetime budget constraint.
Equation (9.3) illustrates the defining property of consumption allocations under full

insurance: when households can trade a complete set of Arrow securities, the ratio of marginal
utility of consumption of any two households is constant across time and states.

To make further analytical progress, note that in the special case of CRRA utility, where

u (ci,t (ωt)) =
ci,t (ωt)

1−σ

1− σ , with σ ∈ [0,∞)

equation (9.3) becomes

ci,t (ωt)

cj,t (ωt)
=

�
λi
λj

�− 1
σ

,

which implies that the ratio of consumption allocations (not just marginal utility of consump-
tion) between households is constant across states and over time. Summing over i = 1, ..., I
on both sides yields

cj,t
(
ωt
)

=

[
(λj)

− 1
σ∫ 1

0
(λi)

− 1
σ di

]
Ct
(
ωt
)
, (9.4)

248



so, individual consumption is proportional to aggregate consumption (or aggregate endow-
ment), with a coefficient of proportionality, in the square bracket, that depends on the
relative values of λ.2 Thus, individual consumption is not constant over time, but it is
independent of the realization of the individual endowment. Unanticipated shocks to the
aggregate endowment are the only source of individual variation in consumption. These
fluctuations cannot be insured because, by definition, they are common across households.

9.2.1 Full insurance with preference heterogeneity

How does preference heterogeneity affect consumption allocations under complete markets?
It is immediate to see from (9.3) that the hallmark of complete markets —constant ratio of
marginal utility of consumption across households— is still valid even with heterogeneity in
u. It is no longer necessarily true, however, that the ratio of consumption is also equalized.
To see this, assume u is CRRA and households (indexed by i) differ with respect to the
curvature parameter σ

ui (ci,t (ωt)) =
ci,t (ωt)

1−σi

1− σi
.

Consider an economy with two agents i = 1, 2. The individual FOCs conditions combined
with the market clearing condition imply

λ2c1,t

(
ωt
)−σ1 = λ1

[
Yt
(
ωt
)
− c1,t

(
ωt
)]−σ2 (9.5)

Figure 9.1 plots right-hand side and left-hand side as a function of c1,t for the case
where type 1 is less risk averse than type 2 (σ1 < σ2) . The two curves cross only once.
Now consider a rise in the aggregate endowment. We know from (9.4) that when σ1 = σ2

consumption would increase proportionately so to leave the ratio of consumption between
the two households unchanged. With unequal risk aversion, instead, it is efficient for the
planner to have the consumption of the least averse households (type 1 in our example)
fluctuate more in response to aggregate shocks, as evident from Figure 9.1.

9.2.2 Empirical tests of the full insurance hypothesis

Abstracting from heterogeneity in preference for risk, one can combine the consumption
allocation under autarky in (9.1) and complete markets in (9.4) to derive an encompassing
empirical model for consumption growth that can be taken to the data:

∆ log ci,t = β1∆ logCt + β2∆ log yi,t + εi,t,

where yi,t is current individual income, Ct is aggregate consumption and εi,t is an error term
independent of the two regressors.3 The autarky hypothesis implies β1 = 0 and β2 = 1, i.e.

2We have derived this result in Section 5.2.1. There, our formulation did not include uncertainty and we
have derived it directly from the equilibrium conditions.

3This equation can also be interpreted as the result of a log-linearization for more general preferences.
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Figure 9.1: Plot of the left-hand-side (LHS) and right-hand-side (RHS) of
equation (9.5).

Notes: Parameter values: σ1 = 0.25, σ2 = 1, λ1 = λ2 = 1. Aggregate endowment rises from
Y ∗ = 1.5 to Y ∗∗ = 2.25. Agent 1, who is less risk-averse, absorbs most of the rise in the
endowment.

individual consumption tracks individual income. The full risk-sharing hypothesis, instead,
implies β1 = 1 and β2 = 0, i.e. individual consumption tracks aggregate endowment, but is
independent of individual income.

In the early 1990s’ a large empirical literature developed with the aim of testing these
hypotheses using longitudinal micro data on consumption expenditures and income (Altug
and Miller (1990), Mace (1991), Cochrane (1991), Nelson (1994), Townsend (1994), Attanasio
and Davis (1996), Hayashi, Altonji, and Kotlikoff (1996), Jappelli and Pistaferri (2006)).
Overall, the conclusion of this literature is that an empirically plausible model of consumption
behavior lies somewhere in one in between full risk-sharing and autarky: individual income
shocks are only partially insured.

More details
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Mace (1991) used the short panel dimension of the Consumer Expenditure Survey (CES),
the main survey on consumption expenditures of US households, to test the relation be-
tween individual and aggregate consumption growth, and rejected the null hypothesis
that β1 = 1. Cochrane (1991), instead, tested the null hypothesis that individual con-
sumption does not react to idiosyncratic income fluctuations (β2 = 0). He used the Panel
Study of Income Dynamics (PSID), the longest-running longitudinal dataset represen-
tative of the US population, to identify explicit events associated with income losses,
such as days of work lost because of illness, involuntary job loss, weeks spent by jobless
household heads looking for employment, days of work lost to strikes. He concluded that
household food consumption expenditures (the only spending category well measured in
this dataset at the time) are quite —although not fully— responsive to many of these
indicators, a finding that contradicts the efficient risk sharing hypothesis. Attanasio
and Davis (1996) analyzed the relation between changes in consumption and changes in
relative earnings across demographic groups (defined by cohorts and education) in the
U.S. in the 1980s. Their results indicate a “spectacular failure” of the full insurance
hypothesis across groups.

According to the full risk-sharing hypothesis under CRRA, individual consumption
moves in lockstep with aggregate consumption for all households. As a result, the
household ranking (i.e., their relative position) in the consumption distribution remains
constant over time. The hypothesis of lack of rank mobility in household consumption
was tested, and amply rejected, by Fisher and Johnson (2006) and Jappelli and Pistaferri
(2006).

Tests of perfect risk sharing were extended to the case of risk aversion heterogene-
ity by Mazzocco and Saini (2012) and Schulhofer-Wohl (2011). As discussed by these
authors, preference heterogeneity can lead to a spurious rejection of this hypothesis. To
see this, note that, as explained above, if households differ in their degree of curvature
in utility, optimality conditions for the CRRA case imply that

∆ log ci,t = βi,1∆ logCt + β2∆ log yi,t + εi,t (9.6)

where βi is larger the lower is risk aversion of household i relative to its population
average. Thus, if one estimates the misspecified equation (9.4) instead of (9.6), the
error includes the term (βi − 1)∆ logCt. If earnings of low risk aversion (high βi)
individuals are more procyclical, then this omitted variable would induce a positive bias
on the estimate of β2. One reasons to expect that less risk-averse households will have
more procyclical incomes is that more risk tolerant workers will choose occupations that
carry more risk, both idiosyncratic and aggregate. Schulhofer-Wohl (2011) uncovers
some evidence about this mechanism from respondents in the Health and Retirement
Study.
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9.2.3 Two approaches to partial risk sharing

How do we go about developing and quantifying economic theories of partial risk sharing?
Economists have followed two methodologies. The first one —which we may call the en-
dogenous incomplete markets approach— is rooted in the tradition of microfoundation of
macroeconomics. According to this approach, one should model explicitly the fundamen-
tal frictions that undermine the emergence of full insurance in the competitive equilibrium.
Recall that a complete set of state-contingent securities will be traded if two assumptions
hold: (i) perfect enforcement of contracts and (ii) perfect information. Deviations from these
assumptions, such as limited commitment or private information (adverse selection or moral
hazard), lead to partial risk sharing. There exist several examples of models that incorporate
these frictions in the competitive equilibrium and analyze implications for the distribution of
consumption allocations. For example, building on Kehoe and Levine (1993, 2001), Krueger
and Perri (2006) relax the perfect contract enforcement assumption; Doepke and Townsend
(2006) and Attanasio and Pavoni (2011) relax the perfect information assumption.

The principal strength of this methodology is that the market structure is not assumed
exogenously, but it emerges in equilibrium and, as a result, is endogenous with respect to
changes in primitives of the economy.4 The main shortcomings of this strategy are two. First,
the financial contracts that are traded in equilibrium are quite complex, e.g. they are history
dependent and state-contingent, and thus very different from the simple ones we observe in
reality. For example, in the limited enforcement economy default is an off-equilibrium threat,
but it never actually happens, whereas households do default in the real world. Second, the
empirical implications of these models for consumption allocations are often rejected by the
data. Take, again, the limited commitment model as an example. Consumption always
drifts down when the participation constraint of the household does not bind, and it jumps
up when it does bind, which happens whenever income increases sufficiently (Kocherlakota,
1996). This pattern gives rise to an extreme and very counterfactual degree of left-skewness
in the consumption distribution (Broer, 2013). This disconnect between theory and data
represents a challenge for quantitative analysis of these models.

This criticism fueled the second methodology, which we can call the exogenous incomplete
markets approach. This alternative view prescribes that we should only model the assets
that we observe in the real world, e.g. non state-contingent bonds, risky publicly traded
equity, housing, privately held firms, etc. The advantage of this perspective is that it leads
to models that can be easily and naturally taken to the data. Its drawback is that the asset
market structure is exogenously assumed and, as a result, it does not respond to changes in
model parameters. To be precise, in an environment with exogenous incomplete markets,
a shift in primitives (e.g., in the stochastic process of income shocks) does not lead to the
addition or the disappearance of certain securities being traded, but it does impact the
equilibrium prices at which existing assets are traded (and, possibly, also impacts the value
of borrowing limits, depending on how they are specified). As a result, the pass-through of

4For example, in the limited commitment economy of Krueger and Perri (2006), an increase in the size of
idiosyncratic income risk reduces the value of autarky (and incentives to default), and increases equilibrium
risk sharing, a force that contains the rise in consumption inequality caused by higher income uncertainty.
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income shocks to consumption, an indicator of the degree of risk sharing, is also affected.
Before articulating the analysis of this approach, it is worth noting that there exist some

results in the literature which show that the right combination of fundamental frictions
can give rise to a realistic market structure emerging endogenously in equilibrium. Notable
examples are Allen (1985) and Cole and Kocherlakota (2001) who consider an environment
with unobservable income shocks and hidden saving, and show that the constrained efficient
allocations can be decentralized through a competitive asset market where households only
trade a non-contingent bond.5

The canonical example of the exogenous incomplete market approach is the so-called
bond economy, an environment where households are only allowed to trade a one period non
state-contingent bond. This arrangement is reminiscent of a standard deposit/loan contract
in the real world, where a saver receives an interest on their deposits every period, and
a borrower repays interests on their loan every period without ever defaulting.6 To fully
understand the ad-hoc restrictions on market structure that we impose to obtain the bond
economy, start from complete markets and consider the sequential formulation version of the
Arrow-Debreu budget constraint (9.2) holding at every history ωt ∈ Ωt:

ci,t
(
ωt
)

+
∑

ωt+1∈Ω

qt
(
ωt+1, ω

t
)
ai,t+1

(
ωt+1, ω

t
)

= yi,t
(
ωt
)

+ ai,t
(
ωt
)

(9.7)

where a (ωt+1, ω
t) is an Arrow security purchased at date t and state ωt that pays one unit of

consumption if state ωt+1 occurs next period, q (ωt+1, ω
t) is the price of such Arrow security,

and ai,t (ωt) are all the Arrow securities purchased at t− 1 which pay in the current realized
state ωt. In the bond economy, we force agents to trade only a non state-contingent asset.
The budget constraint (9.7) is therefore replaced by the more restrictive

ci,t
(
ωt
)

+ qt
(
ωt
)
ai,t+1

(
ωt
)

= yi,t
(
ωt
)

+ ai,t
(
ωt−1

)
, (9.8)

where at+1 (ωt) is a bond purchased at date t and state ωt that pays one unit of consumption
next period, independently of the realization of the state ωt+1, and qt(ω

t) is the price of such
bond.

As the terminal condition, for now we only impose the no Ponzi game (nPg) condition
and do not impose any further borrowing constraints. The nPg condition for this market
structure is

lim
t→∞

(
t∏

s=0

qs
(
ωs(ωt)

))
ai,t+1

(
ωt
)
≥ 0 (9.9)

for all ωt ∈ Ωt, where ωs(ωt) represents the sub-history of ωt up to period s. A similar
condition (for the deterministic case) has shown up in Section 5.3.1. Optimality implies

5Broer, Kapička, and Klein (2017) obtain similar implications from an economy which combines limited
enforcement of contracts and private information about earnings.

6In reality such contracts are intermediated by banks. To the extent that the financial sector is competitive
and banks solve a static maximization problem, financial intermediaries play no interesting role in the model
and can be ignored. Chapter 17 discusses dynamic models of financial frictions where banks play a crucial
role in determining equilibrium allocations.
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the transversality condition (TVC) limt→∞
(∏t

s=0 qs (ωs(ωt))
)
ai,t+1 (ωt) ≤ 0 for all ωt ∈ Ωt,

since a household with a positive limiting value of their wealth can improve their welfare
by dissaving and consuming a bit extra.7 Combining these two inequalities, we obtain the
condition

lim
t→∞

(
t∏

s=0

qs
(
ωs(ωt)

))
ai,t+1

(
ωt
)

= 0 for all ωt ∈ Ωt. (9.10)

To simplify the analysis, in what follows we assume away fluctuations in the aggregate
endowment Yt (ωt) which implies that the bond price is a constant, pt (ωt) = p and that we
can omit the dependence on histories. Since the bond pays one unit of consumption in the
next period, its rate of return is r = 1/p − 1. We can therefore reformulate the individual
budget constraint of the bond economy (9.8) as

ai,t+1 = (1 + r) (yi,t + ai,t − ci,t) . (9.11)

This budget constraint (which reflects the market structure of the bond economy) is one of the
cornerstones of the analysis of consumption and saving behavior in modern macroeconomics.8

In this economy there are no explicit insurance markets, but, beyond borrowing when allowed,
saving and dissaving act as a mechanism for self-insurance.9 Throughout the rest of the
chapter, we’ll maintain this market structure.

9.3 Income fluctuation problems

We begin with a partial equilibrium analysis of the intertemporal decision problem of an
infinitely-lived household who is subject to fluctuations in labor income, and every period
must decide how much to consume and how much to save in a risk-free non-state contingent
asset, possibly subject to a borrowing limit. The household takes the interest rate as given.

We analyze this income fluctuation problem (in the language of Schechtman and Escudero
(1977)) first in the deterministic case and then in the stochastic case. A special case of this
model, when the utility function is quadratic, is Hall (1978) formulation of Friedman (1957)
permanent income hypothesis which displays certainty equivalence. We then generalize the
model to settings where risk matters, either because of the presence of binding liquidity
constraints or because the utility function displays prudence. For each of these models, we
characterize the marginal propensity to consume.

7These concepts were introduced in Section 4.3.1.
8Note the timing convention implicit in the way we wrote this budget constraint: income is paid and

consumption is chosen at the beginning of the period, and thus interests accrue on savings defined as
yt + at − ct. The alternative timing convention, which we’ll sometimes use in this chapter, is that income is
paid and consumption decisions are made at the end of the period, which leads to the formulation of the
budget constraint: at+1 = yt + (1 + r) at − ct.

9The expression “self-insurance” refers to the fact that individuals are insuring against future shocks by
dissaving and saving, i.e. by trading intertemporally with themselves, and not by trading state-contingent
insurance contracts with others, as such contracts are not available in this market structure.
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9.3.1 Deterministic case

We begin by abstracting from income uncertainty. Consider the problem of an individual
who faces deterministic (i.e., perfectly known ex-ante) income fluctuations {yt}∞t=0, has to
choose optimally how to allocate consumption ct over time, and can only save through a risk
free bond at. This individual solves

max
{ct}∞t=0

∞∑
t=0

βtu (ct) (9.12)

s.t.

at+1 = (1 + r) (yt + at − ct)

This problem is analogous to the consumption-saving model from Chapter 4, but extended
to incorporate time-varying deterministic income levels yt.

By solving the Lagrangean associated to this problem, it is easy to see that the household
first order condition yields

u′ (ct)

βu′ (ct+1)
= 1 + r. (9.13)

This consumption Euler equation has the standard interpretation: the marginal rate of
substitution between consumption today and consumption next period (intended as two
different goods) equals the relative price of consumption today relative to consumption next
period, or the interest rate.10 It also has a variational interpretation: the value of a unit of
consumption today is its marginal utility. Shifting such unit to next period yields (1 + r)
units valued at the discounted marginal utility tomorrow. Optimality requires the household
to be indifferent, hence the equal sign.

Because of the strict concavity of u, the Euler equation implies that the slope of the
optimal individual consumption profile between t and t+ 1 is increasing in β and in r. Both
higher patience and higher return on saving induce the household to save more today and
postpone consumption to the future, which tilts upward the consumption profile.11 Turning
to the special case of CRRA utility with curvature parameter σ, (9.13) becomes

ct+1

ct
= [β (1 + r)]

1
σ . (9.14)

This formulation clarifies that the extent to which variation in β and r translates into
steeper or flatter consumption paths depends on the elasticity of intertemporal substitution,
EIS = 1/σ. See Section 4.2.4 for details on the derivation of the EIS.

10To see why the interest rate is the intertemporal price of consumption, rewrite the budget constraint
(9.8) in nominal terms with the price of the final good multiplying quantities at t and t+ 1

pt+1at+1 = ptat + ptyt − ptct,

then divide through by pt+1 and compare with (9.8) .
11These statements are about the relative consumption across the two periods. Whether the level of

consumption at t increases or decreases depends on the relative strength of income and substitution effect
due to the increase in r (and thus on the level of wealth at), as for any other change in relative prices.
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To sum up, in this environment, households want to smooth consumption with respect
to deterministic income fluctuations, and thus they save when income is high relative to
its mean and dissave when it is low. The extent of consumption smoothing (i.e., how close
ct and ct+1 are to each other) depends on the product β(1 + r) and on the willingness of
households to substitute intertemporally, determined by 1/σ. The closer is β(1 + r) to 1 and
the lower is the elasticity of substitution, the more consumption is smoothed across periods.

Marginal propensities to consume

Let R ≡ 1 + r and iterate forward the budget constraint to obtain, after imposing condition
(9.10)

ct +
1

R
ct+1 +

1

R2
ct+2 + ... = at +

∞∑
j=0

�
1

R

�j
yt+j.

Using the Euler equation (9.14) to substitute ct+j for all j > 0 on the left hand side as a
function of ct, and collecting terms, we arrive at:

ct =
�
1−R−1 (βR)

1
σ

�[
at +

∞∑
j=0

�
1

R

�j
yt+j

]
. (9.15)

This expression is useful to introduce the concept of marginal propensity to consume (MPC).
The MPC out of wealth at (or, equivalently, out of a transitory change in income yt) is defined
as ∂ct/∂at.

12 Differentiating (9.15), we obtain that

MPC = 1−R−1 (βR)
1
σ . (9.16)

Two special cases are of interest. First, recall that in the equilibrium of a representative
agent model without growth, βR = 1 and thus MPC = 1− β. Let β ≡ 1/1 + ρ, where ρ is
the discount rate. Since ρ is small relative to 1, MPC ' ρ.13 Thus, in the representative
agent model, the marginal propensity to consume is approximately equal to the discount rate.
Second, assuming log-utility (σ = 1) in the individual problem, without imposing βR = 1,
by following similar steps one obtains MPC ' r.

Expression (9.15) shows that in this simple model optimal consumption is linear in wealth.
In addition, equation (9.15) is an incarnation of Friedman’s permanent income hypothesis:
the term in the square bracket is the sum of financial wealth at plus human wealth (the
present value of future income), i.e. total wealth. Optimal consumption equals a constant
fraction of total wealth. This equation also illustrates one of the key concept in Friedman’s
theory of consumption: the marginal propensity to consume out of transitory and permanent
changes in income are different. Consider the case βR = 1 where the MPC out of transitory
income is 1−R−1. From (9.15) , it is easy to see that a permanent change in income of one
unit, i.e. an increase of one unit in yt+j for all j ≥ 0, leads to a change in human wealth

12By transitory we mean a change in yt which leaves unchanged income yt+j at any j > 0.
13Another way of deriving this result is to define β = exp (−ρ) and use the approximation exp (x) ' 1 +x.
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equal to 1/ (1−R−1) and, thus a change in consumption equal to exactly 1 unit. Thus,
the MPC out of permanent income is 1, and much larger than the MPC out of transitory
income. Next, we explore the permanent income hypothesis in more detail.

9.3.2 Permanent income hypothesis

We now reintroduce income uncertainty and rewrite the household problem with the condi-
tional expectation operator in the objective function as

max
{ct}∞t=0

Et
∞∑
t=0

βtu (ct) (9.17)

s.t.

at+1 = (1 + r) (yt + at − ct)

We also make two additional assumptions: quadratic utility

u (ct) = b1ct −
1

2
b2ct

2, b2 > 0, ct < b1/b2,

and βR = 1. From the consumption Euler equation implied by (9.17), jointly with these two
assumptions, we obtain

ct = Etct+1. (9.18)

This is the well known result of Hall (1978) that consumption is a martingale (or a random
walk).14 From the law of iterated expectations and the martingale property of the optimal
consumption allocation:

Etct+2 = Et [Et+1ct+2] = Etct+1 = ct

and, more in general:
Etct+j = ct, for any j ≥ 0. (9.19)

If we iterate forward J times on budget constraint in (9.17), and apply the conditional
expectations to deal with uncertain future realizations of income and consumption, we obtain

J∑
j=0

�
1

R

�j
Etct+j = at +

J∑
j=0

�
1

R

�j
Etyt+j +

�
1

R

�J+1

Etat+J+1

Taking the limit as J →∞ and using condition (9.10), the last term goes to zero. Using the
martingale property (9.19) into the left hand side, we obtain

ct =
r

1 + r

[
at +

∞∑
j=0

�
1

1 + r

�j
Etyt+j

]
. (9.20)

14A stochastic process {xt} is a random walk when it satisfies, at every t, Etxt+j = xt for any j > 0.
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This expression illustrates the stochastic version of the permanent income hypothesis: opti-
mal consumption is, again, linear and equals the annuity value of total wealth, i.e. financial
wealth plus human wealth.15

If one assumes that income is deterministic and solves (9.17) , one obtains ct+1 = ct from
the Euler equation and, by iterating forward on the budget constraint,

ct =
r

1 + r

[
at +

∞∑
j=0

�
1

1 + r

�j
yt+j

]
(9.21)

Comparing (9.21) to (9.20) demonstrates that consumption satisfies certainty equiva-
lence: in order to obtain the solution of the stochastic problem (9.17), it suffices solving
the deterministic problem and applying conditional expectations to the exogenous variables
{yt+j}∞j=0 in place of the variables themselves. Put differently, no higher moment of the
income process, beyond the mean, matters for the dynamics of consumption. This property
descends directly from the linear-quadratic structure of the problem. Any deviation from
quadratic objective and linear constraints breaks certainty equivalence.

From (9.20), the change in consumption at time t equals

∆ct = ct − ct−1 = ct − Et−1ct =
r

1 + r
[$t − Et−1$t] , (9.22)

where $t is total wealth defined as

$t ≡ at +
∞∑
j=0

�
1

1 + r

�j
Etyt+j,

and the last term on the right hand side is the innovation, or unexpected change, in perma-
nent income at time t, i.e. the difference between realization and conditional expectation

r

1 + r
[$t − Et−1$t] = at − Et−1at +

∞∑
j=0

�
1

1 + r

�j
[Etyt+j − Et−1 (Etyt+j)]

=
∞∑
j=0

�
1

1 + r

�j
(Et − Et−1) yt+j, (9.23)

where we have used the law of iterated expectations Et−1 (Etyt+j) = Et−1yt+j, and the fact
that at = Et−1at, since there is no uncertainty at time t (after yt is realized) about the

15The annuity value is exactly r/ (1 + r), i.e. that portion of wealth that, when consumed every period,
keeps asset holdings constant. To see this, abstract from income yt, and note that

at+1 = (1 + r) (at − ct) = (1 + r)

�
at −

r

1 + r
at

�
= at.
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evolution of wealth into t+ 1. Combining (9.22) and (9.23), we arrive at

∆ct =
r

1 + r

∞∑
j=0

�
1

1 + r

�j
(Et − Et−1) yt+j. (9.24)

This equation contains another useful result: under the permanent income hypothesis, the
change in consumption between t−1 and t is proportional to the revision in expected future
income due to the new information (the “news”) accruing in that same time interval.

Permanent and transitory income shocks

To make further progress, we need to make some assumptions on the income process. We
choose a specification that is very common in labor economics, at least since Abowd and
Card (1989). We model labor income as the sum of two orthogonal components, ypt which
follows a martingale with i.i.d. innovation (or shocks) vt, and ut which is also an i.i.d. shock

yt = ypt + ut, (9.25)

ypt = ypt−1 + vt.

In addition, we assume that E (vt) = E (ut) = 0 and that the two shocks are orthogonal,
ut ⊥ vτ for all pairs (t, τ). If we let xt denote either shock, our assumptions imply that
Et (xt−j) = xt−j for j ≥ 0, and Et (xt+j) = 0 for j > 0.

Combining these two equations in (9.25), we obtain the representation

yt = yt−1 + ut − ut−1 + vt. (9.26)

Using this income process into (9.24), after some algebra, we obtain

∆ct =
r

1 + r
ut + vt, (9.27)

which establishes that households adjust their consumption responding to the annuity value
of transitory shocks and to the full value of permanent shocks. This finding is analogous to
the one for the deterministic economy: the pass-through of income shocks to consumption
depends on their expected duration. Remarkably, this version of the bond economy is quite
close to full insurance with respect to transitory shocks. In conclusion, borrowing and saving
through a non-state contingent asset offers ample opportunity for consumption smoothing
as long as shocks are not too persistent.

Using the PIH to learn about the nature of the rise in inequality

Income inequality increased substantially in the 1980s and the 1990s in many developed
countries. Much of the public, including many policymakers and economists, interpreted
this trend as indicating widening differentials in standard of living across households.
This interpretation, however, is open to the criticism that current income may not reflect
the long-run level of resources available to a household, and hence their welfare.
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Blundell and Preston (1998) showed how one can use the permanent income hy-
pothesis, together with data on the joint cross-sectional distribution of income and con-
sumption, to learn whether the rise in cross-sectional income inequality is of a transitory
nature and hence not too worrisome, or of a permanent nature and thus detrimental for
inequality in household welfare.

Consider the model of Section 9.3.2. From equations (9.26) and (9.27), we have that
the evolution of income and optimal consumption for an individual i at time t are given
by

yi,t = yi,t−1 + ui,t − ui,t−1 + vi,t

ci,t = ci,t−1 +
r

1 + r
ui,t + vi,t.

Now, compute the cross-sectional variance of consumption and the cross-sectional co-
variance between consumption and income for all individuals belonging to a cohort k,
assuming that r ' 0. Then, one obtains:

∆vark,t(c) = ∆covark,t(c, y) ' vart(v). (9.28)

In other words, by tracing the change over time of the within-cohort variance of con-
sumption, or covariance between consumption and income, one can estimate the change
over time in the variance of the permanent component of income. Blundell and Preston
concluded that the bulk of the rise in UK income inequality was driven by the permanent
component, a result that is consistent with the idea that skill-biased technical change
(and rising college wage premium), is a key driving force of the recent changes in in-
come distribution. Although based on a different methodology, these empirical findings
are reminiscent of those in Attanasio and Davis (1996) discussed in Section 9.2.2. In
particular, they also represent a rejection of full insurance since, from the perspective
of the efficient risk sharing hypothesis, consumption should not react to idiosyncratic
income shocks, no matter their persistence.

Saving for the rainy days

Define household savings st as capital income plus labor income net of consumption expen-
ditures

st =
r

1 + r
at + yt − ct. (9.29)

Combining (9.29) with (9.20) we obtain an expression for saving only as a function of current
and future expected income

st = yt −
r

1 + r

∞∑
j=0

�
1

1 + r

�j
Etyt+j.
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Unfolding this summation on the right hand side, we obtain

st = yt −
r

1 + r
yt −

r

1 + r

��
1

1 + r

�
Etyt+1 +

�
1

1 + r

�2

Etyt+2 + ...

�
=

1

1 + r
yt −

r

1 + r

�
1

1 + r

�
Etyt+1 −

r

1 + r

��
1

1 + r

�2

Etyt+2 + ...

�
=

1

1 + r
Et∆yt+1 +

�
1

1 + r

�2

Etyt+1 −
r

1 + r

��
1

1 + r

�
Etyt+2 + ...

�
and, using the same approach on terms t+ j with j > 1 we obtain

st = −
∞∑
j=1

�
1

1 + r

�j
Et∆yt+j.

This expression shows that savings are equal to the discounted sum of expected declines in
income. If a household expects income to fall in the future, in anticipation they will save
and these savings will allow them to smooth consumption once income actually declines. For
example, under a mean reverting income process, households who experience a sequence of
positive (above mean) income shocks will save because they understand that this abundance
is only transient. Similarly, those who experience a sequence of negative (below mean)
income shocks will dissave. Campbell (1987) calls this behavior saving for the rainy day.
Or, dissaving in the expectation of a sunny day.

9.3.3 Borrowing constraints

To derive the results in the previous section, we have abstracted from borrowing constraints.
But, to what extent can we safely ignore borrowing limits, as if they were never binding?
The answer depends on the income process.

Suppose we impose the ad-hoc no-borrowing constraint at+1 ≥ 0 on the household prob-
lem. When income yt is a random walk, from (9.20) we obtain

ct =
r

1 + r
at + yt

since Etyt+j = yt for all j ≥ 0. Substituting this expression for consumption into the budget
constraint yields at+1 = at. In this case, wealth is constant, so if a households starts with a
positive wealth level, the zero debt limit will never bind.

Suppose now that yt follows an i.i.d. shock with mean ȳ. From (9.20) we have

ct = ȳ +
r

1 + r
(at + yt) (9.30)

since Etyt+j = ȳ. Substituting into the budget constraints yields ∆at+1 = yt. In this case,
wealth follows a random walk, which means that starting from any initial level of wealth there
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is always a positive probability that at some point in the future the household will hit the
borrowing limit in finite time. For example, consider an individual who receives an income
realization equal to yt < ȳ and whose initial wealth is at = ryt. It is easy to see that if the
individual wanted to consume its optimal unconstrained level in equation (9.30), they would
enter the next period with negative wealth, which would violate the no-borrowing limit. As
a result, the individual would have to consume below its unconstrained level. More broadly,
the borrowing constraint is likely to bind whenever at is small, yt follows a mean-reverting
process, and the individual is hit by a low enough shock (relative to its mean). Because
income is expected to revert back to its higher mean, consumption smoothing dictates that
the household should dissave and keep their consumption high. In some states, however,
dissaving is not enough, borrowing would be necessary and the constraint binds. In this
case, the optimal consumption choice is constrained.

These examples highlight the fact that, in general, borrowing limits cannot be ignored
and their presence affects optimal consumption and saving choices, as we explain next. We
now examine the more general consumption-saving problem with stochastic income yt and
an ad-hoc zero-borrowing constraint.

Consider the problem of a household facing a no-borrowing constraint. Stated in a
sequential formulation, we have

max
{ct,at+1}∞t=0

E0

∞∑
t=0

βtu (ct) (9.31)

s.t.

at+1 = R (at + yt − ct)
at+1 ≥ 0

where u′ > 0 and u′′ < 0. The first order condition of this problem yields the modified Euler
equation:

u′ (ct) = βREt [u′ (ct+1)] + λt,

where λt is the multiplier on the borrowing constraint at date t. Because λt ≥ 0, the Euler
equation can be rewritten as

u′ (ct) ≥ βREt [u′ (ct+1)] , (9.32)

where the strict inequality holds when the constraint is binding. Assume βR = 1. If the
constraint is not binding, the household’s choice is interior, dictated by the Euler equation
which states that marginal utility today is equated to expected marginal utility next period.
If, instead, the constraint is binding, current marginal utility is higher and consumption
is lower: the household problem has a corner solution and is not determined by the Euler
equation, but by the borrowing limit and the budget constraint. Since at+1 = 0, from the
budget constraint, we obtain ct = at + yt, i.e. the household consumes all their cash in
hand. The multiplier λt plays a role akin to the interest rate, in that it increases the cost of
consuming today relative to postponing consumption to the future (Hall, 1988).

There are two key differences between the model without and with borrowing constraints.
The first one is that, absent borrowing constraints, what matters for current consumption is
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only the expected discounted value of labor income, not its timing (see equation (9.20)). In
the presence of borrowing constraints, instead, the timing of income matters for consumption.
Consider two random income streams with the same discounted expected value, one that is
decreasing and another one that is increasing: a household facing the latter is more likely
to be constrained and their consumption path may differ from the consumption path of a
household facing the decreasing stream. The second difference is that, for a constrained
household, the marginal propensity to consume is 1 for both transitory and permanent
shocks: no matter what the duration of the shock is, a small change in current income
increases current consumption one for one. Thus constrained (or hand-to-mouth) households
display higher MPC out of transitory income relative to unconstrained ones.

Natural borrowing limit

So far, when modelling borrowing constraints we have specified ad-hoc limits of the type
at+1 ≥ −ā. Another type of constraint is the so called “natural” borrowing limit. In Section
4.3.1, we discussed the notion of the natural borrowing limit in the context of a deterministic
model. In the Online Appendix to Chapter 4, we have shown that, in the deterministic
model, the natural borrowing limit is equivalent to the no-Ponzi-game (nPg) condition. In
what follows, we extend this notion to an environment with uncertainty. Here, the natural
borrowing limit is the lowest asset position consistent with non-negative consumption in
every state and every period.

Start from the case where {yt}∞t=0 is deterministic. Iterating forward on the budget
constraint and imposing ct ≥ 0 for all t, we obtain

at+1 ≥ −
∞∑
j=0

�
1

1 + r

�j
yt+1+j.

Assume now that income is stochastic and the lowest possible realization is ymin, always
occurring with positive probability. Then, to guarantee positive consumption at every t,
debt cannot exceed the present value of ymin, and thus the natural borrowing limit becomes

at+1 ≥ −
�

1 + r

r

�
ymin.

Borrowing up to this value, or more, would mean that there is a positive probability that a
state occurs where consumption must be zero. This statement is easy to prove. Suppose the
household has borrowed exactly up to this limit, i.e. at = −

(
1+r
r

)
ymin and they are hit by

an income realization yt = ymin. Then from the budget constraint:

ct = −
�

1 + r

r

�
ymin︸ ︷︷ ︸

at

+ ymin −
at+1

1 + r
≤ −1

r
ymin −

1

1 + r

�
−
�

1 + r

r

�
ymin

�
︸ ︷︷ ︸

max that can be borrowed

= 0

It follows that, if the utility function satisfies the Inada condition u (0) = −∞, an op-
timizing consumer will never borrow up to the natural borrowing limit because doing that
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is inconsistent with expected utility maximization. Thus, one can always safely assume an
interior solution for the Euler equation. This is, instead, not true for ad-hoc debt limits
which always affect the optimal solution in some region of the state space, as explained
above. Finally, note that if ymin = 0, then the no-borrowing constraint is also the natural
borrowing limit.16

9.3.4 Precautionary saving

The term precautionary saving refers the additional amount of saving a household chooses in
response to a rise in the uncertainty about future income. The certainty equivalence property
of consumption allocation under quadratic utility implies that the consumption function is
linear in wealth and in the expected present value of future income. Thus, a mean preserving
spread of the income shock distribution (i.e., an increase in dispersion around the same mean)
does not impact saving: no precautionary motive for saving is present in this environment.

In what follows we establish two forces that lead to precautionary saving behavior. The
first one is the presence of occasionally binding borrowing constraints, and the second is
prudence. Prudence is a property of the utility function that mathematically corresponds
to a positive third derivative, i.e. u′′′ > 0. Under both forces a rise in income uncertainty
leads to a rise in the level of savings. As first uncovered by Zeldes (1989) through numerical
simulations, in these settings the consumption policy function is concave in wealth, a property
that has important implications for the marginal propensity to consume.

Precautionary motive with borrowing constraints

To isolate the role of borrowing constraints for precautionary saving, consider again the
quadratic specification for period utility, which does not display prudence because u′′′ = 0.
Continue assuming that and βR = 1. Suppose households face a borrowing limit at+1 ≥ −a.
Then,

ct =

 Etct+1 if at+1 > −a
yt + at + a

R
if at+1 = −a

The first line describes the optimal unconstrained intertemporal consumption allocation
when the constraint is not binding, and the second line the consumption allocation if the
constraint is binding, in which case the individual consumes all their resources. The above
pair of conditions can be written in compound form as

ct = min
{
yt + at +

a

R
,Etct+1

}
. (9.33)

16Throughout this discussion, we have assumed that r > 0. As we will see in Section 9.4, r < 0 can be
an equilibrium outcome of economies populated by a continuum of households facing an income fluctuation
problem. In such a case, it is convenient (and realistic) to assume the existence of a wedge χ > 0 between
the lending rate r and the borrowing rate rb which can be interpreted as a linear intermediation cost of the
financial sector. The interest rate entering the natural borrowing limit is rb = r+χ, and if χ is large enough,
rb > 0 and the natural borrowing limit is well defined again.

264



Assume the constraint is not already binding at date t. Then

ct = Etct+1 = Et
[
min

{
yt+1 + at+1 +

a

R
,Et+1ct+2

}]
. (9.34)

Suppose that the uncertainty about yt+1 increases but its mean does not change. Very low
realizations of income yt+1 become more likely, and thus the borrowing constraint is also more
likely to bind next period. This reduces the value of Et

[
min

{
yt+1 + at+1 + a

R
,Et+1ct+2

}]
and

of current consumption ct. As a result, savings increase. Intuitively, when households face
borrowing limits which can potentially bind in the future, they understand that if they
were to receive bad income realizations, they would be pushed towards the constraint and
be forced to consume their income without the ability of smoothing consumption, which
reduces their welfare. To prevent this scenario, they save more. This is the first source of
precautionary saving motive.

An implication of the presence of borrowing constraints is that the consumption function
is concave in wealth, as illustrated in Figure 9.2.

ct

at0 a∗1 a∗2

yt +
a1

R

yt +
a2

R

slope =
r

1 + r

Figure 9.2: Decision rule for consumption in the presence of a borrowing con-
straint a as a function of wealth at, for a given realization of income yt.

Notes: The function is linear, with slope equal to 1, until a∗, after which it becomes concave.
For large enough wealth, its slope converges to r

1+r . The two lines correspond to different
values of the borrowing limit.

If we fix labor income yt to a sufficiently low value, it is clear from (9.33) that there exists
a level of wealth at = a∗ below which the constraint binds and ct = at + yt + a

R
. In this

region, the slope of the consumption function with respect to wealth is 1. For sufficiently
high levels of at, it becomes extremely unlikely (or impossible, depending on the process for
yt) that the constraint will bind in the future and consumption asymptotes to the linear
unconstrained solution (9.20) with slope r/(1+r) < 1. For intermediate levels of wealth, the
borrowing limit could be binding again, and consumption is depressed by the precautionary
motive relative to the unconstrained optimum. In this range, the consumption function is
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strictly concave and the marginal propensity to consume is bracketed between r/(1 + r) and
1.

The figure also illustrates what happens when the credit limit tightens from a1 to a2 < a1.
Obviously, households are constrained for a wider range of at. For unconstrained households,
consumption falls across the board because of the stronger precautionary saving motive, and
their marginal propensity to consume (the slope of the consumption function) increases.
In the limit as wealth keeps growing, the two consumption functions converge because the
borrowing constraint becomes irrelevant.

An important implication of this discussion is that there is a range of wealth levels for
which the individual MPC is larger than in the PIH, either because the constraint binds
(and the consumption function has slope equal to 1) or because it might bind with some
probability in the future (and the consumption function is strictly concave). We return to
this observation in Section 9.4.2.

Precautionary motive with prudence

To illustrate the second source of precautionary saving, consider a simple two-period consumption-
saving problem (Leland, 1968; Sandmo, 1970)

max
{c0,c1,a1}

u (c0) + βE0 [u (c1)]

s.t. c0 + a1 = y0

c1 = Ra1 + y1

where y0 is given, and y1 is stochastic. Again, to isolate this second force from the first one
we just described, we assume away any borrowing constraint at t = 0. The Euler equation
for this problem is

u′ (y0 − a1) = βRE0 [u′ (Ra1 + y1)] (9.35)

an equation in one unknown, a1. The left-hand-side is increasing in a1 since u′′ < 0, and
the right-hand-side is decreasing for the same reason, hence the solution for a1 is uniquely
determined. What happens to optimal consumption at t = 0 as future income y1 becomes
more risky? Consider a mean-preserving spread of y1. If u′ is convex then, by Jensen’s
inequality, the value of the right-hand-side will increase. Graphically (see Figure 9.3), the
left-hand-side is unchanged and the right-hand-side shifts upward, inducing a rise in optimal
savings a1.17 One way to understand this result is that the hike in future consumption
uncertainty reduces welfare. Increasing savings today raises the expected value of future
consumption which compensates for higher variance. Sibley (1975) and Miller (1974) extend
this proof to a multi-period model with a finite T , and i.i.d. income shocks.

The convexity of the marginal utility corresponds precisely to the condition u′′′ > 0,
or prudence. Prudence is a property of preferences, like risk aversion: risk-aversion refers
to the curvature of the utility function. Prudence refers to the curvature of the marginal
utility function. Kimball (1990) defines the index of absolute prudence as −u′′′ (c) /u′′ (c)

17This result is a simple application of Stiglitz and Rothschild (1970)
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a1

LHS

RHS

a∗1 a∗∗1

RHS

LHS

0

Figure 9.3: Left hand side (LHS) and right hand side (RHS) of the Euler
equation (9.35).

Notes: It shows that when a mean-preserving spread in future income occurs, the RHS
shifts outward and the optimal amount of saving in period zero a1 increases.

and relative prudence as −u′′′ (c) c/u′′ (c) in a conceptually similar way to the Arrow-Pratt
index of absolute and relative risk-aversion. There exists also an interesting relationship
between the two: any utility function in the decreasing absolute risk aversion (DARA) class,
which includes CRRA, displays prudence. To see this, let α (c) be the coefficient of absolute
risk aversion, then

α (c) =
−u′′ (c)
u′ (c)

⇒ α′ (c) =
−u′′′ (c)u′ (c) + [u′′ (c)]2

[u′ (c)]2
.

Since with DARA α′ (c) < 0, then we have that

−u′′′ (c)u′ (c) + [u′′ (c)]
2
< 0⇒ u′′′ (c) >

[u′′ (c)]2

u′ (c)
> 0.

Intuitively, a rise in uncertainty reduces the certainty-equivalent income next period and,
with DARA utility, it effectively increases the degree of risk-aversion of the agent, inducing
them to save more.

Role of prudence: an analytical expression

Blanchard and Mankiw (1988) derive an analytical expression that illustrates how risk
affects optimal consumption and saving. Take a second-order approximation of u′ (ct+1)
around the value ct+1 = ct:

u′ (ct+1) ' u′ (ct) + u′′ (ct) (ct+1 − ct) +
1

2
u′′′ (ct) (ct+1 − ct)2 .
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Substitute this approximation into the right-hand side of the Euler equation u′ (ct) =
βREtu′ (ct+1), divide both sides by c2

t , and use the approximation

(βR)−1 =
1 + ρ

1 + r
= exp

�
log

1 + ρ

1 + r

�
' 1 + ρ− r.

Rearranging terms, we obtain

Et
�
ct+1 − ct

ct

�
' EIS (ct) · (r − ρ) +

1

2
P (ct) · Et

��
ct+1 − ct

ct

�2
�

(9.36)

where

EIS (ct) ≡ −
u′ (ct)

ctu′′ (ct)
, and P (ct) = −u

′′′ (ct) ct
u′′ (ct)

are, respectively, the elasticity of intertemporal substitution and the coefficient of rela-
tive prudence. Equation (9.36) features the two determinants of expected consumption
growth. The first term captures the standard intertemporal consumption smoothing
motive, active as long as u is strictly concave. The second term contains the role of risk,
captured by the expected variability of consumption growth (measured by the second
uncentered moment): the stronger is relative prudence, the more consumption growth
will respond to changes in risk. Higher uncertainty in future consumption growth, for
given expected income, implies higher saving through the precautionary motive.

Similarly to the case where debt limits are binding, one can prove that even in absence of
constraints, the consumption function is concave in wealth if the utility function belongs to
the hyperbolic absolute risk aversion (HARA) class and displays positive third derivative.18

First, recall that the envelope condition of the household problem yields

u′ (c (a)) = V ′ (a) (9.37)

where V denotes the value function and where, to ease notation, we have omitted the depen-
dence on labor income. It can be proved that, under general conditions, the value functions
inherits the assumptions on u, i.e. it is increasing, concave and differentiable—see the dis-
cussions in Section 4.4. Differentiating both sides with respect to a gives

c′ (a) =
V ′′ (a)

u′′ (c (a))
> 0, (9.38)

which implies that optimal consumption is strictly increasing in wealth. Differentiating one
more time, we obtain

c′′ (a) =
V ′′′ (a)u′′ (c (a))− V ′′ (a)u′′′ (a) c′ (a)

[u′′ (a)]2
. (9.39)

18A utility function belongs to the HARA class if its coefficient of absolute risk aversion is an hyperbola
(or, equivalently, absolute risk tolerance is an affine function of wealth). Many common utility functions,
such as quadratic, CRRA and CARA are special cases of HARA.
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Using (9.37) and (9.38) into (9.39), we conclude that the consumption function is concave
(c′′ ≤ 0) whenever

V ′′′ (a)V ′ (a)

V ′′ (a)2 ≥ u′′′ (a)u′ (a)

u′′ (a)2 . (9.40)

This is the content of Lemma 2 in Carroll and Kimball (1996). If u belongs to the HARA
class, then one can show that the right hand side of (9.40) is equal to a constant κ ≥ 0,
i.e. prudence is κ times higher than risk aversion.19 Assuming HARA, Carroll and Kimball
(1996) and Jensen (2018) also prove that, under a finite optimization horizon, the inequality
in (9.40) is true and therefore the consumption function is concave. Strict concavity arises
for κ > 0, which holds for the CRRA class, with the exception of κ = 1 corresponding to
CARA utility.20

Once again, the intuition is that the precautionary saving motive is declining in wealth.
Consider the deviation in optimal consumption in the presence of uninsurable risk relative
to the no-uncertainty case in which the consumption function is linear. For large enough
wealth, precautionary saving approaches zero and the consumption function asymptotes the
no uncertainty case. As wealth falls, precautionary saving keeps rising and consumption
keeps falling, hence the concavity.

Capital income uncertainty

What if the income uncertainty refers to capital income, i.e. to the rate of return on
saving r, instead of labor income? Does an increase in uncertainty still induce more
saving? Consider a problem analogous to the one analyzed earlier in this section. The
household at date t = 0 receives an income y0 which they can either consume or save,
i.e y0 = c0 +a1. In the second period, consumption is simply c1 = (1 + r) a1, but r < −1
is now stochastic. The Euler equation corresponding to this problem is

u′ (y0 − a1) = βE0 [(1 + r)u′ ((1 + r) a1)] .

Note that the random interest rate is now inside the expectation. As before the left-hand
side is increasing in a1 and the right-hand side decreasing in a1, hence the solution is
unique. What happens to optimal saving a1 after a mean-preserving spread in r? The
answer is not obvious ex-ante. On the one hand, the precautionary saving force would
suggest that savings optimally expand. On the other hand, with higher savings, the
household becomes even more exposed to risk, and thus reducing saving curtails risk.
This latter force was not present when we analyzed labor income risk.

19Specifically, quadratic utility is the knife-edge case, corresponding to κ = 0, constant absolute risk
aversion (CARA) corresponds to κ = 1, and constant relative risk aversion (CRRA) utility functions satisfy
κ > 1.

20In fact, Cantor (1985) proved that the optimal solution to the consumption/saving problem of a CARA
consumer facing uninsurable labor income risk (and no borrowing constraints) displays consumption which
is linear in wealth. Compared to the no-uncertainty case, uninsurable risk only affects the intercept of the
consumption function by lowering it. The slope (i.e., the constant MPC) is the same.
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Under prudence, however, the right-hand side is still a convex function of r (it is the
product of a linear and a convex function), and thus with this additional assumption
we can conclude that precautionary saving behavior emerges even in the face of higher
volatility of returns.

Buffer-stock saving

Consider a version of the intertemporal consumption problem where households have a finite
horizon, utility is CRRA with curvature parameter σ > 0, log income follows a stochastic
process which is the sum of a permanent shock yPt and a transitory shock ut (as in Section
9.3.2, but in logs), both Normally distributed. In addition, there is positive probability that
income will be zero at any t (capturing, e.g., an unemployment shock) and, as a result, the
natural borrowing limit is zero. Finally, the discount rate ρ exceeds the interest rate r.21

Optimal consumption in this setting, called “buffer-stock model”, is fully characterized
in a series of papers by Carroll, Hall, and Zeldes (1992); Carroll (2001). What makes this
model particularly simple to analyze is that the individual state space can be reduced to one
state variable only, xt, the ratio of cash in hand at + yt to permanent income yPt . Similarly
to our derivation of equation (9.36), one can show that

Et∆ log ct+1 '
1

σ
(r − ρ) +

σ

2
Etvar (∆ log ct+1) ,

where var denotes the variance.22 As xt → 0, expected consumption growth approaches
infinity because ct approaches zero: when xt = 0 from the budget constraint −ct = at+1/R ≥
0, and thus ct = 0. As xt → ∞, uncertainty about future labor income becomes essentially
irrelevant and expected consumption growth approaches σ−1 (r − ρ) < 0.

Figure 9.4 illustrates the relation between consumption growth and normalized wealth
x. The figure highlights that there exists a level of wealth x∗ that is dynamically stable.
If xt > x∗ the negative intertemporal saving motive outweighs the precautionary saving
motive. Consumption growth is negative, and wealth converges back toward x∗. If xt < x∗,
the precautionary motive dominates, consumption growth is positive, and wealth rises toward
x∗. In sum, households have a target level of assets x∗ which is above the level of the no
uncertainty case, i.e., they hold additional wealth as a buffer stock. Labor income shocks
take households periodically above or below this target level, and households adjust their
optimal consumption in order to quickly move back to x∗.

21As we prove in Section 9.4, r < ρ is an equilibrium outcome in an economy populated by a continuum
of this type of consumers.

22For a full derivation, see for example Jappelli and Pistaferri (2017), chapter 6.
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ct+1 − ct
ct

x∗ xt0

1

σ
(r − ρ)

Figure 9.4: Consumption dynamics in the buffer stock model as a function of
cash-in-hand x.

Notes: There exists an optimal target level of cash in hand x toward which the household
wants to move.

Excess sensitivity and liquidity constraints

According to the permanent income hypothesis, consumption growth between t− 1 and
t should only depend on the innovation in income accruing over the same period. Any
past income change should not affect current consumption growth. Empirical tests of
this prediction routinely lead to a rejection (e.g., Flavin (1981)) of this hypothesis and
to evidence of so-called “excess sensitivity.” Deaton (1992a) and Jappelli and Pistaferri
(2017)) discuss various econometric difficulties with this type of tests. Campbell and
Mankiw (1989) also found evidence of excess sensitivity on aggregate time series data,
and interpreted the size of the coefficient on past income as the share of “hand-to-mouth”
consumers, i.e. households that are either myopic or subject to liquidity constraints.

Zeldes (1989) links explicitly excess sensitivity tests to the presence of credit con-
straints. If we extend the derivation in (9.36) to the case where household face a bor-
rowing limit, and focus on isoelastic utility with curvature parameter σ, we obtain the
following Euler equation for consumption:

∆ log ct+1 =
1

σ
(r − δ) +

σ

2
vart(∆ log ct+1) +

1

σ
log(1 + λt) + εt

where λt is the multiplier on the borrowing limit, and εt is a forecasting error orthogonal
to consumption growth. Note that the multiplier acts as an omitted variable, if not
always equal to zero.

Zeldes splits his empirical sample of PSID households into low-wealth (likely con-
strained) and high-wealth (likely unconstrained) households, and adds lagged income as
a regressor to that equation. He argues that, if liquidity constraints bind, one would
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estimate a significant negative coefficient on lagged income for the low-wealth sample.
The reason is that, upon receiving a high income realization, those households would
want to save some of it which relaxes the constraint and lowers the value of the multiplier
λt. Zeldes’ empirical estimates are consistent with the view that liquidity constraints
bind for a subgroup of the population, but not for all.

Comparative statics on the consumption function

Figure 9.5 plots the optimal consumption function obtained by solving numerically the in-
come fluctuation problem (9.31). In particular, we have assumed that u is CRRA with risk
aversion equal to 2, β = 0.95, R = 1.02, the borrowing limit is zero, and income follows
a two-state Markov chain with values {0.5, 1.5}, and probability that each income state
persists into next period equal to 0.8.

The six panels illustrate how the solution to the household problem changes as we change
one parameter at the time. Panel (A) shows that households with a low income realization
consume less on average for two reasons. First, mechanically, they have less resources.
Second, when they are not constrained they are more concerned about hitting the constraint
in the future and thus have a stronger precautionary motive. Note that, as wealth grows the
households becomes a permanent-income consumer, and the consumption gap converges to
the expected difference in permanent labor income. In particular, for wealth large enough
the slope of the consumption function is the same. Turning to panel (B), more impatient
households (low discounting) consume more and, as long as they are unconstrained, have
a higher MPC, even for high values of wealth. Recall the expression for the MPC under
full insurance in equation (9.15). Panel (C) shows that, since βR < 1 households who are
more willing to substitute intertemporally consume more. In addition, as seen from (9.15),
their MPC is larger even for high levels of wealth. Panel (D) illustrates that households
who face a higher rate of return on saving optimally accumulate more assets and consume
less for a given level of wealth (but they will be richer on average). Panel (E) shows that a
mean-preserving spread in income risk lowers consumption because it expands precautionary
saving. For the same reason, the credit constraint binds for a smaller wealth range. Finally,
panel (F) depicts optimal consumption under two values for the credit limit. Households
who face a loose constraint save less for precautionary reasons. This result indicates the
existence of substitutability between precautionary saving and ability to borrow to smooth
consumption when needed.

9.3.5 Bounds on wealth accumulation

As discussed, there are two forces that determine saving rates in the stochastic income
fluctuation problem: intertemporal and precautionary motive. The latter is always positive.
Whereas the first is positive or negative depends on whether βR is above or below one. It is
therefore intuitive that unless βR is small enough, households will tend to keep accumulating
savings, and an upper bound on wealth might not exist. This result represents a threat to
existence of equilibrium once we combine a continuum of households and let them trade in
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Figure 9.5: Comparative statics of the optimal consumption function with
respect to various parameters in the income fluctuations problem.

financial markets: if assets can grow without limit, the state space is not compact and an
equilibrium might not exist.23

It turns out that a sufficient condition for wealth accumulation to be bounded in the
stochastic version of the income fluctuation problem is βR < 1 (Schechtman and Escudero,
1977; Clarida, 1987; Huggett, 1997).24 We now provide an informal version of the proof of
this result based on Schechtman and Escudero (1977): besides βR < 1, the proof assumes
i.i.d. income shocks. We use a recursive formulation where ‘prime’ denotes next-period
variables and uc the marginal utility of consumption. Let x = Ra+ y be cash in hand, and
c(x) the consumption decision rule –a function of the individual state variable x. From the
Euler Equation:

uc (c (x)) = βRE [uc (c (x′))] , (9.41)

where x′ = Ra′ (x) + y′ is cash in hand next period, given that today’s cash in hand is x and
that next period income realization is y′. Let x̄′ = Ra′ (x)+ ȳ be the cash in hand associated
to the maximum realization of income ȳ next period (hence maximum cash in hand next

23A lower bound for the asset space is always guaranteed by the ad-hoc or natural borrowing limit.
24The counterpart sufficient condition in the deterministic version of the income fluctuation problem is

βR ≤ 1. It is a weaker condition because the precautionary saving motive is absent. See Ljungqvist and
Sargent (2018) for a thorough discussion of both the deterministic and the stochastic case.
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period), given today’s cash in hand x. We can write:

uc (c (x)) = βRE [uc (c (x′))] = βR
E [uc (c (x′))]

uc (c (x̄′))
uc (c (x̄′)) . (9.42)

Suppose we can show that

lim
x→∞

E [uc (c (x′))]

uc (c (x̄′))
= 1. (9.43)

Then, since βR < 1 by assumption, for x large enough the Euler equation (9.42) yields

uc (c (x)) = βRuc (c (x̄′)) < uc (c (x̄′)) .

Concavity of u and monotonicity of c with respect to x, proved in (9.38) imply that x̄′ (x) < x.
This would conclude the proof, because we would have demonstrated that cash in hand does
not increase forever: when x is large enough, x′ < x for sure.

We need to establish conditions under which the limit in (9.43) holds. Consider the
marginal utility function uc (c (x′)) and compute a first-order Taylor approximation around
x′ = x̄′ :

uc (c (x′)) ' uc (c (x̄′)) + ucc (c (x̄′)) cx (x̄′) (x′ − x̄′) .
Taking expectations of both sides

E [uc (c (x′))] ' uc (c (x̄′))− ucc (c (x̄′))E [x̄′ − x′] cx (x̄′) (9.44)

= uc (c (x̄′))− ucc (c (x̄′))E [ȳ − y′] cx (x̄′) .

In the first line we used that x̄′ is deterministic since it is implied by the specific income
realization ȳ. In the second line we used the fact that x′ ≡ Ra′ + y′ which implies x̄′ − x′ ≡
ȳ − y′. Dividing equation (9.44) by uc (c (x̄′)) we obtain:

E [uc (c (x′))]

uc (c (x̄′))
' 1 + α (c (x̄′)) [ȳ − E (y′)] cx (x̄′) ,

where α (c (x̄′)) is the coefficient of absolute risk aversion evaluated at consumption level
c (x̄′). Since both ȳ − E (y′) and cx (x̄′) are positive and finite (recall that the c function is
concave), a sufficient condition for the limit in (9.43) to hold is that

lim
x→∞

α (c (x)) = 0. (9.45)

Condition (9.45) requires that absolute risk aversion decreases with wealth, i.e. that u
belongs to the DARA class. DARA means that the household is less and less concerned about
income uncertainty as they get rich because they are less risk averse, so they will consume
more and accumulate less precautionary wealth. As wealth increases, the intertemporal
dissaving motive (present because of βR < 1) eventually overcomes the precautionary saving
motive, and wealth will decrease.25

To conclude, the condition βR < 1 is sufficient to guarantee a bounded asset space in
the household problem. In the next section, we’ll prove that this inequality is also a feature
of the stationary competitive equilibrium in an economy with a continuum of households.

25Huggett (1993) generalizes this proof to a 2-state Markov chain for the income process, under CRRA
utility.
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9.4 Heterogeneous-agent incomplete-market models

Now that we have analyzed in some depth the income fluctuation problem, we want to
characterize the equilibrium of economies populated by a continuum of households subject to
uninsurable income shocks who can only trade a risk-free bond. This class of heterogeneous-
agent incomplete-market models has become a workhorse of modern macroeconomics. These
models feature an endogenous distribution of consumption and wealth across households.
In sharp contrast with its complete-market counterpart, this framework features partial
consumption insurance, and mobility within the consumption distribution. In addition, its
equilibrium allocations are not socially efficient, which makes policy analysis interesting.

A variety of important questions have been addressed in this framework, for example:
what is the fraction of wealth accumulated because of the precautionary motive (Aiyagari,
1994a)? How much of the observed wealth inequality can one explain through income in-
equality (Castaneda, Diaz-Gimenez, and Rios-Rull, 2003)? What are the optimal levels of
taxation and public debt (Aiyagari and McGrattan, 1998; Domeij and Floden, 2006; Heath-
cote, 2005a)? How does heterogeneity change the transmission of aggregate shocks compared
to the representative agent model (Krusell and Smith, 1998b; Kaplan and Violante, 2018)?
Can market incompleteness help in generating a large equity premium (Storesletten, Telmer,
and Yaron, 2001) (Krueger and Lustig, 2010)? Are welfare costs of business cycles higher
with incomplete markets (Krusell, Mukoyama, Şahin, and Smith Jr, 2009)?26

In what follows, we describe two versions of the model, an endowment economy and a
production economy, and discuss existence and uniqueness of the stationary equilibrium.

9.4.1 An endowment economy

Consider the endowment economy introduced in Section 7.6. Time is discrete and indexed
by t. There is no aggregate uncertainty. The economy is populated with a continuum of
measure one of infinitely lived, ex-ante identical households. Households have time-separable
preferences over streams of consumption (the final numeraire good)

U = E0

∞∑
t=0

βtu(ct),

where the period utility function u satisfies u′ > 0, u′′ < 0, and the discount factor β ∈ (0, 1).
The expectation is over future sequences of idiosyncratic shocks, conditional on the infor-
mation set at time t = 0. Each household faces stochastic fluctuations in their endowment
of the final good yt ∈ Y , a finite set. This stochastic process follows a first-order ergodic
N-state Markov chain with transition probabilities π(y′, y) = Pr (yt+1 = y′ | yt = y) . Since
shocks are i.i.d across consumers, a law of large numbers holds: π(y′, y) is also the fraction
of agents in the population subject to this particular transition from y to y′ between time t

26For surveys of applications of this framework, see Heathcote, Storesletten, and Violante (2009); Quadrini
and Ŕıos-Rull (2015); De Nardi and Fella (2017); Benhabib, Bisin, and Luo (2019); Kaplan and Violante
(2022).
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and t + 1 (Uhlig, 1996). Let Π∗ (y) be the a unique invariant (i.e. limiting) distribution of
endowments. The household budget constraint at time t is

ct + at+1 = Rtat + yt.

Wealth at takes the form of a one-period non-state-contingent asset, with return Rt ≡ 1 + rt
independently of the individual realization yt. At every t, agents face the ad-hoc borrowing
limit

at+1 ≥ −a
where a is a parameter which we assume is more stringent than the natural debt limit. We
begin by positing that this asset is in zero aggregate net supply, as in Huggett (1993), and
traded among households in a competitive financial market.

Recursive formulation

We now restate the economy in recursive form. The dynamic programming version of the
household problem described above is

V (a, y) = max
c,a′

{
u(c) + β

∑
y′∈Y

π(y′, y)V (a′, y′)

}
(9.46)

s.t.

c+ a′ = Ra+ y

a′ ≥ −a

where v denotes the value function, and the pair (a, y) is the individual state vector.
Let λ be the probability distribution of agents over states. Let ā be the maximum asset

holding in the economy, and for now assume that such upper bound exists. Let A ≡ [−a, ā]
be the asset space. Let the state space S be the Cartesian product A× Y. Let the σ-algebra
Σs be defined as BA ⊗ P (Y ) where BA is the Borel sigma-algebra on A and and P (Y ) is
the power set of Y. The space (S,Σs) is a measurable space. Let S = (A× Y) be the typical
set of Σs. For any element of the sigma algebra S ∈Σs, λ(S) is the measure of agents in the
set S.

How can we characterize the way individuals transit across states over time? We need a
transition function. Define Q ((a, y) ,A× Y) as the (conditional) probability that an individ-
ual with current state (a, y) transits to the set A× Y next period. Formally, Q : S × Σs →
[0, 1], and

Q ((a, y) ,A× Y) = I{a′(a,y)∈A}
∑
y′∈Y

π(y′, y) (9.47)

where I{·} is the indicator function, and a′(a, y) is the saving policy. This transition function
can be used to construct a sequence of distributions as

λn+1 (A× Y) =

∫
A×Y

Q ((a, y) ,A× Y) dλn (9.48)
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where dλn is short for λn (da, dε) . We are now ready to proceed to the definition of a
stationary, or steady-state, equilibrium.

Stationary equilibrium

A recursive stationary competitive equilibrium is: (a) value function V : S → R, (b) policy
functions a′ : S → R, and c : S → R+, (c) an interest rate r∗, and (d) a stationary measure
λ∗ such that:

� Given r, the policy functions a′ and c solve the household’s problem (9.46) and V is
the associated value function

� The asset market clears:
∫
A×Y a

′(a, y)dλ∗ = 0 at the interest rate r∗

� The goods market clears:
∫
A×Y c(a, y)dλ∗ =

∑N
i=1 yiΠ

∗ (yi)

� For all (A× Y) ∈ Σs, the invariant probability measure λ∗ is the fixed point of (9.48)
and satisfies

λ∗ (A× Y) =

∫
A×Y

Q ((a, y) ,A× Y) dλ∗,

where Q is the transition function defined in (9.47) .

In the stationary equilibrium, households optimize, markets clear, and the distribution
of agents across states is invariant, i.e. this probability measure will reproduce itself perma-
nently. Households, however, will exchange places and move upward and downward within
this joint distribution of income and wealth, since they face different sequences of endowment
shocks.

What guarantees that a steady-state exists and is unique? We start from existence.

Existence. Let us express the excess aggregate demand function for assets in financial
markets as

A (r) =

∫
A×Y

a′(a, y; r)dλ∗r,

where we made explicit the dependence of the policy function and the stationary distribution
on the interest rate r –think of r as a parameter for now. One of the conditions that yield
existence is that A(r) is continuous in r. A(r) is continuous if both a′ and λ∗r are, in turn,
continuous in r.

The theorem of the maximum implies that if u is continuous, u′ > 0 and u′′ < 0, the
solution to the household problem is unique and the policy function a′ (a, ε; r) is continuous
in r.

Stokey, Lucas and Prescott (Theorems 12.12 and 12.13) lay out conditions under which
λ∗r is continuous in r. Essentially, the stationary distribution must exist and be unique. We
refer the interested reader to Stokey, Lucas and Prescott for the exact conditions needed and
to Huggett (1993) and Aiyagari (1994a) for proofs that these assumptions are met in this
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environment. Most of these proofs are straightforward. We highlight two conditions that
deserve more discussion, one for existence and one for uniqueness.

Existence of an invariant distribution requires compactness of the state space, i.e. a
finite upper bound for wealth a. As explained, βR < 1 is a sufficient to obtain a finite upper
bound for a, but R is endogenous so this restrictions cannot be assumed. It must hold in
equilibrium, and later in this section we show that it is true.

Uniqueness of the invariant distribution is guaranteed, for example, if the transition
function Q ((a, y) ,A× Y) satisfies, for any given r, the “monotone mixing condition” (and
a few regularity conditions). This condition states that there is a positive probability that
a household moves from the bottom to the top of the asset space (and viceversa) in finite
time. Namely, the economy must have enough upward and downward mobility within the
income and wealth distribution. To see why this condition is satisfied in our model, suppose
the household starts from (ā, ymax) and receives a long stream of the worst realization of the
shock ymin. If y follows a stationary (i.e., mean reverting) process, the household will keep
decumulating wealth to smooth consumption until reaching some neighborhood of the lower
bound. Symmetrically, suppose the household starts with (−a, ymin) and receives a long
stream of the best shock ymax. Knowing that sooner or later the shock will revert toward its
mean, they will keep accumulating wealth until they reach some neighborhood of the upper
bound.

Having proved that the A (r) function is continuous, we need to argue that it crosses
zero at least once at some finite value for r. For β (1 + r) = 1, we know from Section 9.3.5

that households will keep accumulating wealth without bound, so A
�

1
β
− 1

�
= +∞. For low

enough (possibly negative) values of r, every household would want to borrow. For example,
it is clear that if r = −1, it is optimal to borrow up to the limit since one would never
have to repay, and thus A (−1) = −a. Since A (r) is continuous, it will cross zero at least
once and an equilibrium exists. This logic is represented graphically in Figure 9.6. Note
that the equilibrium interest rate r∗ will always lie below its complete market counterpart
1/β−1. As a result, the condition βR∗ < 1 holds in equilibrium, which puts a limit to wealth
accumulation and confirms that the asset space is bounded above.

A solution to the risk-free rate puzzle

The observation that the equilibrium interest rate is lower than under full insurance is
important for asset pricing, as emphasized by Huggett (1993). The representative agent
model can only generate a high equity premium for very large levels of risk aversion
(Mehra and Prescott, 1985) which, under CRRA utility, imply very low values for the
intertemporal elasticity of substitution. In this situation, households have a very sharp
desire to smooth consumption. When income has positive growth on average, as in the
data, consumption smoothing dictates a strong desire to borrow against future income
which pushes up the real rate well above observed values.

The cost of solving the equity premium puzzle with complete markets is, therefore,
the “risk-free rate puzzle”: the return on a risk-free bond is too high compared to the
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historical data. Huggett (1993) showed that the presence of uninsurable idiosyncratic
income risk can help solving the puzzle. As soon as one deviates from complete markets,
the precautionary saving motive sets in (and a strong one if risk aversion is high) and,
with it, a desire to save that pulls down the equilibrium interest rate on safe assets and
better aligns it to the data.

A(r)

r

rCM =
1

β
− 1

−a 0 a

r∗

Figure 9.6: Equilibrium of the endowment economy where assets are in zero
net supply.

Notes: A(r) denotes aggregate asset holdings of the household sector as a function of the in-
terest rate in the incomplete-market model. rCM denotes the complete markets equilibrium
real rate, and also the infinitely elastic demand for assets in the complete market model. r∗

is the equilibrium real rate in the model with incomplete markets.

Uniqueness. Having proved that the equilibrium exists, we ask: is the equilibrium unique?
Uniqueness is guaranteed if the function A (r) is monotonically increasing in r. This property
is hard to prove in general because changes in r have both income and substitution effects
on savings: the relative dominance between the two could switch at a certain level of assets,
so a′ (a, ε; r) may not be monotone in r. Achdou, Han, Lasry, Lions, and Moll (2022) state
a sufficient condition for CRRA utility in a continuous time version of this model. Let σ be
the coefficient of risk aversion. Recall that the smaller is σ the larger is the income effect
and a higher r increases savings. Uniqueness is obtained if σ < 1.

Assets in positive supply

We conclude this section by extending this logic to an endowment economy where assets are
not in zero net supply, but are one-period real bonds (or real balances of fiat money) issued
by the government. This is the economy studied by Bewley (1980, 1983). Let B be this
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amount, fixed in steady-state. The government budget constraint is

rB = T (9.49)

where T is the lump-sum tax (if r > 0) levied on households to finance interest payments.
This is a new equilibrium condition determining T. The household budget constraint in (9.46)
is modified as

c+ a′ = Ra+ y − T,

and the equilibrium condition in the asset market, represented graphically in Figure 9.7,
becomes ∫

A×Y
a′(a, y; r)dλ∗r = B.

The analysis of equilibrium is virtually the same as in the previous section, with the only
modification that we have an additional endogenous variable, T , and an additional equation,
(9.49).

We conclude by noting that, in this economy, the government would have an incentive to
provide more liquidity to households by increasing the level of debt B. Returning to Figure,
as B increases, the economy moves closer to the full insurance outcome. In the economy
with production that we analyze next, however, expanding government debt also entails a
cost, because it crowds out capital and production. Aiyagari and McGrattan (1998) analyze
this trade-off in the determination of the optimal quantity of debt.

A(r)

r

rCM =
1

β
− 1

−a 0 a

r∗

B

Figure 9.7: Equilibrium of the endowment economy where assets are in fixed
positive supply.

Notes: A(r) denotes aggregate asset holdings of the household sector as a function of the
interest rate in the incomplete-market model. rCM denotes the complete markets equilib-
rium real rate, and r∗ the equilibrium real rate in the model with incomplete markets.
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9.4.2 A production economy

We now follow Aiyagari (1994a) and introduce production in this economy. We re-interpret
y as efficiency units of labor (i.e., individual labor productivity) and assume that households
supply labor inelastically, with each individual time endowment normalized to 1. The asset
a represents financial claims to physical capital. Households supply labor and capital to
a representative firm. The firm produces the final good with CRS production function
F (K,L), which uses capital and efficiency units of labor as inputs and satisfies FK > 0, FL >
0, FKK < 0, FLL < 0 as well as standard Inada conditions, limK→∞ FK = 0 and limK→0 FK =
+∞. Physical capital depreciates geometrically at rate δ ∈ (0, 1). Firms act competitively
by maximizing profits taking prices as given. The final numeraire good can be used for
consumption and investment, and is traded in a competitive good market. The labor market
and capital market are also competitive and clear, respectively, at the wage rate w (per
efficiency unit) and interest rate r.

The household budget constraint in problem (9.46) becomes

c+ a′ = Ra+ wy

and everything else in the household problem is unchanged. We now state the new definition
of equilibrium.

A recursive stationary competitive equilibrium is: (a) value function V : S → R, (b)
policy functions a′ : S → R, and c : S → R+, (c) firm choices L and K, (d) prices r∗ and
w∗, and (e) a stationary measure λ∗such that:

� Given (r, w), the policy functions a′ and c solve the household’s problem (9.46) and V
is the associated value function

� Given (r, w), the firm chooses optimally its capital stock K and its labor input L, i.e.,
r + δ = FK(K,L) and w = FL(K,L)

� The labor market clears: L =
∑N

i=1 yiΠ
∗ (yi) at the wage w∗

� The asset market clears:
∫
A×Y a

′(a, y)dλ∗ = K at the interest rate r∗

� The goods market clears:
∫
A×Y c(a, y)dλ∗ + δK = F (K,L)

� For all (A× Y) ∈ Σs, the invariant probability measure λ∗ satisfies

λ∗ (A× Y) =

∫
A×Y

Q ((a, y) ,A× Y) dλ∗,

Production changes the shape of the aggregate demand for capital from firms. To char-
acterize it, we need to consider the firm’s problem. From the optimal choice of the firm, we
obtain K(r) implicitly from FK(K,L) = r + δ. It is immediate to see that for r = −δ, then
K → +∞, while for r → +∞, K → 0, given our assumptions on F, in particular the Inada
conditions. Thus, firms’ demand for capital is a continuous, strictly decreasing function of
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the interest rate r.27 Figure 9.8 illustrates the equilibrium in this model. Existence follows
from the same conditions discussed above.

A(r)

r

rCM =
1

β
− 1

−a 0 a

−δ

r∗

K(r)

K
CM K

∗

precautionary wealth

Figure 9.8: Equilibrium of the production economy.

Notes: A(r) denotes aggregate asset holdings of the household sector as a function of the
interest rate in the incomplete-market model. rCM and KCM denote, respectively, the
complete markets equilibrium real rate and capital stock. r∗ and K∗ are their incomplete
markets counterparts. The difference between K∗ and KCM is the equilibrium amount of
precautionary wealth.

Quantitative analysis of the model.

Aiyagari (1994a) calibrated the model to the the US economy. One of the key ingredients
of the model, the stochastic process of earnings shocks (in particular, their persistence and
volatility), is estimated from longitudinal micro data on individual labor income. Aiyagari
reached three important conclusions from his quantitative analysis, all results that have
shaped the literature for decades.

First, he argued that this incomplete market structure is quite effective at insuring income
risk. By saving, dissaving, and borrowing (i.e., through self-insurance), an individual can
cut consumption variability by about half compared with autarky. Second, he pointed out
that one can use the model to quantify the amount of aggregate wealth held by households
because of precautionary reasons. The capital stock in complete markets is the value KCM

where the aggregate demand for capital by firms crosses the infinitely elastic supply of capital
of the representative consumer at rCM = 1/β − 1. The difference between K∗ and KCM is
therefore the additional precautionary stock of capital. He concluded that, in his baseline
calibration, the precautionary motive augments the aggregate saving rate by 3 percentage
points, but calibrations featuring higher risk aversion or more income volatility can raise the

27For example, if F (K,L) = KαL1−α, then K (r) =
�
αL
δ+r

� 1
1−α

.
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aggregate saving rate by 10 percentage points or more. Third, he observed that the model can
generate an equilibrium wealth distribution that is more positively skewed (mean > median)
and more dispersed than the income distribution, as in the data. Compared to its empirical
counterpart, though, the model’s wealth distribution features too much wealth accumulation
at the bottom and too little wealth concentration at the top. Chapter 19 describes the
progress made in the literature on wealth inequality since Aiyagari’s observation.

Figure 9.9: MPC, i.e. the slope of the consumption decision rule (red curve),
as a function of wealth jointly with the distribution of wealth (blue bars).

Notes: The dark blue bar near zero represents the share of constrained (or hand-to-mouth)
households in the calibrated model. This figure is reproduced from Kaplan and Violante
(2022)

The marginal propensity to consume: models vs data

In Section 9.3.1 we showed that, under the permanent income hypothesis (PIH), the
marginal propensity to consume (MPC) out of wealth and unanticipated transitory

changes in income equals 1 − R−1(βR)
1
σ . In the equilibrium of a representative agent

economy, where βR∗ = 1, the MPC therefore roughly equals the real interest rate, or
around 1% on a quarterly basis. In addition, according to the PIH, the MPC out of
anticipated income changes is zero.

There is a vast body of work that estimates the MPC out of (more or less anticipated)
transitory changes in income using various approaches. Some of the most convincing
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evidence comes from the observation that when households receives fiscal stimulus pay-
ments from the government (like in the last three recessions, for example), they spend
on average around 15-30% of this transfer on nondurable goods in the first quarter af-
ter receipt (e.g., Parker, Souleles, Johnson, and McClelland (2013)). These estimates
indicate that, empirically, the MPC might be 20 times as large in the data than what
implied by the naive PIH.

The heterogeneous-agent incomplete-market model we analyzed has the potential
to match the data better. As discussed in Section 9.3.4, for low enough wealth levels
the slope of the consumption function can be much steeper than r. The key question
is: in the equilibrium of a plausibly calibrated model, what is the share of agents with
wealth holdings in that range? The answer is not many for two reasons. First, in
order for the model to match the aggregate wealth level observed in the U.S., the model
discount factor has to be high. Second, precisely because being on a constraint induces
excessive consumption fluctuations that are costly in terms of welfare, optimization leads
households to save and keep away from their credit limit. Overall, the quarterly MPC
can be boosted up to 5% or so, but no more. Figure 9.9, reproduced from Kaplan and
Violante (2022) illustrates this result.

The literature has studied how to modify the baseline model to generate levels of
average MPC more in line with the data. We refer to Kaplan and Violante (2022) for
a comprehensive survey, and here only discuss two of them. First, one can introduce
heterogeneity in discount factors across consumers. Households with low discount factors
display steeper consumption functions (recall our comparative statics of Section 9.3.4).
In addition, because of impatience, they tend to dissave and thus hold small amounts of
wealth. With enough households of this type, the average MPC of the economy can be
large. Second, one can take the view that the relevant notion of wealth for short-term
consumption smoothing is liquid wealth, e.g., cash and bank deposits but not housing or
retirement accounts. Empirically, liquid wealth is only a small fraction of total wealth.
A model with two types of assets, a liquid one and an illiquid one which can only be
accessed by paying a transaction cost, is able to yield averages MPC in line with the
data. Interestingly, this type of models features wealthy hand-to-mouth consumers, i.e.
consumers who do have substantial wealth locked in high-return illiquid assets, but hold
small amounts of liquid wealth and thus are highly responsive to transitory income
changes (Kaplan and Violante, 2014; Kaplan, Violante, and Weidner, 2014).

284



Chapter 10

Labor supply

Richard Rogerson and Gianluca Violante

285



286



Chapter 11

Growth
Timo Boppart and Peter J. Klenow 1

1We are grateful to Jean-Felix Brouillette and Isabella Maassen for superb research assistance.
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11.1 Motivation

In this chapter we will study long-run economic growth. Figure 11.1 illustrates the striking
phenomenon of sustained growth in U.S. GDP per capita over the past two centuries at a
steady rate of a little over 2 percent a year. What is behind this pattern of steady growth?

Standards of living have improved not only in advanced economies like the U.S., but also
in developing economies in the last half-century. Countries did not, however, all grow at the
same rate or exhibit the same income levels. The chapter also deals with the determinants
of differences in GDP per capita levels around the globe.

In this chapter we first take a look at some stylized facts about growth and development
in the U.S. and elsewhere. We then lay out a version of the neoclassical growth model with
investment-specific technical change and use this framework to analyze the data. We then
move on to endogenous growth theory, discussing canonical models thereof and how they
can be brought to the data.

Motivating the study of economic growth is straightforward. The process of economic
growth transformed the U.S. far beyond what is visible in the economic indicators. There is
no doubt that understanding the forces behind this phenomenon are of first-order importance
to human welfare. Understanding why some countries are poor and some countries are rich
and what policy could do to influence this is a many-trillion dollar question for the entire
social sciences. A nice quote that makes this point is from Lucas Jr (1988): “Is there some
action a government of India could take that would lead the Indian economy to grow like
Indonesia’s or Egypt’s? If so, what, exactly? If not, what is it about the ’nature of India’
that makes it so? The consequences for human welfare involved in questions like these are
simply staggering: Once one starts to think about them, it is hard to think about anything
else.”

11.2 Empirical patterns

As mentioned, Figure 11.1 depicts the steady growth of U.S. GDP per capita over the last
two centuries. Appendix 11.A, Figure .1 makes it clear that one should not take such growth
for granted, as it globally only slowly began around a thousand years ago before accelerating
over the last 200 years (after the so called Industrial Revolution).

We can get a sense of whether growth was faster or slower in other countries compared
to the U.S. using data from the Penn World Table. Figure 11.2 plots GDP per worker for
regions of the world relative to the U.S. from 1960 through 2019. The U.S. is normalized to 1
in each year. Each region has a balanced panel of countries, with the countries weighted by
their employment. One can see that Europe converged toward the U.S. from 1960 to 1990 or
so, but since has grown parallel to the U.S. Latin America as whole mostly moved sideways
over the sample. East Asia, led by China, Japan and South Korea, rose from 1/16th of U.S.
GDP per worker in 1960 to almost 1/4th in 2019. Sub-Saharan Africa grew at a similar
rate to the U.S. from 1960 to 1980, then fell behind from 1980 to 2000 (falling from 1/8th
to 1/16th) before stabilizing. Finally, South Asia tracked at about 1/16th of the U.S. until
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Figure 11.1: U.S. Real GDP per Capita

Source: Maddison Project Database (2020). The vertical axis is in ratio scale.

the mid-1970s, lost ground through the mid-1980s, then soared to over 1/8th led by India’s
surging growth. The broad picture that emerges is that most regions generally grew along
with the U.S., though at differing rates.
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Figure 11.2: PPP GDP per Worker (U.S. = 1)

Source: Penn World Table 10.0. PPP GDP per worker is calculated as the ratio of the
“rgdpo” and “emp” variables relative to the U.S. in all years.
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Figure 11.3 provides a more detailed country-by-country look. The vertical axis is GDP
per capita in 2019 and the horizontal axis is GDP per capita in 1960, with the U.S. normalized
to 1 in both years. Countries along the 45 degree maintained the same growth rate as the
U.S. This was the “typical” pattern in that a regression of log 2019 GDP per capita on the
1960 version yields a coefficient of about 1. That said, many countries grew considerably
faster (e.g., South Korea or Singapore) or slower (e.g., the Congo or Burundi). Rich countries
generally hewed close to the U.S. growth rate, whereas developing countries exhibited more
dispersion.

Figure 11.3 displays neither strong divergence nor strong convergence of per capita in-
comes over time. The early empirical cross-country growth literature emphasized a distinc-
tion between unconditional and conditional convergence. The Figure suggests no uncon-
ditional convergence.2 The absence of divergence is consistent with a common trend, say
due to technology that gradually diffuses across countries. See Nath, Ramey, and Klenow
(2023) for evidence that country income differences are persistent, whereas country growth
differences are largely transitory.
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Figure 11.3: PPP GDP per capita in 1960 and 2019 (U.S. = 1)

Note: The data comes from the Penn World Table 10.0. PPP GDP per capita is calculated
as the ratio of the “rgdpo” and “pop” variables relative to the U.S. in both years. The
dotted line is the 45 degree line. The simple correlation across the two years is 0.75 and the
elasticity is 0.97 (0.091).

Rather than looking at each country, it is useful to plot the distribution of income across

2The literature further distinguished “beta” and “sigma” convergence. Beta convergence refers to a
tendency for countries with initially higher per capita incomes to grow more slowly. Sigma convergence
involves a narrowing of the dispersion of per capita incomes over time. One could have beta convergence
without sigma convergence because of ongoing shocks. But our Figure 11.3 and the literature find a lack of
both beta and sigma convergence.
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the world population. Figure .2 in Appendix 11.A does so under the simplifying assumption
that income is the same within a country. The U.S. is normalized to 1 in each year. One
can see the distribution shifting to the right because of the rapid growth in China and India.
The distribution is left-skewed but decreasingly so over time.3

The plots with individual countries highlight the tremendous dispersion in living stan-
dards across countries. In Appendix 11.A the Figure .4 we focus on the PPP GDP per capita
in the 20 largest countries by population in 2019. With the U.S. normalized to 1, one can
see that income differs by a factor of 64 between the Congo and the U.S. Even with the
rapid growth in China and India in recent decades, they have only attained about 1/4th and
1/8th the level of U.S. per capita income in 2019.

These facts on growth rates and income differences call out for explanation. In a deeper
sense they may stem from policies such as taxation; government investments in education,
health, and infrastructure; regulation and government ownership; and openness to trade and
foreign direct investment. But short of that, we can do growth and development accounting
to determine the more proximate sources of growth and development differences.

To be concrete, imagine a simple Cobb-Douglas aggregate production functional that is
common to all countries i and years t:

Yit = Kα
it (AitHit)

1−α , (11.1)

where Y is real output, K is real physical capital, H is total human capital (efficiency
units summed across all workers), and A is residual labor-augmenting TFP. Here α is the
production elasticity of output with respect to physical capital.4

Dividing equation (11.1) by L and rearranging implies

Yit/Lit = (Kit/Yit)
α

1−α ·Hit/Lit · Ait. (11.2)

Here L is total employment so that H/L is (average) human capital per worker. As described
in Section 4.3.3 above, the balanced growth path of a neoclassical growth model features a
stable K/Y that does not depend on A or H/L. Meanwhile, models such as Mankiw, Romer,
and Weil (1992) yield a stationary level of human capital per worker that does not depend
on A or K/Y . Hence the decomposition in (11.2) is compatible with steady states under
standard forms of endogenous investments in physical and human capital. In the data, there
is substantial persistence in capital-output ratios over time within countries (see Appendix
11.A, Figure .5). This is consistent with countries being close to their respective balanced
growth paths in terms of capital accumulation. Countries do not seem to transition to a
common capital-output ratio. For this reason we will do the accounting below based on
(11.2) rather than (11.1).5

3For contrast, Figure .3 in Appendix 11.A plots the histogram in the case when each country is weighted
equally. The distribution still shifts to the right, but is much less skewed in each year.

4Assuming a Cobb-Douglas functional form is convenient but not strictly necessary. As in Solow (1957),
one can calculate residual TFP for any neoclassical (i.e., constant returns) production function. Moreover,
even with a Cobb-Douglas specification the production elasticity could vary over time or across countries.

5Doing accounting based on (11.2) would attribute a larger role to differences in TFP and human capital
relative to physical capital. Equation (11.2) takes into account that higher levels of TFP and human capital
will induce more physical capital accumulation in steady state.
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Taking log and differentiating with respect to time we obtain a form convenient for growth
accounting:

∆ ln (Yi,t/Li,t) =
α

1− α ·∆ ln (Ki,t/Yi,t) + ∆ ln (Hi,t/Li,t) + ∆ ln (Ai,t) . (11.3)

One can then average the right side components over time, back out TFP growth ∆ lnA, and
compare it to the left hand side ∆ lnY/L. Table 11.1 does this for the U.S. in recent decades.
The table applies to total private businesses for the years 1948–2020 and α is approximated
by physical capital’s cost share.6 Increases in the capital-output ratio contributed modestly
— less than one-tenth of average growth over the entire sample. Human capital per worker
contributed twice as much, primarily through rising years of education. Still, this leaves
about three-fourths of growth coming from residual TFP. This echoes what Solow (1957)
famously found in earlier U.S. data.7

Table 11.1 further shows that TFP growth accounts for most of the medium-run shifts
in the rate of growth in output per hour over time in the U.S. When growth is high (such as
from 1948–1973 or 1995–2007) or low (1973–1995 or 2007-onward), it is primarily due to the
pace of TFP growth. Researchers such as Jorgenson, Ho, and Stiroh (2008) have attributed
TFP growth from 1995–2007 to the contribution of ICT (Information and Communication
Technology), both directly in the ICT-producing sector and downstream in ICT-using sectors
such as retail trade.8

By taking logs of equation (11.2) we can decompose differences in the level of development
across countries at a point in time. In doing so the Penn World Table follows Klenow
and Rodriguez-Clare (1997), Hall and Jones (1999a), and Bils and Klenow (2000) in using
an efficiency units formulation (all levels of human capital are perfectly substitutable) for
simplicity. Their method, unlike that of Mankiw et al. (1992), explicitly ties human capital
to evidence on the Mincerian wage return to years of schooling.

Table 11.2 looks across 117 countries in 2019. This exercise is dubbed income or de-
velopment accounting as it backs out TFPs as Solow’s growth accounting method but is
applied to levels as opposed to growth rates. The columns pertain to log GDP per worker,
the log capital-output ratio multiplied by (1-labor’s share)/(labor’s share), the log of human
capital per worker, and residual labor-augmenting TFP.9 The second row reports the elas-
ticity of each log variable with respect to GDP per worker. These elasticities add up to 1 by
construction. The coefficients are the same as the contribution of each term in a variance
decomposition in which we split the covariance terms between all three components equally.
By this metric, capital intensity generates only 12% of differences in income across countries.

6Using a cost as opposed to an income share prevents any price-cost markups that affect revenue relative
to costs from biasing our estimate of the elasticity.

7Because of its mysterious nature, Abramovitz (1956) dubbed TFP a “measure of our ignorance.” Below
we try to unpack some of what we have learned about determinants of TFP.

8This resolved the Solow Paradox that “you can see the computer age everywhere but in the productivity
statistics.” See Solow (1987).

9Under competitive markets we can approximate the production elasticity of output with respect to labor
using payments to labor relative to GDP. We average this across countries to arrive at a single estimate.
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Table 11.1: Growth Accounting for the U.S.

Contributions from

Period Y/L K/Y H/L A

1948-2020 2.37 0.21 0.38 1.79

1948-1973 3.28 -0.18 0.27 3.19

1973-1995 1.54 0.46 0.36 0.72

1995-2007 2.80 0.32 0.40 2.08

2007-2020 1.64 0.43 0.59 0.63

Note: The data comes from the U.S. Bureau of Labor Statistics. Y/L denotes real output
per hour, K/Y the real capital-output ratio, H/L human capital per worker (which grows
predominantly from rising years of schooling), and A is residual labor-augmenting TFP
inclusive of contributions from R&D and intellectual property. The contribution of physical
capital is scaled by α/(1 − α), where α is the average cost share for physical capital over
the sample, equal to 0.34. See equation (11.2).

Schooling is more important, being responsible for 22% of differences. Like the U.S. over
time, however, the largest contribution is from residual TFP at 66%.

The last row of Table 11.2 gives the 90/10 ratios of each variable, where 90 and 10 refer to
the 90th and 10th percentile countries in terms of 2019 PPP GDP per worker. An advantage
of looking at 90/10 ratios is that they are less sensitive to outliers. Remarkably, if we put
the ratios in log space, they imply almost the same contributions. For example, residual
TFP contributes around 66% (ln(5.17)/ ln(12) ≈ 0.66).

Studies incorporating differences in the quality of schooling (Schoellman, 2012) and hu-
man capital accumulated on the job (Lagakos, Moll, Porzio, Qian, and Schoellman, 2018)
arrive at larger contributions from human capital — on the order of 50% — thereby win-
nowing the role of residual TFP down to about 40%. Figure .7 in Appendix 11.A provides
the elasticities in Table 11.2 by year. They are broadly similar in 1960 and 2019, though the
importance of human capital has diminished whereas the role of capital intensity fell from
1990 to 2010 before rising.

11.3 Neoclassical growth with investment-specific tech-

nical change

Section 2 discussed long-run stylized facts observed in advanced economies (sometimes re-
ferred to as the Kaldor facts) and how they discipline the typically imposed structure in
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Table 11.2: Development Accounting in 2019

Contributions from

Statistic Y/L K/Y H/L A

Variance of log 1.00 0.14 0.08 0.57

Elasticity wrt Y/L 0.14 0.22 0.64

90/10 ratio 12.00 1.40 1.74 4.92

Note: The data comes from the Penn World Table 10.0. The sample is 117 countries in
2019. Output per worker is constructed using the “rgdpo” and “emp” variables. The capital
to output ratio is constructed using the “cn”, “rgdpo” and “labsh” variables. The human
capital index corresponds to the “hc” variable. We use the population-weighted average
labor share of 0.53 across countries in 2019, which implies α = 0.47.

growth models. The Solow model, for example, settles down to a stable capital-output ratio.
The neoclassical growth model, as developed by David Cass and Tjalling Koopmans in the
1960s, microfounded the consumption-saving decision and established conditions for a steady
state optimal saving rate.10 As the aggregate saving rate is not equal to a universal constant
but rather determined by the behavior of many agents in an economy, micro-founding the
corresponding intertemporal decision is important in the light of a classic Lucas critique (see
Section 1). Furthermore, specifying intertemporal preferences allows us to use the theory to
make normative statements about welfare.

In the following we specify and solve a specific version of the neoclassical growth model
in continuous time that allows for investment-specific technical change (as in Greenwood,
Hercowitz, and Krusell (1997a)). This framework is then used to address the time series
and cross-country data. We choose a version of the model with investment-specific technical
change because it speaks to a striking pattern in the data on relative prices between the
two distinct final uses: consumption and investment.11 In the U.S. the relative price of
investment fell systematically since 1970 at an average annual rate of 1.26% (see Figure
11.4). Investment can be further split up into equipment and structures. The decrease in the
relative price of investment is driven by equipment which saw a decrease of its relative price
to consumption at almost 2.5% a year. In contrast, the relative price of structure (the left
out category in Figure 11.4) increased over time. Figure 11.5 shows that the relative prices
also systematically differ across countries. In the poorest countries the price of investment
relative to consumption is roughly twice as high as in the U.S. This suggests that the poorest

10The intertemporal problem of optimal savings had actually been studied much earlier by Ramsey (1928),
far before Solow wrote his seminal paper. The neoclassical growth model is therefore often called the Ramsey-
Cass-Koopmans model, or just the Ramsey growth model.

11The plain vanilla version of the neoclassical growth model is discussed in Chapter 4.
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countries are particularly inefficient in turning primary production factors into investment
goods (Hsieh and Klenow, 2007). This has consequences for development accounting as we
expect richer countries to arrive on average with the same nominal saving rate at a higher
real capital-output ratio. The model we lay out in this section allows us to speak to these
facts.
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Figure 11.4: Relative price of equipment and investment in the U.S.

Notes: The data comes from the U.S. Bureau of Economic Analysis (NIPA Table 1.1.4).
The series are relative to the price of consumption, and are each normalized to 1 in 1970.
The price level for structures nearly doubled over 50 years by growing 1.3% per year relative
to the consumption deflator. In contrast, the annual growth rate of the relative price of
equipment and total investment were -2.47% and -1.26%, respectively.

Preferences We consider a representative household, abstract from endogenous labor sup-
ply. The household problem is given by

max
{a(t),c(t)}∞t=0

∫ ∞
0

e−(ρ−n)t c(t)
1−σ − 1

1− σ dt, s.t. (11.4)

ȧ(t) = (r(t)− n)a(t) + w(t)h− c(t),∀t, with a(0) given,

and subject to a no-Ponzi game condition limT→∞
¦
e−

∫ T
0 (r(τ)−n)dτa(T )

©
≥ 0. Here ρ is the

discount rate and n is the population growth rate. The initial population size is normalized
to unity. The period budget constraints in (11.4) are given in per-capita terms so a denotes
per-capita wealth and h the (average) level of human capital per worker.

We choose the consumption good as a numéraire so a and r are therefore measured in
consumption units. The household converts its savings in investment goods at price Px, and
rent its capital stock out to firms. The household receives from the firm the rental rate R(t)
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Figure 11.5: Price of investment relative to consumption in 2019 across coun-
tries

Notes: The data comes from the Penn World Table 10.0. The U.S. is normalized to 1 for
both variables. The price of investment relative to consumption is calculated from the “pl i”
and “pl c” variables. PPP GDP per capita is calculated as the ratio of the “rgdpo” and
“pop” variables. The estimated elasticity is equal to -0.17 with a standard deviation of 0.02.

but has to incur depreciation δ on its capital plus a change in the relative price of Ṗx(t).
Hence, the condition that links the return r to the rental rate, the depreciation rate and the
investment price reads

Px(t)r(t) = R(t)− δPx(t) + Ṗx(t). (11.5)

Technology Final output Y is competitively produced by a representative firm with the
Cobb-Douglas technology

Y (t) = K(t)α
(
Aye

γytL(t)
)1−α

. (11.6)

Here K denotes capital input and L labor input in production. The parameter α ∈ (0, 1)
controls the output elasticity of capital. The term Aye

γyt captures the technology in Harrod-
neutral form (consisting of a level Ay and a rate of technological change γy > 0).

Output Y can be transformed one for one into consumption goods and one for Axe
γxt into

investment goods. As both technologies are linear in Y , the price of Y will equalize to the
price of C under perfect competition, which we choose as a numéraire, i.e., Py(t) = Pc(t) = 1,
∀t and the price of the investment good will be given by Px(t) = e−γxt/Ax. The object Y
is then a measure of GDP expressed in terms of consumption units. Here γx ≥ 0 represents
investment-specific technical change; with γx > 0 the relative price of investment declines
over time. The production side can then be characterized as a static profit maximization
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problem of a representative firm:

π(t) = max
K(t),L(t)

K(t)α
(
Aye

γytL(t)
)1−α −R(t)K(t)− w(t)L(t). (11.7)

Notice that, given our choice of numéraire, (per-capita) wealth a and all the prices w, r, R,
and Px are stated in relative terms and measured in units of consumption goods.

Equilibrium definition A competitive equilibrium is then defined as a path of prices and
quantities that:

1. solves the household problem (11.4) and the firm problem (11.7).

2. fulfills asset and labor markets clearing conditions, i.e., K(t)e−γxt/Ax = a(t)ent and
L(t) = enth.

3. fulfills the return condition r(t) = R(t)Axe
γxt − δ − γx.

Here a(t)ent is the aggregate wealth (in units of the consumption good) the household owns.
This amount is invested to buy investment goods at price e−γxt/Ax. Finally, to arrive at the
return condition in the equilibrium definition we replaced Px(t) in (11.5) by e−γxt/Ax.

As the model features growth we need to impose the following restriction to ensure that
the household problem is well defined

n− ρ+
α(1− σ)

1− α γx + (1− σ)γy < 0. (11.8)

Model solution In Section 11.A.1 of Appendix 11.A we solve for the equilibrium dynamics
and show that it boils down the the following differential equations in K(t) and c(t):

ċ(t)

c(t)
=
Axe

γxtα
(
Aye

(γy+n)th

K(t)

)1−α
− δ − γx − ρ

σ
, (11.9)

K̇(t) = Axe
γxt
(
K(t)α

�
Aye

(γy+n)th
�1−α − entc(t)

)
− δK(t). (11.10)

The initial capital stock K(0) is exogenously given and the additional terminal condition is
given by

lim
T→∞

K(T )

Ax
e−(γx+ρ)T c(T )−σ = 0. (11.11)

Equation (11.A.4) is the consumption Euler equation whereas (11.A.5) states the law of
motion of the capital stock. As the welfare theorems apply in this framework the same
system of differential equations in K(t) and c(t) could have been found more directly by
solving the planner’s problem.12 However, as we plan to confront the theory’s prediction
with data on prices and real quantities it is essential that we have solved for the decentralized
equilibrium.

12Section 11.A.2 of the Appendix 11.A states the planner problem for this economy.
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Balanced growth path We define a balanced growth path the standard way as a path
along which all equilibrium prices and quantities grow at constant rates. Does this economy
admit a balanced growth path and if so at what rates do physical capital K, output Y and
per-capita consumption c grow? Given that the model features investment-specific technical
change these questions are non-trivial. We can divide both sides of (11.A.5) by K(t) to
arrive at the growth rate of the capital stock

K̇(t)

K(t)
= Ax

(�
e(γx/(1−α)+γy+n)tAyh

K(t)

�1−α

− e(γx+n)tc(t)

K(t)

)
− δ. (11.12)

Can this right-hand side be constant for all t? A first thing to note is that a constant ratio
e(γy+n)t

K(t)
is not consistent with a constant growth rate in K. Hence, the standard candidate

in which capital grows at the combined rate of population and Harrod-neutral technological
change is inconsistent with a balanced growth path. However, a valid candidate is with
K̇(t)
K(t)

= γx/(1−α) + γy +n ≡ gK and ċ(t)
c(t)

= αγx/(1−α) + γy ≡ gc. As a consequence, we can

define detrended variables as c̃(t) ≡ c(t)
egct

and k̃(t) ≡ K(t)

egKt
and write the system of differential

equations in these variables as:

˙̃c(t)

c̃(t)
=
αAx

(
Ayh

k̃(t)

)1−α
− δ − γx − ρ

σ
− αγx

1− α − γy, (11.13)

˙̃k(t)

k̃(t)
= Ax

(�
Ayh

k̃(t)

�1−α

− c̃(t)

k̃(t)

)
− δ − γx

1− α − γy − n. (11.14)

with k̃(0) given and the terminal condition limT→∞ k̃(T )c̃(T )−σe(n+(1−σ)αγx/(1−α)+(1−σ)γy−ρ)T =
0.13 This system of differential equations is indeed consistent with a stationary point that

we can denote by ¯̃c and ¯̃k. The terminal condition is fulfilled along this balanced growth

path as we imposed condition (11.8). By setting
˙̃
k(t)

k̃(t)
and

˙̃c(t)
c̃(t)

equal to zero we have along a

balanced growth path

¯̃k = A
1

1−α
x Ayh

�
α

ασγx
1−α + γx + σγy + δ + ρ

� 1
1−α

, (11.15)

and ¯̃c follows directly from

¯̃c = ¯̃kα (Ayh)1−α − (gK + δ)
¯̃k

Ax
. (11.16)

13Adding the constant A
1

1−α
x Ayh in the denominator of the definition of the detrended capital stock would

allow us to write the expression in a more compact way. However, further below we entertain a thought
experiment where we allow countries to differ in these constants and it is then helpful to explicitly see how
this factor shifts the detrended capital stock along the balanced growth path.
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In general, in a neoclassical growth framework with CRRA preferences any production func-
tion which fulfills standard assumptions can support a balanced growth path. However, as
with γx > 0 the model here features investment-specific technical change this is no longer the
case and the assumption of a Cobb-Douglas technology in (11.6) is key in order to generate
a balanced growth path. This relates back to Uzawa’s theorem (see Appendix 3.A) that
requires all the technological change to be of labor augmenting type. In the special case of a
Cobb-Douglas production function factor augmenting technical change is not distinctly de-
fined. So capital-augmenting technical change can as well be expressed in labor-augmenting
terms by raising it to the power α/(1− α).

BGP predictions Along the balanced growth path a constant fraction of s̄ = α(gK +

δ)/
�
ασγx
1−α + γx + σγy + δ + ρ

�
is saved out of income before depreciation.14 The Solow model

simply imposes such a constant saving rate. Here in contrast we derive this s̄ endogenously
and it will in general move along the transition.15

We can compare the capital stock along the balanced growth path with the golden rule

capital stock. Maximizing (11.16) with respect to ¯̃k gives the golden rule capital stock

¯̃kgold = A
1

1−α
x Ayh

�
α

gK + δ

� 1
1−α

. (11.17)

This would be achieved if the whole capital income share were saved, i.e., s̄gold = α. As
ασγx
1−α + γx + σγy + δ + ρ > gK + δ is ensured by condition (11.8) the balanced growth capital
stock is strictly below the golden rule capital stock which is reminiscent of the discussion in
Section 4.A.4.

What are the theory’s predictions for key aggregates and prices along the balanced growth
path? As the model features two final uses—consumption and investment—and their relative
price is changing over time, one has to be careful when evaluating the model prediction
with respect to real quantities. Total GDP when measured in units of consumption goods is
captured by Y . Similarly, w and r denote the wage and interest rate measured in consumption
units.16 The wage rate grows at the same rate as per-capita consumption gc, whereas the
interest rate, r̄ = σgc + ρ is constant along the balanced growth path (expressing how much
consumption is obtained tomorrow by forgiving one unit of consumption today). In contrast,
R denotes the rental rate of one unit of physical capital (also measured in terms of tomorrow’s
consumption units) and this rental rate is falling along the balanced growth path at constant
rate γx. The difference is precisely explained by the relative price of investment which falls
at rate γx too, i.e., investing one unit of physical capital is getting in terms of consumption
units less and less costly over time.

14To see this equate the right-hand side of (11.16) to (1− s̄)¯̃kα (Ayh)
1−α

and solve for s̄.
15The optimal long-run saving rate is strictly decreasing in the discount rate ρ; as the household becomes

less patient the long-run saving rate decreases.
16The expressions for the equilibrium wage and interest rate can be found in Appendix 11.A, Section

11.A.1.
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Also the price of the capital stock relative to the deflator of the consumption good,
e−γxtA−1

x decreases at the rate of investment-specific technical change γx along the balanced
growth path. The nominal capital-output ratio e−γxtA−1

x K(t)/Y (t) is constant along the
balanced growth path and equal to s̄

gK+δ
.17 “Total real output” is not a traded commodity

in the model (there are just consumption and investment goods) so a price deflator for total
GDP has not been defined in the theory. We still can mimic in the model what statistical
offices do in practice: As the nominal shares of investment and consumption are constant
along the balanced growth path a reasonable definition of the growth rate of the GDP deflator
is (Ṗx/Px)

s̄(Ṗc/Pc)
1−s̄ = −(1 − s̄)γx.18 With such a definition, it is straightforward to see

that the theory predicts that the ratio of real capital to real output grows at rate (1− s̄)γx.
Alternatively, one could calculate a measure of the ratio of real capital to real consumption
and which grows at rate γx.

Transitional dynamics The transitional dynamics are similar as in a version of the neo-
calassical growth model without investment-specific technical change. If the economy starts

out with a detrended capital stock below ¯̃k capital accumulates faster and k̃ increases over

time until it asymptotically reaches ¯̃k. A straightforward way to numerically solve for the
transition is by a simple shooting algorithm.

For the special case with σ = α the model allows for a closed-form solution along the tran-
sition. As can be shown by guessing and verifying the system (11.13) and (11.14) is globally
consistent with the consumption rule c̃(t) = k̃(t) · (δ(1− α) + γx(1− α)− αn+ ρ) /(αAx).
For more general cases where no closed-form solution exists one can still analytically ana-
lyze the local dynamics by linearizing the system around the balanced growth path. This
is illustrated in Appendix 11.A, Section 11.A.3. We can also use the linearized system to
assess the (local) speed of convergence. A simple calibration done in Appendix 11.A, 11.A.3
suggests the speed of convergence is very fast, implying a half-life of about 5.5 years.

Discussion of the framework The model we laid out assumes a closed economy. One
obvious justification of this assumption is that the world as a whole is indeed a closed
economy. Also for large economies like the U.S. international trade flows are relative to
GDP not that large quantitatively such that trade may be considered not to be of first-order
importance in determining investment and capital accumulation. It is a standard approach
to address the cross-country data through the lens of closed economy theory and this is also
what we will pursue below.19

17This is a similar formula as obtained in the Solow model (see Section 3.2). With investment-specific
technical change it is the growth rate of the aggregate capital stock gK that shows up in the formula.
Importantly, here the formula applies to the nominal capital-output ratio and not the a measure of the ratio
of real capital to real output.

18The second expression follows as we chose Pc as numéraire.
19The interaction between countries is arguably more important to influence “technology”. Technology

however is here captured by the exogenous parameters Ay, Ax, γy, γx so we will comment on technological
spill-overs and adoption further below when we discuss theories of endogenous growth.
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The framework we laid out assumes a representative agent on the household side. But
as the CRRA period utility function implies overall homothetic utility, preferences allow for
aggregation.20 The CRRA period utility function is key in order to microfound a constant
long-run saving rate (with growth). We abstracted from endogenous labor supply. However,
as discussed in Chapter , an endogenous labor supply decision could be allowed for and can
be reconciled with an exact balanced growth path (see Boppart and Krusell (2020)).

The level of human capital h is assumed to be constant but one could as well allow for
transitional movements in this level in the same type of framework. Allowing for sustained
growth in h however would potentially lead to very different dynamics we comment on in
the section on endogenous growth.

The model consists of multiple sectors (an investment sector and a consumption sector).
However, along the balanced growth path the nominal investment rate is constant which pre-
cludes a systematic reallocation of production factors across sectors—a phenomenon called
structural change. It is indeed a salient empirical observation that development is accompa-
nied by relaxation of employment from the agricultural sector which first move into manufac-
turing and at a later stage into services. How to square this unbalanced feature of growth at
the sectoral level with its remarkably balanced nature of growth in the aggregate? Structural
transformation is typically thought of as happening within the consumption (or the invest-
ment) sector. The structure of consumer spending indeed shows the same qualitative pattern.
The standard definition of an exact balanced growth path needs to be relaxed when studying
structural change (as the strict definition in Section 4.3.3 restricts the sectoral shares to be
constant).21 There indeed exist restrictions on technologies and preferences such that there
exists such an exact balanced growth path despite structural change at the sectoral level (see
Kongsamut, Rebelo, and Xie (2001), Ngai and Pissarides (2007), and Boppart (2014)).22

Finally, a relevant extension is to explicitly modelling energy and natural resources as a
production function. Chapter 23 discusses such models.

11.4 Confronting the investment-specific technical change

model with the data

How does the theoretical model in the previous section allow us to think about the data?
What explains the big income differences across countries? What is behind the observed
growth miracles and growth disasters? By addressing these questions we also comment on
the extensive empirical literature on growth.

20I.e., we could as well assume that there is a unit interval of heterogeneous households endowed with

hi units of human capital and ai,0 units of initial wealth. As long as
∫ 1

0
hi di = h and

∫ 1

0
ai,0 di = a0 the

aggregate dynamics are identical to the ones in the economy specified above.
21One modification of such a definition is to define an exact balanced growth path as a path along which

the physical capital stock grows at a constant rate (see Alder, Boppart, and Müller (2022)).
22An alternative option is to not insist on exact balanced growth but rather rely on such a path to exist

asymptotically. The economy must then at least asymptotically converge to a point that looks like a set-up
that allows for exact balanced growth.
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One way to think about income differences through the lens of the theory is as tran-
sitional dynamics due to differences in the initial capital stock. Suppose all countries are
identical except for their initial capital stock. As all countries then converge to the same
balanced growth path, we expect to see a strong pattern of convergence of income levels
across countries. This prediction is the same as in the Solow model (see Chapter 3, where
a large empirical literature on convergence is discussed) and follows from the diminishing
marginal product of capital. As emphasized earlier, however, we do not find strong support
for absolute (i.e., unconditional) convergence in the cross-country data (Figure 11.3). And
even in samples where there is evidence of unconditional convergence (such as across U.S.
states from 1880 to 1980, among OECD countries from 1950 to 1980, or in the full cross-
country sample since the 2000s), the observed speed of convergence in the data is not nearly
as fast as that implied by the theory.23

At the same time the world log income distribution does not systematically fan out over
time either (see Figure .2 in Appendix 11.A). Hence, there are clear forces that hold the
income distribution together over time (and convergence due to the diminishing marginal
product of capital is one such force). The lack of divergence in Figure 11.3 suggests the
rate of technical change not to systematically differ between rich and poor countries. It
is therefore reasonable to think of all countries to share the same parameters γy and γx.
Technology differences could still matter, but in terms of cross-country differences in the
levels of Ay and Ax in the framework above.

Why do countries persistently differ in their income levels? One possibility is capital-
output ratios, say, e.g., due to country differences in population growth n.24 Moreover, given
common values of γy, γx, and α, different levels Ay, Ax, or a different level of human capital
h, lead to different income levels along the balanced growth path. One can express output
per worker (measured in consumption units) as

Y (t)

ent
=

�
Pk(t)K(t)

Y (t)

� α
1−α

· h · AyA
α

1−α
x︸ ︷︷ ︸

=A

·e(γy+γx
α

1−α)t, (11.18)

where Pk(t) = A−1
x e−γxt. Along a balanced growth path in the model above the nominal

capital-output ratio Pk(t)K(t)
Y (t)

is constant and equal to s̄/(gK+δ) = α/
�
ασγx
1−α + γx + σγy + δ + ρ

�
and independent of the levels of human capital or TFP. For a given α, equation (11.18)
then decomposes per-capita income differences in terms of consumption units in a theory-
consistent way into contributions from physical capital, human capital, and a residual tech-
nology term. The results are shown in Table .1 of Appendix 11.A. The message that a
majority of income difference is unaccounted for by physical and human capital is reinforced
compared to the results in Table 11.2. The share explained by residual TFP is 72% compared
to 66% before. This is because the relative price of capital compared to the GDP deflator,

23Remember the simple calibration done above suggests a half-life of about 5 to 6 years. Barro and Sala-i
Martin (1992) provide evidence of convergence across U.S. states, Baumol (1986) across OECD countries,
and Kremer, Willis, and You (2022) in the full cross-country sample over the past 25 years.

24See the expression for the capital stock along the balanced growth path in (11.15) to see how the rate
population growth affects the capital-output ratio.
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Pk/Py, is higher in poor than in rich countries. The contribution of physical capital falls to
7% from 12% previously (whereas the contribution of human capital is unchanged at 22%).

An advantage of this two-sector development accounting is that one can decompose the
residual A into general TFP differences Ay and differences specific to the investment sector
Ax. One way to discipline the differences in Ax is to bring in the relative prices Px/Pc from

Figure 11.5. The data suggests that the elasticity of A
α/(1−α)
x with respect to PY Y/(PCL) is

0.23. This implies that on average 0.23 out of 0.72 or about 32% of the A differences are
due to rich countries being particularly efficient at producing investment goods.

Transition dynamics due to capital accumulation might be useful for thinking about the
rapid catch-up growth of certain countries. For instance Japan’s GDP per capita relative to
the U.S. rose from about 20% in 1950 to 80% in 1990. Rapid capital deepening should be
accompanied by a sharp decline in the return to capital, however, which was not observed
in Japan.25 Thus, even though convergence due to the diminishing marginal product of
capital is an important feature of the neoclassical growth model, transitional dynamics due
to different initial physical capital levels cannot account for growth miracles such as Japan’s.
The more realistic way to think about episodes of fast (catch-up) growth is evidently to see
them as transitional changes in Ay or Ax. The previous section provided some analytics for
such a theory.

Similar to development accounting, (11.18) can be used to decompose growth in per
capita output (in consumption units) in the U.S. over time into contributions from capital
deepening, improvements in labor “quality”, and residual TFP growth. Table .2 in Appendix
11.A presents the results. Over the post-war period the U.S. nominal capital-output ratio
was remarkably stable. In contrast, we saw in Table 11.1 that there was modest capital
deepening in terms of the U.S. real capital-output ratio (in particular since the 1970s). The
contribution of human capital is, again, largely unaffected compared to Table 11.1. This
leaves the clear majority of growth accounted for by the TFP residual A. Growth in per
capita output measured in consumption prices of 2.07% per year can be used to discipline
γy+γx

α
1−α . Relative prices allow us to further decompose this growth rate into contributions

from γy and investment-specific technical change, respectively. Figure 11.4 suggest that
γx = 0.013. With an α of about 1/3 this suggests γy = 0.014 and that about 31% of per
capita consumption growth is driven by investment-specific technical change.

To recap, residual TFP accounts for the bulk of differences in income levels and growth
rates across countries. What is behind this mysterious residual? For the time series, a natural
candidate is technological change (either neutral or investment-specific). In the next section
we present theories of endogenous technical change. Technology could also play an important
role in income levels across countries. Parente and Prescott (1994), Eaton and Kortum (1996,
1999), and Howitt (2000) are classic models of international technology diffusion. Barro

25In order to explain a per capita income difference of a factor of 5, the relative capital stock per worker
needs to fulfill 0.2 = (k̃JAP1950 /k̃

USA
1950 )α. Everything else equal, based on (11.A.1) the relative rental rate is

(RJAP1950 /R
USA
1950 ) = (0.2)−

1−α
α . With α = 1/3 this implies a rental rate in Japan that is 25 (!) times larger

than that in the U.S. in 1950. By 1990 this ratio should have declined to less than 2 (King and Rebelo,
1993).
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(1995) chapter 8 and Acemoglu (2008) chapter 18 provide textbook treatments. More recent
modeling efforts include Akcigit, Ates, and Impullitti (2018), Buera and Oberfield (2020),
Hsieh, Klenow, and Shimizu (2022), and Hsieh, Klenow, and Nath (2023).

On the empirical side, Comin and Hobijn (2010) and Comin and Mestieri (2014) provide
direct evidence on the use of specific technologies across countries and time. Keller (2004)
and Comin and Mestieri (2018) survey the evidence. The Eaton and Kortum papers ref-
erenced above document cross-country patenting patterns and how they relate to country
size and income. Evenson and Gollin (2003) and Gollin, Hansen, and Wingender (2021)
provide evidence for the diffusion of hybrid seeds across many countries, and their impact
on agricultural yields. Bloom and Van Reenen (2007) document differences in management
practices across countries.

Differences in allocative efficiency could also contribute to income differences across
economies. For example, countries may differ in the efficiency with which production factors
(capital, labor, intermediates) are allocated across firms due to various market distortions
and government policies. Hsieh and Klenow (2009a), Alfaro, Charlton, and Kanczuk (2009),
and Bartelsman, Haltiwanger, and Scarpetta (2013) provide evidence across countries. See
Restuccia and Rogerson (2017) for a survey.

One can ask deeper questions about where these differences in physical capital, human
capital, technology, and allocative efficiency come from. A vibrant literature connects these
proximate determinants of income to underlying policies and institutions. Acemoglu, John-
son, and Robinson (2001) is a prominent empirical example, and chapters 22 and 23 in
Acemoglu (2008) survey some of the ways in which institutions and policies can be mod-
eled. Geography is often an underlying factor affecting income directly or indirectly through
institutions, such as in Gallup, Sachs, and Mellinger (1999).

11.5 Endogenous growth

AK model The simplest endogenous growth theory is obtained in the economy above by
setting α = 1 and shutting down exogenous technological change, i.e., setting γy = γx = 0.
If we replace A1−α

y by A the aggregate production function becomes Y (t) = A ·K(t), which
is why the literature refers to this as the AK model. The planner’s problem of this economy
then becomes

max
{K(t),c(t)}∞t=0

∫ ∞
0

e−(ρ−n)t c(t)
1−σ − 1

1− σ dt, (11.19)

subject to K̇(t) ≤ AK(t)− entc(t)− δK(t), given K(0), and some non-negativity constraints
K(t) ≥ 0,∀t. For the problem to be well defined we have to assume σ(A−δ−n) > A−δ−ρ.
It is then straightforward to solve the planner’s Hamiltonian to arrive at the Euler equation

ċ(t)

c(t)
=
A− δ − ρ

σ
, (11.20)
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the resource constraint K̇(t) = AK(t) − entc(t) − δK(t), and the transversality condition
that can be expressed as

lim
T→∞

{
c(T )−σe−ρTK(T )

}
= lim

T→∞

¦
c(0)−σe−(A−δ)TK(T )

©
= 0. (11.21)

These expressions characterize the planner’s solution in the AK model.
Interestingly, consumption grows at a constant rate irrespective of the level of the ini-

tial capital stock. Hence, the AK model features no transition dynamics and the optimal
consumption rule is c(t) = (A − δ − n − (A − δ − ρ)/σ)e−ntK(t). Capital likewise grows
right away at the constant rate K̇(t)/K(t) = n + (A − δ − ρ)/σ.26 The planner’s solution
could also be decentralized with competitive markets, i.e., the Welfare Theorems apply in
this economy.

The AK model is an endogenous growth model as the rate of long-run growth is no
longer an exogenous constant but a function of preferences and technology parameters and
does respond to policies.27 The reason why endogenous sustained growth is feasible in this
economy is because there is no diminishing marginal product of capital. The chapter on the
Solow model showed that a constant saving rate then leads to an (endogenous) balanced
growth path (see Figure 3.2).

The production function that is linear in capital violates the standard diminishing returns
assumption, and features no role for labor to play in production. One would need massive
increasing returns to scale (internally or externally), as in Romer (1986), to reconcile linear
production in capital with the empirical capital share on the order of 1/3. Related, labor is
very much an important factor in production that commands about 2/3 of all income. So the
AK model is knife-edge and unrealistic in several dimensions. Still, it is helpful to discuss it
as some more sophisticated theories of endogenous growth (to be presented shortly) have a
reduced form AK structure.

Perhaps more realistically, the AK model can be viewed as a reduced form of a model with
constant returns to physical and human capital combined.28 That is, Y (t) = F (K(t), H(t))
where H = hL is total human capital which can be accumulated at a steady rate without
a bound. Such an economy may also support a balanced growth path along which output,
physical capital, and human capital all grow at a constant endogenous rate. But can human
capital at all grow at a steady rate? The answer appears to be yes if there is increasing

26As always, it is easy to show that this solution fulfills the system of equations plus the transversal-
ity condition (as long as condition (11.20) holds). One can also show that this is the only solution.
As consumption grows at a constant rate we can plug this into the constraint to get K̇(t)/K(t) =
A − δ − e(n+(A−δ−ρ)/σ)tc(0). This differential equation has a closed form solution given by K(t) =

Ξe(A−δ)t + (A− δ − n− (A− δ − ρ)/σ)
−1
e(n+(A−δ−ρ)/σ)tc(0), where Ξ is a constant of integration. The

transversality condition is then only fulfilled if the constant of integration Ξ is equal to zero (which coincides
with the solution above where capital grows at a constant rate).

27For instance, consider a decentralized version of this economy where capital income is taxed at rate τ
and the tax revenues are rebated lump-sum to the household. It is straightforward to show that the resulting
growth rate is monotonically decreasing in τ .

28See Appendix 11.A, Section 11.A.4 where we comment on other purely accumulation based endogenous
growth theories that look in a reduced form like the simple AK model.
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investment in human capital, such as from rising years of schooling. Much less clear, however,
is whether human capital grows if the level of human capital investment per person is fixed
over time. Each generation arguably starts at the same level of human capital, so they would
need to obtain more human capital with each year of education or experience. Mincerian
returns to education and experience exhibit no such secular trends.

Bils and Klenow (2000) argued that higher schooling has a level effect rather than a
growth effect in a panel of counties. Klenow and Rodriguez-Clare (2005) also made a case
for level effects of schooling. For example, they pointed out that education differences are
quite persistent across countries, while their growth rate differences are more transitory.
And schooling levels are generally trending up over time, while growth rates are not.29 In
contrast, schooling levels are highly correlated with income levels across countries.30

A property of all such AK-type endogenous growth theories is that they are entirely factor
accumulation based. This means that, if inputs are measured properly, a growth accounting
exercise should reveal zero TFP growth. These type of models also predicts a rather elastic
response of the long-run growth rate to changes in taxes on profits or R&D subsidies that
are not seen in the data (see Stokey and Rebelo (1995)). There is no role for patents, R&D
expenditures, ideas, or purposeful innovation. We next study models which do provide a
such role.

11.5.1 Endogenous growth through expanding varieties

Romer (1990a) put the non-rival nature of ideas at center stage and modeled purposeful R&D
investment of profit maximizing firms in general equilibrium. We discuss here a version of
Romer (1990a) that abstracts from physical capital.

Suppose the aggregate production function is given by

Y (t) =
A

1− φLy(t)
φ

∫ N(t)

0

x(ν, t)1−φ dν. (11.22)

This aggregate production function is defined over the inputs labor Ly and an interval of
measure N of different “machines” with quantity x(v) for machine v. We use the terminology
machine even though, for simplicity, the inputs are like material in that they depreciate fully
after use. We assume φ ∈ (0, 1).

The production function (11.22) merits some discussion: First, the factor 1/(1 − φ) is
added for notational simplicity and is not essential (one can always just redefine the constant
A). Second, the production function has constant returns to scale when considering labor
Ly and all the machines {x(ν)}Nν=0 — in line with a simple replication argument. However,
here the number of machine types N will be endogenous and will grow over time. Including

29This is akin to Jones (1995) noting that R&D investments trend up over time but the growth rate does
not. He inferred that this likewise suggested a level effect of R&D investment on productivity.

30Imagine the law of motion of human capital ḣ = Bhφsω. The key question is whether φ = 1 or φ < 1. If
φ = 1 then higher levels of human capital investment s lead to perpetually faster growth. If, instead, φ < 1
then higher levels of s yield higher levels of h but no faster growth in the long run. Again, this is analogous
to semi-endogenous growth due to R&D investment that we will discuss further below.
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this endogenous N , equation (11.22) features overall increasing returns to scale.31 Third,
one can view the production function as Cobb-Douglas over labor and a machine composite
X, i.e., Y = A

1−φL
φ
yX

1−φ. The bundle of machines is a CES (Dixit-Stiglitz) aggregator

X =
�∫ N

0
x(ν)

ε−1
ε dν

� ε
ε−1 . One arrives at (11.22) if one directly connects the elasticity of

substitution across machines (ε) to the output elasticity of labor (φ) by setting ε = 1/φ.
One can relax this assumption and still obtain a balanced growth path in the environment
we study below.

Below we will refer to N as the knowledge stock in the economy. An economy with a
higher knowledge stock will exhibit higher TFP. In this model knowledge is embodied in (the
number of available) intermediate inputs.

Market structure The final output good is competitively produced by a representative
firm. At each point in time this firm solves

max
Ly ,{x(ν)}Nν=0

A

1− φL
φ
y

∫ N

0

x(ν)1−φ dν − wLy −
∫ N

0

p(ν)x(ν)dν, (11.23)

where we chose the price of the final output as the numéraire. The first-order conditions of
this problem are

φY/Ly = w, (11.24)

ALφyx(ν)−φ = p(ν), ∀ν. (11.25)

In contrast to the final good, each machine variety is produced by only one firm, which
therefore acts as a monopolistic competitor. The producer of a given variety ν maximizes
current period profits

π(ν) = max
p(ν),x(ν)

p(ν)x(ν)− ψx(ν), subject to (11.25). (11.26)

Here the assumption is that machines can be produced at constant marginal cost ψ in units
of the numéraire (final output good).

Inventing varieties By hiring 1/(ηN(t)) labor units for R&D an entrant can invent a
new machine. This implies for the law of motion of available varieties

Ṅ(t) = ηN(t)Lr(t), given N(0) > 0, (11.27)

where Lr is total labor used in R&D and η > 0. The N term in (11.27) represents a
knowledge spillover: more available varieties make a researcher more productive in terms of
generating new varieties.32

31To see this, suppose all machines cost px and a budget of E is equally split on all machines. We then
have x(ν) = E/(pxN) and aggregate output becomes Y = A

1−φL
φ
yN

φ(E/px)1−φ. This highlights the love-of-

variety inherent in specification (11.22): output is boosted if more types of machines are available (holding
prices and the total budget constant).

32We will relax the one-for-one proportionality of this spillover in N below.
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After invention the entrant receives a perpetual patent to exclusively produce the invented
variety. The value of such a patent is given at date t by the present discounted value of future
profits

V (t) =

∫ ∞
t

e−
∫ s
t r(τ)dτπ(s)ds, (11.28)

where r is the real interest rate and we suppressed the variety index ν due to symmetry.
By time differentiating (11.28) one obtains the Hamilton-Jacobi-Bellman (HJB) equation
V (t)r(t) = π(t) + V̇ (t) that needs to hold. The return on V must be equal to flow of
profits π(t) plus capital gains V̇ (t). The stream of future profits in (11.28) incentivize the
R&D investments in the first place. Under free entry in R&D we can assume there is a
representative R&D firm solving in each point in time

max
Lr

ηN(t)V (t)Lr(t)− w(t)Lr(t), s.t. Lr(t) ≥ 0. (11.29)

Household problem The model is closed with a standard household side. The represen-
tative household inelastically supplies L units of labor earning a wage rate w. The household
owns all the firms, whose total value represents household wealth

a(t) =

∫ N(t)

0

V (ν, t)dν, (11.30)

that earns a combined real return of r. The household then solves

max
{a(t),c(t)}∞t=0

∫ ∞
0

e−ρt
c(t)1−σ − 1

1− σ dt, s.t. ȧ(t) = r(t)a(t) + w(t)L− c(t), (11.31)

and a standard no-Ponzi game condition.33 We deliberately abstract from population growth
for now; more on that below.

An decentralized equilibrium is defined as a path of prices and quantities that jointly
solve the household problem, the firm problem and is consistent with factor market clearing.
Appendix 11.A Section 11.A.5 gives a formal equilibrium definition. To ensure that the
household problem is well defined (utility is bounded) we need to impose the parameter
restriction

ρ > (1− σ)
(1− φ)ηL− ρ

1− φ+ σ
. (11.32)

Furthermore, we focus in the following on the interesting case with strictly positive growth
and Lr > 0, which is ensured as long as

ρ < (1− φ)ηL. (11.33)

Note that the decentralized equilibrium we characterize involves monopolistically competitive
firms and knowledge spillovers. As a consequence, as we will see below the decentralized
equilibrium will not coincide with the planner’s solution.

33The no-Ponzi game condition can be expressed as limT→∞
¦
e−

∫ T
0
r(τ)dτa(T )

©
≥ 0.
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Solving the model We solved the final output producer problem above, yielding the first-
order conditions (11.24) and (11.25). We did so in order to specify the firm problem of the
machine producers who take the (inverse) demand (11.25) into account.

Solving the machine monopolist problem gives the first-order conditions for any point in
time (so we suppress the time index)

x(ν) =

�
A(1− φ)

ψ

� 1
φ

Ly, ∀ν, (11.34)

and the resulting optimal price is given by p(ν) = ψ/(1 − φ), i.e., a constant markup over
marginal cost.34 The resulting profits are

π(ν) = φA

�
A(1− φ)

ψ

� 1
φ
−1

Ly. (11.35)

This model features a market size effect, i.e., profits from having developed a new machine
variety are increasing in the number of workers, Ly, operating this machine. This force plays
a role in the direction of technical change in the presence of high and low skilled labor in
Acemoglu (1998).

Because of symmetry — x(ν) and p(ν) are the same for all ν — we can suppress ν in the
variety index and write final output (11.22) as

Y (t) =
A

1− φ

�
A(1− φ)

ψ

� 1−φ
φ

Ly(t)N(t), (11.36)

and the wage rate as

w(t) = φ
A

1− φ

�
A(1− φ)

ψ

� 1−φ
φ

N(t). (11.37)

Plugging (11.36) and (11.34) into the final good market clearing condition gives consumption
as

c(t) =

�
1

(1− φ)2
− 1

�
ψ

�
A(1− φ)

ψ

� 1
φ

Ly(t)N(t). (11.38)

The household problem gives rise to the same Euler equation as before:

ċ(t)

c(t)
=
r(t)− ρ

σ
, (11.39)

as well as the transversality condition limT→∞
¦
e−

∫ T
0 r(τ)dτa(T )

©
= 0.

The first-order condition for the R&D firm’s problem is given by V (t) ≤ w(t)
ηN(t)

, with

Lr(t)[V (t)−w(t)/(ηN(t))] = 0 (taking care of the Kuhn-Tucker condition). In the case with

34The optimal price fulfills the Lerner condition that price is equal to ∂x
∂p

p
x/
�
∂x
∂p

p
x + 1

�
times marginal

cost. Under the imposed CES structure the price elasticity of demand ∂x
∂p

p
x is equal to the constant −1/φ.

The markup is then (1/φ)/(1/φ− 1).
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strictly positive growth and R&D investment — which we focus on in the following — a firm
value then needs to equalize the fixed cost of inventing a variety:

V (t) =
w(t)

ηN(t)
. (11.40)

Substituting in the wage from (11.37), this implies

V (t) =
φA

η(1− φ)

�
A(1− φ)

ψ

� 1−φ
φ

, ∀t, (11.41)

i.e., a constant equilibrium firm value over time. Substituting this constant firm value and
the equilibrium profits into the HJB equation then gives

r(t) =
π(t)

V
= η(1− φ)Ly(t). (11.42)

Finally, we obtain from substituting the labor market clearing condition in the law of motion
of N

Ṅ(t)

N(t)
= η(L− Ly(t)). (11.43)

This system of equations can be simplified. Using (11.38), (11.42) and (11.43) in the Euler
equation, we obtain a single first-order differential equation in Ly given by

L̇y(t)

Ly(t)
=
η((1− φ) + σ)Ly(t)− ρ

σ
− ηL. (11.44)

Hence, there is indeed a balanced growth path along which Ly is constant with

L̄y =
σL+ ρ/η

1− φ+ σ
. (11.45)

We also see that there are no transitional dynamics and the economy will grow right away
along the balanced growth path (similar to the AK model above).35 R&D labor along the

balanced growth path is given by L̄r = (1−φ)L−ρ/η
1−φ+σ

.36 The interest rate along the balanced
growth path is then

r̄ = (1− φ)
ησL+ ρ

1− φ+ σ
. (11.46)

35One can also directly see from (11.44) that this balanced growth path is the only equilibrium path.
For any initial Ly < L̄y, Ly will shrink over time and go to zero and so does r and the transversality
condition is violated. For any initial Ly > L̄y, Ly will systematically grow over time and go to L implying a
“high” interest rate in (11.42), and yet no further growth because there there is zero research labor, which
is inconsistent with the Euler equation.

36In the analysis above we considered an interior solution with Lr > 0. Can there also be a corner solution
with Lr = 0? In such a case there is no growth and therefore r̄ = ρ, implying firm value V = π/r̄ =

φA
�
A(1−φ)

ψ

� 1
φ−1

L, which under (11.33) is strictly larger than w(t)
ηN(t) . Hence the condition V (t) ≤ w(t)

ηN(t) is

violated and (11.33) ensures an equilibrium with strictly positive growth.
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The number of varieties, output, consumption, and wealth grow at the rate

Ṅ(t)

N(t)
=
Ẏ (t)

Y (t)
=
ċ(t)

c(t)
=
ȧ(t)

a(t)
=

(1− φ)ηL− ρ
1− φ+ σ

. (11.47)

The transversality condition is ensured by (11.32).
We see that the decentralized growth rate is decreasing in the preference parameters

ρ and σ.37 In order to avoid transition dynamics here it is essential that the knowledge
spillovers in (11.27) are proportional to N and that there be no population growth. The
endogenous growth rate (11.47) is increasing in the labor force L, a so-called strong scale
effect. Given an R&D intensity, L̄r/L, profits are increasing in scale, thereby attracting more
R&D investment. Furthermore, the share of labor allocated to R&D L̄r/L is increasing in
L. When applied to closed economies, the model predicts bigger countries will grow faster
and exhibit higher R&D intensity. These predictions are clearly not borne out in the data
(neither in the cross-section of countries nore in the time series within a country). The
section below which limits the knowledge spillovers will address this critique.

Due to the increasing overall returns to scale in the production function (11.22) and the
monopolistically competitive firms the decentralized equilibrium is not efficient. The planner
solves:

max
{Ly(t),c(t),{x(ν,t)}Nν=0(t),N(t)}∞t=0

∫ ∞
0

e−ρt
c(t)1−σ − 1

1− σ dt, (11.48)

subject to the resource constraint

A

1− φLy(t)
φ

∫ N(t)

0

x(ν, t)1−φ dν = c(t) +

∫ N(t)

0

ψx(ν, t)dν (11.49)

and the ideas production function (11.43) and a given N(0) > 0. (Note that there we already
used the labor constraint to substitute out Lr(t)). For the solution to this problem to be
well defined and leading to positive growth we need to impose the parameter restrictions

(1− σ)ηL < ρ < ηL. (11.50)

In Appendix 11.A we solve this planner problem and show that it implies a balanced
growth path with

gSP =
ηL− ρ
σ

. (11.51)

and the quantity of each machine is given by

x(ν, t) =

�
A

ψ

� 1
φ

LSPy =

�
A

ψ

� 1
φ (σ − 1)L+ ρ/η

σ
. (11.52)

Again one can also show that there are no transitional dynamics and the economy grows
right away along the balanced growth path (irrespective of the initial N(0)).

37Intuitively, with more impatience or more curvature in the momentary utility function the consumption
path is less steep.

311



In the decentralized equilibrium above we saw that x(ν, t) =
�
A(1−φ)

ψ

� 1
φ L̄y. Hence, for

given production labor Ly the decentralized machine quantity is too low by a factor of
(1−φ)φ < 1. This is due to the monopolistically competitive firms charging a markup factor
of 1/(1− φ) over marginal cost. This problem of under-usage of machines could be fixed by
subsidizing machines by a rate τ that fulfills 1− τ = (1− φ)−1 and finance this subsidy by
lump-sum taxes. However, even such a subsidy would not restore overall efficiency in this
economy. This is because on top of distortion due to markups there is knowledge spillover in
(11.43) that the planner takes into account whereas in the decentralized equilibrium the R&D
effort is only determined by the (discounted stream of) profits. Contrasting the decentralized
equilibrium with the planner solution we indeed see that the decentralized growth rate is
generally too low. As a consequence, restoring efficiency requires an additional R&D subsidy
on top of the machine subsidy.

It is straight forward to add physical capital to the endogenous growth model above
where additional transitional dynamics can arise due to the convergence of the capital stock
to the steady level.

The endogenous growth theory above is micro-founding the forward looking R&D deci-
sion of monopolistically competitive firms and characterizes how it determines the long-run
growth rate of the aggregate economy. Markups serve a double role; they lead to efficiency
losses due to too high machine prices but they also lead to profits and incentivice R&D
expenditures. The model however remains rather stylized in many dimensions and the re-
sulting policy conclusions are rather stark. Along a balanced growth path the HJB equation,
(11.40) and (11.37) imply

π̄

r̄
=
φ

η

A

1− φ

�
A(1− φ)

ψ

� 1−φ
φ

. (11.53)

Hence, the ratio of profits and the interest rate is equal to a constant. Taxing profits would
therefore lower the interest rate an therefore lower the growth rate (see (11.39)). Similarly,
lowering markups the firms can charge to µ < (1 − φ)−1 through antitrust policy would
monotonically lower the growth rate. Or making the patents of the innovators expiring
would also systematically decrease the growth rate. In the quality ladder model below —
which features business stealing — implies more nuanced and non-monotonic policy trade-
offs.

Less than proportional knowledge spillovers in ideas production

Here we introduce two modifications to the framework above introduced by Jones (1995).
First, suppose instead of (11.27) that the ideas production function is given by

Ṅ(t) = ηN(t)εLr(t), given N(0) > 0, (11.54)

with ε < 1 capturing that it requires — as the knowledge stock advances — more and more
R&D labor to sustain a constant rate of knowledge growth. With 1 > ε > 0 there are still
positive (but limited) knowledge spillover, i.e., with a higher knowledge stock, N , each R&D
worker generates more ideas. In contrast, with ε < 0 the specification can also capture a
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“fishing out” effect (negative technology spillovers) where it gets for a given R&D worker
harder to find a new idea the higher the knowledge stock is. The special case with ε = 0
captures a situation without any knowledge spillovers and with ε = 1 we are back in the
framework above with proportional knowledge spillovers. Second, suppose further that there
is population growth at rate n > 0 such that the labor market clearing condition becomes
L(t) = L · exp(nt) = Ly(t) + Lr(t). To ensure that the household problem is bounded we
assume ρ− n > n/(1− ε).

With these two modifications to the set-up; how do the equilibrium dynamics look like
and is there still a balanced growth path along which all variables grow at constant rates?
It is important to note that — as there is population growth — Ly and Lr both have to
grow at rate n along a balanced growth path (if not at least one of Ly or Lr cannot change
at a constant rate). The flow profits are still given by (11.35) which are now however time
dependent as Ly is growing. Given a constant interest rate the value of a patent at time t
along the balance growth path is then given by (see (11.28))

V (t) =
π(t)

r̄ − n = φA

�
A(1− φ)

ψ

� 1
φ Ly(t)

r̄ − n. (11.55)

Again this value is now time dependent as the market size is expanding due to population
growth. In an equilibrium with positive growth V (t) has to equalize the marginal cost of

innovating at t which is given by w(t)
ηN(t)ε

under the new spillover specification. Substituting in

the wage rate (which is still given by (11.37)) the optimality condition of the representative
R&D firm reduces to

A
Ly(t)

r̄ − n =
1

η
ψN(t)1−ε. (11.56)

Can this equation be fulfilled for all t? By differentiating with respect to time we see the
answer is yes if and only if

Ṅ(t)

N(t)
=

n

1− ε. (11.57)

Then per-capita consumption, wages and per-capita output all grow at this rate n
1−ε and the

interest rate r̄ = ρ+ σn/(1− ε) is pinned down by the Euler equation. It is straightforward
to check that the transversality condition is indeed fulfilled along this path.

This is sometimes called a semi-endogenous growth model because the long-run growth
rate is just determined by two parameters: the population growth rate n and a technology
parameter ε. Intuitively, larger knowledge spillovers (a higher ε) increases the growth rate.
Because the idea production runs with ε < 1 into decreasing returns the only way to sustain
long-run growth is by pushing with an increasing number of researchers over time. Hence,
without population growth, i.e., with n = 0, sustained long-run growth is not feasible. The
long-run growth rate is efficient and there is no role for policy to influence it.38 Hence, the

38The planner problem is given by

max
{Ly(t),c(t),{x(ν,t)}Nν=0(t),N(t)}∞t=0

∫ ∞
0

e−(ρ−n)t c(t)
1−σ − 1

1− σ dt, (11.58)
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model is not making rich prediction about how policy and the market structure can affect
the long-run growth rate. But the model’s prediction is in line with the time series data
from the U.S. or the OECD countries that shows a rather stable productivity growth while
population (and the number of researchers) is growing at a steady rate. Another strength
of the model is that it adds demographics to the potential determinants of long-run growth
(see Peters and Walsh (2022) for an application that links population growth to firm entry
rates and growth).

However, in contrast to the model with proportional knowledge spillovers we studied be-
fore, it is important to note that this model now features transitional dynamics. Substituting
the growth rate (11.57) into (11.54) and using the labor market clearing gives

n

η(1− ε) = N(t)1−ε(L exp(nt)− Ly(t)), (11.60)

which together with (11.56) this specifies for given population L exp(nt) a unique N(t) that
supports the balanced growth. Whenever the initial N deviates from this level there will
be transitional dynamics. Furthermore, as ε may be relatively close to one the transitional
dynamics may be relatively slow (unlike the convergence of the physical capital stock in the
neoclassical growth model).39 And policy will affect the long-run output level in this frame-

work. Equation (11.60) implies along the balanced growth path N(t) = (η(1− ε)Lr(t)/n)
1

1−ε .
Substituting this N(t) into (11.36) allows us to express total output per worker in final goods
along the balanced growth path as

Y (t)

Ly(t)
= A ·

�
Lr(t)

L(t)

� 1
1−ε

L(t)
1

1−ε , (11.61)

whereA is some constant. Hence, in this model there is no scale effect on the long-run growth
rate but for a given research intensity Lr(t)/L(t) the model predicts higher per-capita income
levels in larger economies. Similarly, as policy can affect research intensity it can affect the
long-run level of income.

In the endogenous growth framework studied in this section, all long-run growth is gen-
erated by an expanding (input) variety. Though this is stark for exposition, there is evidence
that variety is indeed growing and contributing to growth. Broda and Weinstein (2006) find
that the U.S. imports from a rising number of country-product pairs over time, across final
consumer goods, intermediate goods, and business equipment. Such evidence breaths em-
pirical life into influential models of trade in varieties such as Krugman (1980), Rivera-Batiz
and Romer (1991), and Melitz (2003).

subject to

A

1− φLy(t)φ
∫ N(t)

0

x(ν, t)1−φ dν = c(t) +

∫ N(t)

0

ψx(ν, t)dν, (11.59)

Ṅ(t) = ηN(t)ε(L exp(nt)−Ly(t)) and a given N(0) > 0. In the Appendix 11.A we solve this planner solution

and show that it also supports a balanced growth path with Ṅ(t)
N(t) = n

1−ε .
39Bloom, Jones, and Van Reenen (2020) estimate for example ε = 0.8 in the semiconductors industry.
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Broda and Weinstein (2010) document an expanding set of products at U.S. grocery
stores. Related, Hottman, Redding, and Weinstein (2016) show that about one-third of
variation in firm size and growth can be traced to the number of distinct consumer packaged
goods in their portfolio. Hsieh and Rossi-Hansberg (2023) document that major retailers and
service producers have opened more establishments in the U.S., especially since 2000. Given
that such products and services are often nontradable, new locations offer local consumers
growing choice. Hsieh and Rossi-Hansberg emphasize that such rival investments in local
establishments are distinct from the nonrival corporate investments in products, services,
and store layout.

Garcia-Macia, Hsieh, and Klenow (2019), Klenow and Li (2021), and Peters and Walsh
(2023) all estimate that between one-fifth and one-third of U.S. growth comes from rising
variety.

11.5.2 Growth through quality ladders and creative destruction

The Romer model sketched out in the previous subsection endogenizes innovation, but en-
tirely through new varieties. It does not feature any quality improvements in products after
they are invented. Sales and profits of existing varieties are unaffected by the arrival of
“horizontal” new varieties.

In contrast, it seems routine to observe companies improving their products over time.
Think of successive generations of car models and microprocessors. The Romer model also
abstracts from product and firm exit due to “creative destruction.” Schumpeter’s vision,
formalized by Aghion and Howitt (1992a), features innovation by new producers that dis-
places closely substitutable products of existing producers. That is, “vertical” innovation
that destroys the sales and profits of existing producers.

Figure 11.6 shows annual firm exit rates in the U.S. Londitudinal Business Database
(LBD), taken from Garcia-Macia et al. (2019). Over 7% of small firms exit in a typical year,
and over 5% of large firms (with small being defined as below-median employment and large
as above-median employment).

There is also substantial job reallocation among surviving firms, a fact documented and
emphasized by Davis, Haltiwanger, and Schuh (1998). Figure 11.7 plots the distribution
of (arc) job growth across incumbent firms. Such reallocation occurs mostly within narrow
industries, so it reflects competition among close competitors not broad sectoral shifts (say
from goods to services). Garcia-Macia et al. (2019) argue that fitting such high exit and job
destruction rates requires a prominent role for creative destruction in overall growth.

Figure 11.8 compares the average size of firms less than 5 years old with the size of firms
5 years and older in the U.S. Young firms have roughly 10 workers on average, whereas
surviving older firms average over 30 workers. Hsieh and Klenow (2014) report that this
pattern stems equally from selection (smaller firms are more likely to exit) and survivor
growth.

Figure 11.9 plots the employment share of entrants (defined as firms aged 5 years or
less) in the U.S. in recent decades. Their share fell from 24% to 15%, generating concern
that declining “business dynamism” has contributed to slower U.S. productivity growth.
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Figure 11.6: Firm exit rates in the U.S.

Source: U.S. LBD via Garcia-Macia, Hsieh, and Klenow (2019).

Figure 11.7: Job reallocation in the U.S.

Source: U.S. LBD via Garcia-Macia, Hsieh, and Klenow (2019).

Decker, Haltiwanger, Jarmin, and Miranda (2016) and Akcigit and Ates (2023) present
related evidence and a model.
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Figure 11.8: Firm size and firm age

Source: U.S. LBD via Garcia-Macia, Hsieh, and Klenow (2019).

Figure 11.9: Entrant employment share in the U.S.

Source: U.S. LBD via Garcia-Macia, Hsieh, and Klenow (2019).

Quality Ladders model To speak to the substantial churn of market shares, even within
narrow industries, we now sketch a model of growth through creative destruction. Final
good producers use a fixed measure one of intermediate good varieties with evolving quality
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levels q(ν, t):

Y (t) =
A

1− φL(t)φ
1∫

0

q(ν, t)x(ν, t)1−φ dν (11.62)

where 0 < φ < 1 so that there is diminishing returns to any one intermediate line ν. A fixed
amount of labor L(t) = L can be used to produce final goods.

Output can be used for consumption, intermediate goods, and research:

Y (t) = C(t) +X(t) + Z(t)

This is sometimes called a “lab equipment” model because intermediate goods (which for
simplicity depreciate fully here rather than being durable equipment) are used to make
research goods. Unlike in the Romer model, here there is no knowledge spillover from past
innovation to current research. Intermediate goods, in turn, are produced according to

X(t) =

1∫
0

ψ · q(ν, t) · x(ν, t)dν,

so that one unit of intermediate good ν requires ψ · q(ν, t) units of the final good.
Aggregate research effort is merely the sum of effort directed at improving each interme-

diate good’s quality

Z(t) =

1∫
0

Z(ν, t)dν.

Quality improves on a product line in discrete increments in proportion λ > 1:

q(ν, t) = λn(ν,t)q(ν, 0) ∀ν, t.

See Figure 11.10. Here n(ν, t) is the cumulative number of quality steps taken on line ν
between time 0 and t. The flow rate of innovations on product line ν at moment t is
proportional to research effort on that line:

z(ν, t) , η · Z(ν, t)

q(ν, t)
,

where η > 0. Note that it is more difficult to innovate on a line the higher the quality
attained on that line.

Finally, the representative agent’s utility function is the standard CRRA form:

U(0) =

∞∫
0

e−ρt
C(t)1−σ − 1

1− σ dt
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Figure 11.10: Quality ladders

Decentralized equilibrium The final goods sector is competitive and producers maxi-
mize current profits taking all prices as given (the final good whose price is normalized to
one, the intermediate good prices, and the wage):

Π(t) =
A

1− φ

 1∫
0

q(ν, t)x(ν, t)1−φ dν

L(t)φ −
1∫

0

px(ν, t)x(ν, t)dν − w(t)L(t).

The first-order conditions for this problem imply

w(t) = φ
Y (t)

L
, (11.63)

and
x(ν, t) =

�
Aq(ν, t)

px(v, t)

�1/φ

L. (11.64)

The wage is equal to the marginal product of labor, and intermediate input demand is
inversely related to a variety’s quality-adjusted price. Intermediate demand is increasing in
production labor, a complementary input.

Intermediate good producers are monopolists over a particular quality level. We assume
innovations are “drastic” in that

λ ≥
�

1

1− φ

� 1−φ
φ

, (11.65)

so that producers are not constrained by competition from firms who can produce at lower
rungs on the quality ladder for their variety. Instead, their closest competitors are other
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varieties.40 With a continuum of varieties they are monopolistic competitors. They maximize
current profits:

π(ν, t) = px(ν, t)x(ν, t)− ψ · q(ν, t)x(ν, t)

Intermediate good monopolists take downstream demand as given by (11.64) and choose
prices and production. This results in the profit-maximizing price

px(ν, t) =
ψ

1− φ · q(ν, t).

The marginal cost is ψ · q(v, t) and the markup is 1/φ/(1/φ− 1), as 1/φ is the elasticity of
substitution across intermediate good varieties in final goods production. Using the profix-
maximizing price, input demand becomes

x(ν, t) =

�
A(1− φ)

ψ

�1/φ

L, ∀ ν, t.

and in turn maximized profits are

π(ν, t) = φA

�
ψ

(1− φ)A

�1−1/φ

q(ν, t) · L ∀ ν, t. (11.66)

We can use the intermediate good quantities x (which do not depend on v or t) to find an
expression for aggregate output:

Y (t) =
A

1− φ

�
A(1− φ)

ψ

� 1−φ
φ

Q(t) · L,

where Q(t) is defined as the average quality of intermediate goods

Q(t) ,

1∫
0

q(ν, t)dν.

In turn, the amount of aggregate output devoted to intermediate goods is

X(t) =

1∫
0

ψ · q(ν, t) · x(ν, t)dν = ψ1−1/φ(Aφ)1/φ ·Q(t) · L.

Meanwhile, there is free entry into the research sector. Research firms choose how much
research to devote to each variety:

max
Z(ν,t)

ηZ(ν, t)

q(ν, t)
· λ · V (ν, t)− Z(ν, t),

40See the Appendix 11.A for how limit pricing might prevail in the case of “incremental” innovations with
step sizes below the monopoly markup on the right hand side in (11.65).
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where V (ν, t) is the expected present discounted value of profits for the current leader. The
innovator takes over the entire profit stream (creative destruction), and earns profits that
are scaled up by λ > 1 relative to that of the previous leader because profits are proportional
to the level of quality in (11.66). The first-order condition for researchers is

η

q(ν, t)
· λ · V (ν, t) = 1.

Note that, if there is positive research on all varieties, then the ratio of the value of a variety
to its quality level is the same for all varieties.

Would incumbents put effort into improving their own products to stave off creative
destruction? If they did so, they would only reap the increment to their value, and this
would not cover the cost of research to them:

η

q(ν, t)
(λ− 1)V (ν, t) <

η

q(ν, t)
λV (ν, t) = 1

This is called the Arrow Replacement Effect, which says that incumbents have less to
gain from innovation than entrants because λ− 1 < λ.41

The expected present discounted value of profits from being the current leader of a quality
ladder is:

V (ν, t) =

∞∫
t

[
e
−

s∫
t
r(s′)ds′

· e
−

s∫
t
z(ν,s′)ds′

]
π(ν, s)ds

where z(ν, t) is the instantaneous rate of innovations on line ν, z(v, t) , η · Z(ν, t)/q(ν, t).
The stream of profits is discounted by the real interest rate and the probability of creative
destruction.

Finally, a representative household maximizes the presented discount value of its utility
from consumption:

max
C(t),A(t)

∞∫
t

e−ρ·s
C(s)1−σ − 1

1− σ ds

subject to
Ȧ(t) = r(t)A(t) + w(t)L− c(t),

and a no-Ponzi game condition. Note that assets are simply the combined value of all
intermediate good monopolists, who are owned by the household:

A(t) ,

1∫
0

V (ν, t)dν

41In order to explain why incumbents very much do improve their own products in the world, one could
alter the model to have incumbents enjoy lower costs of innovating. If such costs are convex, however, then
there could be both incumbent innovation on their own products and creative destruction of competitor
products in equilibrium.
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The current value Hamiltonian for the household is therefore

H(c, a, µ) =
c1−σ − 1

1− σ + µ (r · a+ w − c)

where lower case c and a denote per-capita consumption and assets, respectively. The
solution to this problem yields the standard Euler equation

ċ

c
=
r − ρ
σ

,

and the usual transversality condition is

lim
t→∞

a(t) exp

 t∫
0

−r(s)ds

 = 0.

As with the Romer model, one can show that the unique decentralized equilibrium of the
quality ladder model entails no transition dynamics. That is, the economy is always on a
BGP with growth rate

g∗ =
Ẏ

Y
=
Ċ

C
=
Ẋ

X
=
Q̇

Q
.

Note that, because L is constant, c ≡ C/L grows at the same rate as C does. The Euler
equation then gives us one equation in the two unknowns

r∗ = σg∗ + ρ

where r∗ is the BGP real interest rate. And free entry into research gives us

V (ν, t)

q(ν, t)
=

1

λ η
, ∀ ν, t.

To obtain a constant value of each variety relative to its quality, we must have z(ν, t) =
z∗ ∀ ν, t. This in turn implies

V (ν, t)

q(ν, t)
=
φA

�
ψ

A(1−φ)

�1−1/φ
L

r∗ + z∗
=

1

λ η

⇒ r∗ + z∗ = λ η φA

�
ψ

A(1− φ)

�1−1/φ

L

To get an expression for average quality growth, it is useful to first difference average
quality:

Q(t) ,

1∫
0

q(v, t)dv → Q̇(t) =

1∫
0

q̇(v, t)dv
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Then

Q̇(t)

Q(t)
=

1∫
0

q̇(v, t)

Q(t)
dv =

1∫
0

q̇(v, t)

q(v, t)
· q(v, t)
Q(t)

dv =

1∫
0

q̇(v, t)

q(v, t)
dv ·

∫ 1

0

q(v, t)

Q(t)
dv︸ ︷︷ ︸

=1

where the last equality follows from the independence of quality growth across varieties. By
Uhlig (1996), the integral of a continuum of iid random variables with finite variance is equal
to the expectation of the variables:

Q̇(t)

Q(t)
=

1∫
0

q̇(v, t)

q(v, t)
dv = E

�
q̇(v, t)

q(v, t)

�
= (λ− 1) · z∗

Thus average quality Q(t) grows at a smooth rate despite the stochastic evolution of the
individual q(ν, t)’s:

g∗ = (λ− 1)z∗.

Combining the three BGP equations yields

g∗ =
ληφA

�
ψ

A(1−φ)

�1−1/φ
L− ρ

σ +
1

λ− 1

r∗ = ρ+
ληφA

�
ψ

A(1−φ)

�1−1/φ
L− ρ

1 +
1

σ(λ− 1)

z∗ =
ληφA

�
ψ

A(1−φ)

�1−1/φ
L− ρ

1 + (λ− 1)σ

Note that the growth rate is increasing in the innovation step size λ, the R&D efficiency
parameter η, and the scale of the workforce L. The growth rate is also decreasing in ρ,
σ, and ψ. All of these comparative statics are intuitive. For example, a higher population
size increases profits for each variety, thereby encouraging more research and therefore faster
growth. The is the same strong scale effect as in the Romer model described above. Just
as with that model, one could entertain diminishing returns in innovation to make growth
semi-endogenous, so that sustaining growth requires population growth.

Appendix 11.A provides the Social Planner’s solution to the quality ladder model, which
yields the growth rate

gSP =
(λ− 1)ηβ(1− β)−

1
β

�
ψ

A(1−φ)

�1−1/φ
L− ρ

γ

The Social Planner (SP) growth rate differs from the decentralized equilibrium (DE) growth
rate g∗ = gDE for three reasons. First, the planner sees only the incremental gain λ − 1 to
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innovation, whereas private innovators reap λ. This business stealing is a force for gSP < gDE.
Second, the planner uses intermediates more intensively than intermediate goods monopolists
(who discourage downstream purchases by charging a markup over marginal cost). This is
a force for gSP > gDE because the planner value a new variety more given it will be used
more. Third, the planner internalizes the positive knowledge externalities from past to
future innovation. Equivalently, the planner sees an innovation as lasting forever in that all
future innovations will build upon it. Private profits, in contrast, are truncated by creative
destruction. This is a force for gSP > gDE. To recap, the SP growth rate could be higher
or lower than the DE growth rate. That said, calibrations typically find the SP growth rate
to be far higher than the DE growth rate. See Jones and Williams (1998, 2000) for early
calculations, and Atkeson and Burstein (2019) for a more recent analysis.

11.6 Conclusion

The topic of this chapter — economic growth — is of the utmost importance for welfare. The
models and empirical results presented here have shaped our discipline on an unprecedented
scale. Virtually all macroeconomic models have a neoclassical core as a backbone irrespective
of whether they aim to study business cycles, long-run trends, or topics of international
macroeconomics.

The proximate causes of cross-country income differences that follow from a develop-
ment accounting exercise are crucial in directing research on development economics. The
literature has aimed to shed light on the sizable residual called TFP, be it with randomized
control trials, the sophisticated exploitation of quasi-natural experiments, or more structural
approaches that rely on a combination of theory and micro data.

The literature on endogenous growth is vibrant. The combination of theoretical building
blocks outlined in this chapter connect the aggregate growth rate to firm dynamics (entry,
exit, and the life-cycle firm growth) and market structure (concentration and market power).
Markups play a key role both as a source of misallocation as well as an incentive for entry
and innovation. Recent advances link the literature on growth with the one on industrial
organization and derive subtle policy recommendations for promoting research and allocative
efficiency. Mapping such theories to available micro data on firms and products fell on
particularly fertile ground. This provides exciting research opportunities for the years to
come.
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Chapter 12

Real business cycles

Kurt Mitman1

1Writing this chapter would not have been possible without Per Krusell. I’ve benefitted from interacting
with him as a long-time colleague and co-teacher of the first year macro sequence at Stockholm University,
and continue to learn and be inspired by him in my research and teaching endeavors. I am also indebted
to my teachers at Penn: Dirk Krueger, Randy Wright, Jeremy Greenwood, Harold Cole, Jesus Fernandez
Villaverde, and Greg Kaplan who laid the foundation for my education in macroeconomics. I also thank
Mark J. Bognanni and Alessandra Peter for feedback on earlier versions of this Chapter.
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12.1 Introduction

This chapter introduces the concept of business cycles and presents the core framework for
business cycle analysis: the real business cycle (RBC) model. This begs the question of what
is a business cycle and why the qualification “real” for the model. Business cycles are the
fluctuations of the economy around its long-run trend. The model is real, because we will
be considering the stochastic version of the growth model developed in Chapter 7, without
money or any nominal variables. This chapter can be seen as the natural continuation of
the previous one that focused on documenting and accounting for long-run growth patterns.
Now, instead will be focused more on understanding short-run fluctuations in the economy.

The fact that we use the term business cycles does not necessarily imply that short-run
fluctuations are periodic, like the sine or consine functions. We begin the chapter by zooming
in on the data to examine the short-run movements in aggregates like GDP. We’ll discuss ways
of extracting the trend from the longer time series and how to interpret the deviations from
the trend in the short run. Then we’ll document the co-movement of aggregate variables over
the “cycle.” Next, we’ll show how the stochastic growth model can quantitatively be used
to rationalize business-cycle fluctuations, the seminal contribution of Kydland and Prescott
(1982). Finally, we’ll discuss the successes (and shortcomings) of the RBC model, various
extensions, and where the literature has gone since it was introduced.

12.2 Business Cycles: A Historical Overview

The modern usage of the term business cycles refers to the fluctuations in economic activity
that an economy experiences over a period of time. We refer to them as cycles because
they are characterized by periods of economic expansion followed by periods of contraction
or recession. The study of business cycles has its roots in studies of economic crises of the
19th century. The Panic of 1825 was arguably the first economic crisis unrelated to war or
another external event, and resulted in a global economic downturn (Bordo 1998). Interest
in economic cycles grew as the 19th century saw a recurrence of boom and bust episodes
throughout the industrialized world.

Early work was primarily descriptive in nature. Economists documented cyclical re-
lationship in the data that appeared at different relative frequencies. Schumpeter (1939)
summarizes the three main types of cycles that had been identified in the data (and named
after the economists who identified them) during the late 19th and early 20th centuries:

1. Kitchin Inventory Cycle: A short cycle of about 3-5 years, often related to inventory
adjustments.

2. Juglar Fixed Investment Cycle: A medium-term cycle of about 7-11 years, associated
with fixed investment.

3. Kondratiev Long Waves: A long-term cycle lasting 45-60 years, driven by fundamental
technological innovations.
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While the early work did manage to identify cycles and provide evidence of co-movement
of different economic variables, there was little distinction between the impulses or shocks
that are at the origin of fluctuations and the propagation of those shocks through the macroe-
conomy. One of the first to make a distinction between impulse and propagation was Swedish
economist Knut Wicksell with his famous metaphor in 1918:

If you hit a rocking horse with a stick, the movement of the horse will be very
different from the stick. The hits are the cause of the movement, but the system’s
own equilibrium laws condition the form of movement.

The stick serves as the impulse to the economy, and the rocking in response to the hit the
propagation. In the 1930s, economists began to develop theories to explain both the impulses
and their propagation throughout the economy.

Schumpeter’s theory of business cycles was based on the idea that the impulses were
caused by technological innovations developed by entrepreneurs. Innovations should be in-
terpreted broadly here, for example they include the invention of new products and also
methods of production. Since coming up with new ideas is an inherently random process,
these served as the shocks to the economy. In his theory he also posited the innovations
tended to be clustered over time, with one innovation leading to a cascade of subsequent
ones. This clustering phenomenon lead to the cyclical nature of economic growth. These
cycles were viewed by Schumpeter as essential to the capitalist process, that economic de-
velopment happened due to innovations of entrepreneurs. He wrote Cycles are not, like
tonsils, separable things that might be treated by themselves, but are, like the beat of a heart,
of the essence of the organism that displays them. Thus, business cycles should be viewed
as the natural manifestations of the process of economic development. Indeed, this idea of
a fundamental link between growth and fluctuations continues to this day.2 For example,
the National Bureau of Economic Research (NBER) Business Cycle Dating committee—the
group that determines when the U.S. economy is in a recession (more on this later)—is
comprised of members of the Economic Growth and Fluctuations group of NBER.

Schumpeter’s theory was, in some sense, “creatively destroyed” before it made a signifi-
cant impact on economic thought at the time. The Great Depression of the 1930s prompted
a rethinking of economic theories that could explain such severe economic downturns. John
Maynard Keynes was at the forefront of this intellectual revolution. Keynes argued that
insufficient aggregate demand could lead to prolonged periods of high unemployment. He
believed that in the face of a decrease in aggregate demand, wages and prices might not
adjust quickly enough to restore full employment. As a result, government intervention,
in the form of fiscal policy, was necessary to stabilize the economy. One reason, perhaps,

2Schumpeter also emphasized the role of credit in facilitating innovations. Entrepreneurs may be con-
strained financially and have to borrow to finance their innovation activities; see Chapter 17. The banking
system plays a crucial role in providing this credit. However, this can also lead to over-expansions of credit,
contributing to the cyclical nature of the economy. These ideas are still relevant today: Ben Bernanke would
later win a Nobel prize for his work linking the severity of the Great Depression to bank failures and credit
disruptions.

327



why Keynes’ theory gained traction was because it both explained the Great Depression
and prescribed a way to fight the global slump. His seminal work, “The General Theory of
Employment, Interest, and Money” (1936), laid the foundation for what came to be known
as Keynesian economics. This school of thought dominated the study of business cycles until
1970s.

In the 1970s, the economic landscape changed with the occurrence of stagflation, a com-
bination of high inflation and high unemployment. This phenomenon was difficult to explain
using traditional Keynesian theories that posited a negative relationship between unemploy-
ment and inflation. Further, the surge in oil prices following OPEC restrictions on oil supply
pointed toward supply-side explanations, which were largely viewed as second-order in the
Keynesian theory. At the same time, monetary and fiscal policy in the 1970s in advanced
economies seemed ineffective at achieving policy targets of low and stable inflation.

At the same time that the Keynesian paradigm faced empirical challenges of explain-
ing stagflation, Robert Lucas in a series a papers (Lucas, 1972, 1973) began to challenge
the methodological approaches of Keynesian economics. At the time most macroeconomic
models posited “reduced-form” relationships between endogenous variables like consump-
tion, output, and inflation. Lucas argued that individuals form their expectations about
the future based on all available information, and that these expectations are, on average,
correct. This idea has profound implications for economic policy, suggesting that systematic
policy interventions might be ineffective in the long run as individuals would adjust their
behavior in anticipation of such policies (Lucas, 1976). This came to be known as the “Lu-
cas Critique” and quickly gained broad acceptance. Implicit in the critique was a call for a
macroeconomic framework based on microeconomic foundations of behavior of agents, such
as consumers and firms.

Lucas and Leonard Rapping took a first step towards incorporating rational expecta-
tions into business cycle analysis. They made significant contributions to the study of labor
supply in the context of business cycle fluctuations. Their work in the late 1960s and early
1970s sought to explain the observed pro-cyclical movement of labor supply using a rational-
expectations framework. Central to Lucas and Rapping’s theory is the idea of intertemporal
substitution. They posited that individuals make labor supply decisions based on expected
future wages. When individuals expect higher wages in the future, they are willing to sub-
stitute leisure today for work in the future, and vice versa. In their model, temporary, unan-
ticipated changes in wages lead workers to adjust their labor supply. For instance, if wages
are temporarily high, workers will choose to work more today and enjoy leisure later when
wages return to their normal level. Lucas and Rapping’s theory had important implications
for understanding business cycle fluctuations. They argued that observed fluctuations in
employment could be largely explained by workers’ voluntary decisions to adjust their labor
supply in response to unexpected wage changes, rather than by involuntary unemployment.
This perspective was in contrast to the traditional Keynesian view, which emphasized the
role of demand deficiencies in causing unemployment during recessions. Lucas and Rapping’s
work suggested that labor market fluctuations might be better understood by focusing on the
supply side and workers’ intertemporal decisions. Intertemporal substitution has remained
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central in modern macroeconomic models.

While Lucas called for new macroeconomic models based on explicit micro foundations,
he did not provide an operational framework to implement them. Building on the ideas of
Lucas, including rational expectations and intertemporal substitution, Finn Kydland and
Edward Prescott introduced an operational framework for macro analysis in the 1980s: the
real business cycle theory. They introduced a stochastic version of the growth model studied
in the previous chapter. They argued that business cycle fluctuations could be largely
explained by real shocks, such as technological innovations, rather than by monetary or fiscal
policy. Using a calibrated dynamic general equilibrium model, Kydland and Prescott showed
that productivity shocks could generate economic fluctuations that resemble actual business
cycles. Their work emphasized the importance of understanding the intertemporal decisions
of households and firms in analyzing macroeconomic phenomena. More than the particular
application of their paper, Prescott viewed the RBC model as a paradigm for macro analysis
analogous to the supply and demand construct of price theory (Prescott, 1986). From a
methodological point of view, Kydland and Prescott essentially introduced into economics
the concept of solving models numerically and relying on computer simulations to analyze
model behavior (Kydland and Prescott’s, 2004). Their study thus laid the foundation for
quantitative macroeconomics, using dynamic general equilibrium theory to quantitatively
account for real-world data and became the dominant paradigm of modern macro. As the
Nobel Committee highlighted in their motivation for awarding Kydland and Prescott the
Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel in 2004: Kydland and
Prescott’s work changed not only the basic methodology of business cycle analysis, but also our
perspective on the importance of various types of shocks and their propagation mechanisms.

12.3 A first look at the data

One of the key methodological innovations of the RBC paradigm was to seriously connect
economic theory and real world economic data. Thus, we begin this chapter by first looking
at the time series of U.S. output (gross domestic product of GDP). In Figure 12.1 real U.S.
GDP is plotted for the post-war period. As emphasized in Chapter 11, U.S. GDP displays a
strong upward growth trend. However, in this chapter we will focus on fluctuations around
that trend, or the business cycles. Two natural questions arise: how do we define business
cycles in the data, and how do we isolate the cycle from the trend component in GDP and
other macroeconomic variables?

In the U.S. the business cycle is defined by its turning points, namely the peaks and
troughs. In between a peak and a trough is a recession, and between a trough and peak
an expansion. Periods of expansion are considered “normal times”, whereas recessions are
thought of as brief episodes of economic contraction. While the terms seem clear, they
are not formal statistical definitions that can be applied to real-time data to determine
the current state of the economy. Because of the underlying trend of economic growth,
a recession could still be a period of positive GDP growth, albeit at a slower rate. This
example highlights the importance of separating the cycle from the trend in the economy.
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Figure 12.1: U.S. Real GDP and NBER Recessions

In the U.S., a committee officially determines whether the economy is in a recession. The
NBER Business Cycle Dating Committee has officially dated U.S. recessions since 1978. The
committee uses a variety of monthly and quarterly data on measures of economic activity
to date business cycles retrospectively. The description of how they determine when the
economy is in recession is reproduced below:3

NBER Recessions

The NBER’s definition emphasizes that a recession involves a significant decline in eco-
nomic activity that is spread across the economy and lasts more than a few months. In
our interpretation of this definition, we treat the three criteria—depth, diffusion, and
duration—as somewhat interchangeable. That is, while each criterion needs to be met
individually to some degree, extreme conditions revealed by one criterion may partially
offset weaker indications from another. For example, in the case of the February 2020
peak in economic activity, the committee concluded that the subsequent drop in activity
had been so great and so widely diffused throughout the economy that, even if it proved
to be quite brief, the downturn should be classified as a recession. Because a recession
must influence the economy broadly and not be confined to one sector, the committee
emphasizes economy-wide measures of economic activity.

3Source: https://www.nber.org/research/business-cycle-dating, accessed January 5, 2024.
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Figure 12.2: Stylized representation of business cycles

Given the inherently qualitative nature of the NBER recession dating, we will instead
focus on a statistical definition following Lucas (1977) and Kydland and Prescott (1982)
that defines business cycles as recurrent fluctuations of output along a slow-moving trend,
and the associated co-movements of other aggregate quantities. The basic idea is that
we want to split trending or non-stationary variables, such as GDP, into a non-stationary
trend component and a stationary, cyclical component. A stylized representation of the
decomposition into trend and stationary is plotted in Figure 12.2. Through the lens of the
neoclassical growth model presented in the previous chapter, the goal would be to remove
the exogenous deterministic labor-augmenting productivity growth, and transform the model
into the stationary part. In the context of the model, that would be easy to achieve. However,
identifying the trend in the data presents more of a challenge, since we only observe the
combination of trend and stationary components. Further complicating the analysis is that
the longer-run trend may not be constant, but could be something more akin to a Kondatiev
Long Wave discussed above. To make progress we will discuss techniques for filtering the
data, that is, extracting trends of different frequencies. In this chapter, we will discuss the
most common method for detrending in the RBC literature, the Hodrick-Prescott filter, as
well as another commonly used method, the band-pass filter.

12.3.1 Filters

The most common approach to business cycle analysis involves filtering the data to transform
it into a stationary series that can be studied in isolation. The idea is to come up with a
graph similar to Figure 12.3.
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Figure 12.3: Actual and Trend Log of U.S. GDP

The optimal way of extracting the trend and cycle components from the data, in principle,
should depend on the underlying theory or assumptions about the data generating process
(DGP). We can represent the DGP for a macroeconomic time series, Yt, as a trend-stationary
process by assuming that we can decompose them into trend and cycle components, Yt =
τt + Yc,t. For example, imagine the trend component is simple exogenous growth τt = y0e

γt

and the cyclical component is simply i.i.d, Yc,t = εt. One could then simply estimate a linear
trend to capture the trend component, and the residual from that trend would be represent
the cyclical one. Another common formulation for the DGP is to assume that the process is
difference-stationary. A process that’s stationary in first-differences could be represented as
∆Yt = Ȳ + φ(L)εt, where L is the lag operator (LXt = Xt−1), ∆ ≡ (1− L) is the difference
operator, and φ is a polynomial. For example, a random walk with constant drift could be
represented as ∆Yt = Ȳ + εt. In finite time series the data can be approximately equally
well by difference-stationary and trend-stationary processes (Hamilton, 1994). In practice,
therefore, there are many potential DGPs that could be consistent with the time series
data. Any filter chosen will be understood to only represent an approximation of the true
underlying DGP, and thus will only capture some aspects of the data. Most business cycle
analysis therefore does not specify an underlying DGP for the data, but instead proceeds
with filtering in a more informal way. Proceeding in this fashion is appropriate if the results
are not sensitive to the particular filter chosen. While this type of robustness analysis
was carried out in early RBC contributions (e.g., Prescott, 1986), it is typically omitted in
current business cycle analysis. This chapter focuses primarily on the most widely used filter
in business cycle analysis, the Hodrick-Prescott filter.4

4See Hamilton (2018) for a discussion of shortcomings of the Hodrick-Prescott filter.
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The Hodrick-Prescott Filter Given a time series {Yt}Tt=0, the Hodrick-Prescott (HP)
filter decomposes it into a trend component τt and a cyclical component Yc,t such that:

Yt = τt + Yc,t

The trend component τt is obtained by minimizing the following objective function:

min
{τt}

T∑
t=1

(Yt − τt)2 (12.1)

subject to
T−1∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2 ≤ µ,

where µ is a parameter that controls the smoothness of the trend component. Smaller values
of µ impose smoother paths for the trend component of the time series. In the limit, with
µ = 0, τt+1−τt = τt−τt−1 ∀t, which imposes a linear trend. Thus, the minimization balances
a trade off between tracking the raw data perfectly and following a linear trend.

Under the assumption that the constraint binds, we can re-write the minimization prob-
lem using the Lagrangian, where we attached λ as the lagrange multiplier on the constraint:

min
{τt}

[
T∑
t=1

(Yt − τt)2 + λ
T−1∑
t=2

((τt+1 − τt)− (τt − τt−1))2

]

Under this formulation µ no longer appears, but we can think of parameterizing the filter
with λ. λ is acting as a smoothing parameter. Higher values of λ imply tighter constraints,
so the in the limit as λ→∞ we extract a linear trend. For quarterly data, Prescott (1986)
argued that a reasonable choice for λ is 1,600. The appropriate value will depend on the
frequency of the data at hand. Ravn and Uhlig (2002) show how the HP filter parameter
should be adjusted by multiplying it with the fourth power of the observation frequency
ratios. For example, given a choice of 1,600 for quarterly data, 6.25 would be the analogous
choice for annual data.

To implement the HP filter, one needs to solve the above optimization problem. While
there are various methods to do this, a common approach is to use matrix algebra and the
system of first-order conditions (FOCs) from the problem. The FOC for τt for 2 ≤ t ≤ T −2
are given by:

τt − λ (∆τt −∆τt−1 − 2 (∆τt+1 −∆τt) + ∆τt+2 −∆τt+1) = Yt

For the end conditions the FOCs will be slightly different (because they cannot rely on
data from before t = 0 or after t = T ). But one can show that this system of FOCs has the
following form: (I + λA)τ = Y , where I is the identity matrix, τ is the vector of τt, Y is
the vector of Yt, and A is a square pentadiagonal matrix given by:
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1 −2 1 0 · · · · · · · · · · · · 0

−2 5 −4 1 0 · · · · · · · · · 0

1 −4 6 −4 1 0 · · · · · · 0

0 1 −4 6 −4 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · 1 −4 6 −4 1 0

0 0 · · · 0 1 −4 6 −4 1

0 0 · · · 0 0 1 −4 5 −2

0 0 · · · 0 0 0 1 −2 1


Given a value of λ, we can obtain the trend by solving the system τ = (I + λA)−1 Y .

In principle, one could invert the matrix by hand, but modern computer algorithms can
quickly invert the matrix. Then, we can recover the cyclical component by differencing the
data from the trend component. In practice, most common programming languages used by
economists (e.g., MATLAB and Python) have built-in functions for HP-filtering the data.
There are some things to keep in mind, however, when using the HP filter. First, the choice
of λ can influence the resulting decomposition. There is no universally optimal choice for
λ, and different applications may require different values (see Marcet and Ravn, 2004, for
further discussion). Second, at the end points because the filter is only using one-sided
information it may produce spurious results towards the beginning and end of the sample.
Finally, the particular functional form for the HP-filter is not based on economic theory.

Spectrum and band-pass filters In our discussion so far of filtering and separating
trends versus cyclical components, we have discussed the idea of trying to isolate cycles at
“business cycle frequencies”, that is, cycles that occur with a frequency of something like
5-10 years. Ideally, then, we’d like to extract the components of that data at that frequency
and remove any longer-run trends that occur with longer frequencies. We typically express
time-series data in economics in the time domain, but for stationary time series there exists
an equivalent representation in the frequency domain, as the sum of sine and cosine functions
of various frequencies, amplitudes and phases.5 Higher frequency means a rapidly changing
wave. The sine function has a range of (−1, 1), but the amplitude can be adjusted by pre-
multiplying the function. The phase, or where the sine wave is in its cycle can be adjusted
by adding or subtracting from the argument of the function (which shifts the wave to the
left or right). Thus, we can write a general sine wave as B sin(ft+ φ), where B controls the

5To remind you of the properties of sine, the function sin (2πtf) is plotted for difference frequencies f in
Appendix Figure .1. The first sine wave completes a full cycle at t = 2π, whereas the wave with frequency
of 2 completes two full cycles by that time, and the wave of frequency 4 completes four cycles.
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amplitude, f controls the frequency, and φ controls the phase.

It is possible to represent any stationary process Yt as follows:

Yt =

∫ π

0

A(ω) cos(ωt)dω +

∫ π

0

B(ω) sin(ωt)dω,

where for any ω, A(ω) and B(ω) are random variables, and those functions A and B are
what define the process. What this expression implies is that the time series is a sum, with
random weights, of sine and cosine waves, and the sum is over all frequencies between 0
and π. If we want to isolate a particular range of frequencies, we can imagine a filter that
removes any frequency that falls outside of the intended range. Such a filter exists and is
called the band-pass filter. Using the band pass filter one can isolate and extract cyclical
components focusing on any specific range of frequencies (e.g., 5-10 years for business cycles)
in the data. A more detailed discussion of the band-pass filter is provided in the Appendix.

12.3.2 Stylized business-cycle facts

Now that we’ve discussed various tools for extracting cyclical components at business-cycle
frequencies, we use them to present a set of empirical regularities (or stylized facts) that
motivated the development of the RBC framework and subsequent business cycle theory.
These facts will all be based on filtered data. Our baseline set of facts will follow the
convention in the literature and focus on deviations from an HP filtered trend. But we’ll
also show that the basic facts are robust to different filtering, in particular we’ll consider
the two other filters discussed in the previous section, first differencing and the band-pass
filter. In this section we’ll also investigate how the business cycle facts have changed over
time, comparing the original statistics from Kydland and Prescott (1982) to those based on
all currently available data.

The first set of facts that we will describe are unconditional moments, in particular a
variety of second moments and correlations of aggregate economic time series. Later in the
chapter we will discuss conditional correlations, the correlation between different variables
conditional on knowing their value at a particular time t. Doing so requires information
about the joint process of the variables, and therefore making further assumptions about the
particular relationship between them. We will discuss them in the context of our discussion
of vector autoregressions (VARs) and local projections (LPs).

One of the defining features of business cycles is the comovement of aggregates in booms
and recessions. The standard in the business-cycle literature is to define co-movements by
looking at correlations of aggregates relative to GDP, Yc,t. Focusing on contemporaneous
correlations, we say that a variable Xc,t is pro-cyclical if it comoves positively with output,
corr(Yc,t, Xc,t) > 0. A variable that comoves negatively with output, corr(Yc,t, Xc,t) < 0, is
countercyclical. In addition to contemporaneous correlations, to understand propagation it
is also helpful to understand which variables lead or lag movements in output. A variable
Xc,t is said to be leading output if corr(Yc,t+s, Xc,t) is highest and positive for some s > 0,
and is lagging if corr(Yc,t+s, Xc,t) is highest and positive for some s < 0.
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The data on output, consumption, investment, government consumption, and the prices
level (here measured as the GDP deflator) come from the National Income and Product
Accounts (NIPA) provided by the U.S. Bureau of Economic Analysis (BEA). The data on
employment come from the Current Employment Statistics provided by the U.S. Bureau of
Labor Statistics (BLS). The data on the unemployment rate is from the Current Population
Survey (CPS) provided by the BLS. The data on hours and wages (per hour) are from
the non-farm business sector provided by the BLS. The fed funds rate (the policy rate for
the central bank) is provided by the Board of Governors of the Federal Reserve System.
All quantity variables are expressed in per capita terms by dividing by the civilian non-
institutional population aged 16+. All variables are all expressed in logs, except for the
federal funds rate. The data are at a quarterly frequency, and all cyclical components are
then extracted using an HP filter with λ = 1,600. The second moments and correlations
are listed in Table 12.1. In addition in Figure 12.4 we plot the actual data and HP trend
for output, consumption, investment and, hours. In order to illustrate business cycle co-
movement we plot consumption, investment, hours, and TFP in deviations from trend in
Figure 12.5. In all four panels we also plot GDP as the blue dashed line to illustrate the
co-movement and relative volatility of the different series.

The stylized facts that emerge from this analysis is that there is evidence of consumption
smoothing—the relative standard deviation of consumption is lower than that of output.
Investment, on the other hand, is significantly more volatile (about 2.5x) than output. The
volatility of hours is about the same as output, while employment is slightly less volatile.
Unemployment and government consumption are also significantly more volatile than output.
Consumption, investment, employment, hours and productivity are strongly procyclical,
and unemployment is strongly countercyclical. Employment tends to lag the cycle slightly.
In addition, if one disaggregates further by sector, you can show that more sectors co-
move positively (with some exceptions, like mining). Disaggregating consumption reveals
that durable expenditures are the most volatile, followed by non-durable expenditures, and
services are the least volatile. Despite very volatile and strong co-movement of quantities,
prices (here real wages and the price level) tend to be much less volatile and less cyclical.
One of the difficulties in measuring the cyclicality of wages is due to selection. The workers
that lose their jobs in recessions are not randomly selected. On average, those workers tend
to be lower wage workers. Thus, in recessions the composition of workers shifts towards
higher wage workers, mitigating the decline in the average wage.6

One additional empirical regularity is that all of the macro aggregate time series exhibit
significant serial correlation. This begs the question, is the serial correlation high because
the shocks driving the business cycle are very persistent, or because shocks are relatively
transitory, but the internal propagation mechanism is strong enough to generate significant
serial correlation in aggregates? TFP (and labor productivity) is also significantly serially

6To show that the stylized business cycle facts are robust to different filtering, in Appendix Tables .1 and
.2 the analysis is repeated using a band-pass filter and the first difference filter. While the exact numbers
clearly are not identical across the different filtering methods, the volatilities and relative volatilities are
similar. And, importantly, the cyclicality of all variables (except for wages) is the same across all three
filters.
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Table 12.1: Business cycle moments U.S. Data 1949-2022

Standard Relative Auto- Cross correlation of x with

Variable x Deviation (%) Std to σy correlation y(t− 1) y(t) y(t+ 1)

Output (y) 1.63 1.00 0.78 0.78 1.00 0.78

Consumption 1.07 0.65 0.64 0.58 0.75 0.53

Gov. Consumption 3.02 1.85 0.89 0.23 0.15 0.04

Investment 4.37 2.68 0.86 0.61 0.77 0.71

Employment 1.58 0.97 0.81 0.79 0.79 0.48

Hours 2.11 1.29 0.80 0.77 0.86 0.61

Unemployment 15.63 9.57 0.80 -0.79 -0.83 -0.55

Lab. Productivity 1.15 0.70 0.72 -0.03 0.27 0.38

Wages 1.24 0.76 0.72 -0.03 -0.00 0.15

Price Level 0.92 0.56 0.92 -0.02 -0.10 -0.21

TFP 0.90 0.55 0.75 0.17 0.51 0.52

Fed Funds Rate 3.60 2.20 0.97 0.23 0.18 0.08
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Figure 12.4: Actual and Trend of Logs of U.S. Aggregates

Figure 12.5: Deviations from Trend of U.S. Aggregates

correlated, and is about as persistent as output. This suggests that using TFP as the driving
force of business cycles in the model may automatically generate high persistence of other
variables even if the model does not generate much internal propagation.

Looking more closely at the lower right panel in Figure 12.5, after the mid-1980s TFP
and GDP appear to be less correlated. To investigate the potential changing nature of
business cycles, in Tables 12.2 and 12.3 we recompute the cyclicality using two subsamples,
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one from 1949-1984 (corresponding roughly to the time period of the original RBC papers),
and one for the 1985-2022. Output is significantly less volatile after the 1980s as compared to
before (standard deviation of 1.24% compared to 1.97%), this is sometimes referred to as the
“Great Moderation.” While the strong co-movement of output, consumption, investment,
and labor market variables has been stable over time, some aggregates exhibit significantly
different co-movement since the original RBC papers were written. In particular, government
consumption switches from being pro-cyclical in the early period to being countercyclical in
the second half of the sample. This suggests that fiscal policy has perhaps become more
Keynesian over time, using government spending to try to stabilize recessions. The federal
funds rate has also become more pro-cyclical, suggesting a change in monetary policy over the
time period. Relatedly, the price level does goes from being countercyclical to pro-cyclical.
These phenomena will be discussed further in the context of the New Keynesian model in
Chapter 16. Perhaps more surprisingly, wages and labor productivity switch from being
strongly pro-cyclical in the early sample to counter-cyclical in the later sample. Indeed,
the recessions from 1991 onwards featured so-called “jobless recoveries”: output recovered
quickly, but employment was much slower to recover. Jobless recoveries and countercyclical
labor productivity present a challenge for models of productivity-driven business cycles that
we will discuss towards the end of the Chapter.

12.3.3 Conditional data moments

As discussed at the beginning of the Chapter, modern business cycle analysis is interested
both in understanding the impulses to the economy and their propagation. A fundamental
tool for understanding the propagation of structural shocks is through an impulse response
function or IRF introduced in Chapter 8. The IRF traces out the effect of a one-time shock to
the economy to current and future values of other aggregates, i.e., the conditional response
of variables to the realization of the shock. IRFs, which are linear representations and
should be interpreted as approximations applicable to small shocks, visualize the complex
interdependencies and dynamic responses in the macroeconomy. Analyzing the IRF is a key
tool for understanding the dynamics in the system, and as we’ll discuss in the next section
we can construct model analogues to IRFs to directly compare model and data. In this
subsection we apply the two common methods for estimating conditional data moments and
IRFs to the RBC context: vector autoregressions (VARs) and local projections (LPs).

Vector autoregression A VAR model for business cycles might be used to forecast la-
bor productivity, output, and investment simultaneously, where each of these variables is
expected to affect the others:
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Table 12.2: Business cycle moments U.S. Data 1985-2022

Standard Relative Auto- Cross correlation of x with

Variable x Deviation (%) Std to σy correlation y(t− 1) y(t) y(t+ 1)

Output (y) 1.24 1.00 0.64 0.64 1.00 0.64

Consumption 1.20 0.97 0.56 0.56 0.86 0.43

Gov. Consumption 1.26 1.02 0.83 -0.32 -0.38 -0.39

Investment 3.64 2.94 0.90 0.63 0.79 0.70

Employment 1.56 1.26 0.72 0.69 0.78 0.34

Hours 2.19 1.77 0.74 0.70 0.88 0.52

Unemployment 15.60 12.59 0.74 -0.72 -0.83 -0.43

Lab. Productivity 1.09 0.88 0.76 -0.47 -0.29 -0.05

Wages 1.46 1.18 0.69 -0.21 -0.31 -0.06

Price Level 0.68 0.55 0.93 0.37 0.30 0.14

TFP 0.73 0.59 0.78 -0.33 -0.03 0.10

Fed Funds Rate 2.83 2.29 0.99 0.30 0.29 0.25

At = a1 + b11At−1 + b12yt−1 + b13it−1 + η1,t

yt = a2 + b21At−1 + b22yt−1 + b23it−1 + η2,t

it = a3 + b31At−1 + b32yt−1 + b33it−1 + η3,t

Defining

Xt ≡


At

yt

it

 , εt ≡

η1,t

η2,t

η3,t


we can write the (reduced-form) VAR as:

Xt = BXt−1 + ηt

where B is the matrix of coefficients on the lags (in many empirical implementations more
than one lag is used) and ηt is the vector of innovations. As discussed in Chapter 8, the key
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Table 12.3: Business cycle moments U.S. Data 1949-1984

Standard Relative Auto- Cross correlation of x with

Variable x Deviation (%) Std to σy correlation y(t− 1) y(t) y(t+ 1)

Output (y) 1.97 1.00 0.84 0.84 1.00 0.84

Consumption 0.89 0.45 0.81 0.66 0.75 0.69

Gov. Consumption 4.15 2.11 0.90 0.35 0.26 0.12

Investment 5.00 2.54 0.83 0.59 0.76 0.70

Employment 1.56 0.79 0.90 0.89 0.83 0.59

Hours 2.00 1.02 0.88 0.88 0.90 0.70

Unemployment 15.66 7.96 0.87 -0.89 -0.88 -0.66

Lab. Productivity 1.21 0.61 0.68 0.23 0.63 0.66

Wages 0.93 0.47 0.77 0.13 0.33 0.40

Price Level 1.14 0.58 0.91 -0.17 -0.28 -0.37

TFP 1.05 0.54 0.73 0.42 0.76 0.73

Fed Funds Rate 3.89 1.98 0.95 0.25 0.16 0.01

identification issue is what we will assume about the relationships among contemporaneous
ηs. To implement theoretical restrictions, we first write the (structural) VAR as

AXt = FXt−1 + εt,

where A now is a matrix that captures the contemporaneous relationships among the vari-
ables in Xt and εt is a vector of structural shocks (as opposed to just reduced-form innova-
tions). Let us, as also proposed as an example in Chapter 8, use timing restrictions:

A =


a11 0 0

a21 a22 0

a31 a32 a33

 .
Thus, we assume that the first variable (TFP) does not respond to contemporaneous move-
ments in output (since the off diagonal elements in the first row are zero). The second
variable, output, responds to productivity, but not to investment. Finally, investment can
respond contemporaneously to both productivity and output. To solve the model, we invert
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the A matrix, then estimate the reduced-form VAR, and then back out the structural shocks
from the reduced-form errors. The impulse response of variable i at time t+ s to a shock to
variable j at time t can then be backed out by solving for ∂Xi,t+s/∂εj,y.

From the perspective of the RBC model that follows in the next section, the identifying
restrictions imposed here are consistent with the theory. If we think that TFP shocks drive
business-cycle fluctuations and capital is predetermined within the period, then assuming
that productivity does not respond to output or investment is reasonable. Further, given
that it takes one period for capital investment to come online, assuming that output and
labor productivity do not respond to investment today is consistent with the theory. What
happens if we were to estimate such an SVAR on U.S. data? Using the data series that we’ve
already discussed, we can estimate the SVAR and Figure 12.6 plots the identified IRFs to a
shock to TFP.

Figure 12.6: IRF to TFP

The IRFs show significant co-movement between productivity, output, and investment
from the shock to TFP. These IRFs suggest that shocks to productivity are promising candi-
dates for explaining the unconditional moments described in the preceding section. Produc-
tivity shocks could generate the right co-movements and also the relative volatilities between
output and investment.

Local projections In the 2000s, a new method was developed (Jordà, 2005b) to estimate
conditional moments, referred to as local projections (LPs). Unlike VARs, the LP method
relies on the existence of a time series of an identified shock. The idea is that other methods
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can be used to identify shocks to productivity or monetary policy, and then with those shocks
in hand, conditional moments can be estimated.7 Here, the IRFs can be estimated directly
on the shocks using ordinary least squares (OLS) regressions:

Xi,t+s = βi,sεt + νt+s,

where εt is now the previously identified structural shock. One would run one regression for
each horizon s, and for each variable i, to trace out the impulse response of variable i to
the identified shock given by the sequence of estimated {β̂i,s}Ts=0. For an in-depth discussion
we refer the reader to Ramey (2016). If we assume that our measure of TFP (calculated
as the Solow residual) is an exogenous shock, we can generate the equivalent IRFs to TFP,
Output, and Investment that we constructed from the VAR. The results are plotted in Figure
12.7. The impulse responses are qualitatively similar to those derived from the SVAR, which
is reassuring and further reinforces the notion that TFP shocks are a potential important
driver of business cycle fluctuations. We now turn to the theory behind the real business
cycle model.

12.4 Real business cycle model

To build a micro-founded framework for business cycle analysis, Kydland and Prescott built
on the neoclassical growth model discussed in Chapter 11. They introduced uncertainty
into the process for TFP and created the stochastic neoclassical growth, or RBC model.
The stochastic neoclassical growth model is the workhorse for all of modern business cycle
theory. It also forms the core of all New Keynesian business cycle models and International
Macro models used today. Before proceeding the the full model, it is instructive to consider
a simplified version of the model without capital, but only labor supply. This version of the
model will serve as the core for the development of the New Keynesian model in Chapter 16
and the International Macro models in Chapter 21.

12.4.1 Simple business cycle model

We begin with a simple version of the RBC model that we can solve in closed form. Consider
a representative household that maximizes its expected discounted utility. Time is discrete
and lasts forever. The utility function is characterized by log preferences that are separable
between consumption ct and leisure 1 − `t, where `t represents labor supply. The utility
function is given by:

U = E0

∞∑
t=0

βt (ln(ct) + φ ln(1− `t)) (12.2)

7Recent work by Plagborg-Møller and Wolf (2021) shows that in fact LPs and VARs estimate the same
impulse responses.
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Figure 12.7: IRF to TFP

The production function of the representative firm is linear in labor and subject to TFP
shocks zt:

Yt = zt`t, (12.3)

where we assume that zt follows an AR(1) process in logs, log zt = ρ log zt−1 + σε. Perfect
competition and linear production on the firm side imply that the equilibrium wage will be
equal to TFP, wt = zt.

The representative household receives income from supplying labor and has access to
trade a risk-free one period bond that is in zero net supply:

ct +Bt = wt`t +RtBt−1, (12.4)

where Rt is the gross real rate and Bt are the bonds purchased by the household in period t.
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Equilibrium and labor supply In equilibrium, the household’s choice of labor supply
balances the marginal utility of consumption against the disutility of labor. Substituting
out for consumption using the budget constraint, and taking the first-order condition with
respect to `t, we arrive at the static intratemporal optimization condition:

wt
ct

=
φ

1− `t
. (12.5)

We can derive the Euler equation from the intertemporal optimality condition:

1

ct
= βEt

Rt+1

ct+1

. (12.6)

Constant labor supply is optimal in equilibrium The last step in characterizing
the equilibrium is to recognize that since the bond is in zero net supply and we have a
representative household, it must be the case that in equilibrium the household holds no
bonds. Next, we can eliminate consumption from the intratemporal labor supply condition
using the budget constraint and set Bt = 0 for all t to arrive at:

φ

1− `t
=

wt
wt`t

=
1

`t
(12.7)

Thus, equilibrium labor supply is independent of the wage, is constant in all periods
and pinned down by the preference parameter. The economy is still subject to fluctuations,
but economy exhibits zero amplification or propagation, only impulses. Output is equal to
the constant labor supply times TFP, so consumption, output and TFP will be perfectly
correlated, whereas those three quantities will be uncorrelated with hours worked—starkly
at odds with the business cycle facts presented earlier in the chapter. Recalling the results
on labor supply in Chapter 10, the equilibrium outcome may seem surprising. With log-log
preferences, the Frisch elasticity is given by eF = 1−`

`
. If the model is calibrated such that

households work 1/3 of their available hours, then these preferences imply a constant Frisch

elasticity of 2/3
1/3

= 2. Given the high elasticity of labor supply, how can we have no hours
response to large fluctuations in the real wage? Importantly, remember that the Frisch elas-
ticity is defined for a constant marginal utility of consumption. In this version of the model,
households have no way of transferring resources across periods. Thus, the real interest rate
has to adjust to make it optimal for households to choose not to intertemporally substitute
across time. When TFP is high, the real rate falls to rationalize higher consumption today. If
the real rate were constant, or households had access to an asset to transfer resources across
time, then they would optimally increase their labor supply when the wage rate was high and
lower it when the wage was low, and use their savings to smooth consumption. Going back
to Chapter 11, in the RBC model we insist on preferences that are consistent with constant
labor supply when consumption and output are growing at a constant rate. Higher TFP
has both income and substitution effects, but the assumption of linear production means
that they both cancel out in equilibrium. Constant labor supply is thus a consequence of
balanced-growth preferences and consumption and output that are perfectly correlated.
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Keep these results in mind when approaching Chapter 16 on the New Keynesian model.
The core production side of that economy is identical to the one presented here. There, the
introduction of nominal rigidities will allow monetary policy to control the real interest rate,
which will in turn pin down fluctuations in consumption. Wages will have to adjust to clear
the labor market. There the driving force will be different from the RBC model, movements
in the real rate will drive the fluctuations in output via the intertemporal substitution in
consumption channel.

To sum up the simple model, introducing TFP shocks and elastic labor supply is not
sufficient for matching the facts on business cycles. As we will see next, with Cobb-Douglas
production and capital that depreciates at a rate consistent with the data, we break the
constant labor supply assumption, and generate volatile hours and investment over the cycle.

12.4.2 Core RBC model

We now move to describe the more general version of the model, which we refer to as the
core RBC model. We will discuss the strengths and successes of the core model, and then
later we will discuss various extensions to the core the model that were developed to address
some of its shortcomings. Given the thorough treatment of the neoclassical growth model
in the Chapter 7, this chapter will be rather brief in the exposition of the core model with
shocks. In particular, we will only study the planning problem here, as we know how the
equilibrium is defined from Section 7.5 of the earlier chapter. We will also abstract from
growth in population and productivity. Alternatively, we could explicitly include growth and
then transform the model into a stationary one.8

Preferences The economy is populated by a measure one identical households. They
have preferences over consumption c and leisure l represented by the period utility function
U(c, l). Households are assumed to have 1 unit of time that they can allocate to work or
leisure. We assume that households maximize expected discounted utility, and that their
preferences thus can be written as

E0

∞∑
t=0

βtU(ct, lt)

Technology Output is produced according to a production function F that takes capital
kt and labor 1− lt as inputs:

Yt = ztF (kt, 1− lt),
where zt is stochastic TFP. F is assumed to have the usual properties, i.e., has constant
returns to scale, concave in both arguments, and it satisfies the Inada conditions. We assume
that log productivity follows an AR(1) process, log(zt) = ρzzt−1 + σzεt, where εt ∼ N(0, 1)

8As discussed earlier, balanced growth preferences are homothetic, so renormalizing the model under
constant growth rates is relatively trivial.
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are iid random variables. Capital depreciates at constant rate δ and it takes “time to build”
capital, in that investment in period t comes online in period t + 1. The evolution of the
capital stock can be written as:

kt+1 = (1− δ)kt + it.

Virtually all of the analysis for the case of the neoclasical growth model goes through
nearly unchanged for the RBC model. In particular, one could show that the competitive
equilibrium is efficient (i.e., the first welfare theorem holds) and that we can characterize
the competitive equilibrium allocations using the solution to the social planner problem.
The main difference is that allocations will now depend on the history of realizations of the
productivity shock. Thus, we will proceed directly to analyzing the social planner problem
in recursive form.

The planning problem for this economy can be written recursively as:

V (k, z) = max
k′,n

U(zF (k, n) + (1− δ)k − k′, 1− n) + E [V (k′, z′)|z]

where we’ve substituted out for consumption using the budget constraint. Further, we’ve
written the maximization function in terms of hours worked n = 1 − l. The solution to
this problem delivers decision rules for capital accumulation, k′ = g(k, z), and one for hours,
n = h(k, z).

The first-order conditions for the maximization problem (assuming differentiability of the
value function) are given by

zF2(k, n) =
U2(c, 1− n)

U1(c, 1− n)
(12.8)

and
U1(c, 1− n) = βE[V1(k′, z′)|z] (12.9)

where U1 is the marginal utility of consumption, U2 is the marginal utility of leisure and V1

is the first derivative of the value function with respect to capital (its first argument). The
envelope condition reads as

V1(k, z) = (zF1(k, n) + 1− δ)U1(c, 1− n). (12.10)

Using this in equation (12.9) we obtain

U1(c, 1− n) = βE [(z′F1(k′, n′) + 1− δ)U1(c′, 1− n′)|z] . (12.11)

Thus the key optimality conditions of the real business cycle model, are (12.8) and (12.11).
The intratemporal optimality condition (Equation (12.8)), equates the marginal product of
labor (what would be the wage in the competitive equilibrium) with the marginal rate of
substitution between consumption and leisure. Temporary positive shocks to z will thus lead
to increases in labor supply, as households intertemporally substitute leisure away from a
time when the marginal product of working hours is high. The strength of this response will
depend on the Frisch elasticity discussed in Chapter 10.
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Equation (12.11) is the standard intertemporal Euler equation, which equates the marginal
utility of consumption today to the expected marginal utility of consumption tomorrow, ad-
justed by the time discount factor β and the stochastic rate of return on capital, z′F1(k′, n′)+
1− δ, which in turn equals the gross real interest rate in the competitive equilibrium. To the
extent that shocks to productivity are persistent, a positive shock to productivity today will
raise productivity tomorrow. That in turn, ceteris paribus, increases the marginal product of
capital, which will induce households to reduce consumption and increase investment tomor-
row. The strength of this response will depend on the intertemporal elasticity of substitution
discussed in Chapters and 4 and 10.

Despite the RBC model being a fundamentally non-linear one, the original work by
Kydland and Prescott (and much of the RBC literature that followed), solved the model
by linearized around the non-stochastic steady state.9 When the model is linearized, that
generates linear functions for the aggregate variables, as a function of the two aggregate
states of the economy, capital k, and TFP, z, for example y = G(k, z) and k′ = H(k, z).
Using that function, we can construct the impulse response for the model by drawing a shock
z0 = zss+ ε0 at steady state, and then progressively applying the policy function (assuming
no further shocks). That would generate a sequence y0 = G(kss, z0), y1 = G(H(kss, z0), z1),
y1 = G(H(H(kss, z0), z1), z2), and so on, where we’ve substituted the dynamics for k using
H and zt = ρzt−1. The sequence {y0/ε0, y1/ε0, · · · } would represent the model IRF to a
shock to TFP. The linearized functions are essentially equivalent to a VAR representation,
since the composition of linear functions is linear, and we can represent a variable at time t
as a linear function of lags of the variable. The model IRF could then be compared to one
estimated by a VAR or an LP to compare how the propagation in the model compares to
that in the data.

IRF estimation with MIT-shocks

Analogous to how how LPs and VARs estimate the same IRFs, Boppart, Krusell, and
Mitman (2018) recently have shown how models can be linearized by computing the
perfect-foresight impulse response of the economy to an unexpected shock—a so-called
“MIT shock.”a Instead of having a recursive linear representation of the aggregate
variables as in the example above, the model is linearized in sequence space, where the
only state variable is the time since the shock. The model can then be simulated simply
by drawing shocks and superimposing them.b In the case of the representative-agent
model, this is not necessarily advantageous numerically, since the recursive formulation
only has two state variables, whereas for the impulse responses we need to keep track
of t values for the impulse response. But for heterogeneous-agent models, discussed
in Chapter 19, the recursive formulation has an infinite-dimensional state variable (the
wealth distribution), and so linearizing the model in the sequence space a la Boppart

9Subsequent work showed that the RBC model is well approximated by linear approximations because
the variances of TFP shocks is small.
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et al. (2018) is more efficient computationally and conceptually easier to implement.

aNot so named because the author of this chapter is the MIT-man, but coined by Sargent (a Har-
vard alumnus) to criticize that type of analysis that was currently being carried out at MIT as being
inconsistent with rational expectations. But, as Boppart et al. (2018) showed, if the model is linear,
then solving for the “MIT shock” is fully consistent with the rational expectations equilibrium.

bAuclert and Mitman (2018) show how to estimate and simulate models using simulated method of
moments in the sequence space.

12.4.3 The Kydland-Prescott blueprint for business-cycle analysis

In addition to providing a framework for business-cycle analysis, Kydland and Prescott
(1982) essentially created a blueprint for how modern, quantitative macroeconomics would
be conducted. The starting point for any paper is a precise economic question. Questions
can either be positive (e.g., ”Can technology shocks account for the co-movement in output,
consumption and investment in the data?”) or normative (e.g., ”How should we optimally
provide unemployment insurance over the business-cycle?”) in nature. Importantly, ques-
tions are about measurement and answers are numbers. The key ingredient to answering the
question is a structural theory of the economy (a model). The model is a measurement de-
vice used to derive the quantitative implications of the theory. The model should be chosen
from a set of “well-tested” theories, i.e., those that are based on numerous micro-econometric
studies. The model can be extended to include the necessary ingredients or frictions to an-
swer the question. Next, the parameters of the model need to be chosen, or the model needs
to be “calibrated.” The original blueprint of Kydland and Prescott (1982) was to calibrate
the model along some dimensions of the data and then used to explain other dimensions of
the data. As we’ll see below, they calibrated the model to be consistent with “long-run”
facts (e.g., growth) and then evaluated it based on how well it explained business cycle facts.
Finally, the model is solved numerically on the computer to solve for the equilibrium pro-
cess and run the computation experiment that answers the original economic question. For
example, the answer to Kydland and Prescott’s original question was that shocks to TFP
could explain roughly 70% of the fluctuations in output over the business cycle.

Of the steps outlined above, all should be clear, except for the “calibration” step, where
we have yet to specify how this is done in practice and conceptually what the exercise
represents. The general strategy for calibrating a model is to use empirical moments at
the macro level, as well as microeconomic evidence from households or firms to discipline
preference and technology parameters in the model. In Prescott’s view, the philosophy of
calibration was to pick parameters to generate a model that is consistent with established
economic theory and key stylized facts in the data. The goal is not statistical fit, per se,
but to create models that are consistent with some aspects of the data to test how well they
can explain others. Calibration also enabled models that at the time were too complex to
be structurally estimated to be operationalized and studied.

Calibration and measurement The basic question of Kydland and Prescott (1982) was
how much fluctuations in de-trended macro aggregates could be explained by “technology
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shocks.” The idea behind the shock was one to aggregate TFP, as described in the RBC
theory above. The question did not preclude other shocks from being important for business
cycle fluctuations (like government-spending shocks, or shocks to people’s preferences), but
focused on analyzing the role of one particular shock. The question arises, however, how
does one discipline the shock process to be fed into the model?

The starting point for measuring TFP was Solow’s growth accounting approach, discussed
in several different contexts earlier in the book (e.g., in Chapters 2 and 11), thus using the
assumption of a CRS production function, perfect competition and measurement of inputs
and output, and profit maximization. Measurement of the capital stock is not immediate:
the national income and product accounts typically only include measures of investment and
depreciation, but not actual measures of the capital stock. The stock of capital is usually
inferred from a “perpetual inventory” method. The basic idea is to make an initial guess for
the capital stock, then based on measures of investment and estimates of the depreciation
rate of capital δ, compute forward the time series of capital using the accumulation equation
from the growth model: kt = (1− δ)kt−1 + it. A typical value estimated for δ at a quarterly
frequency is 0.025.

Direct use of Solow’s method involves using time-series data on capital and labor shares.
Since these had not varied greatly over the postwar period (up until the mid-1980s at least),
a Solow residual series based on computing the average share and then applying this share
period by period did not generate large errors. Therefore, the measure for TFP series zt was
typically measured as

log zt = log yt − α log kt − (1− α) log nt.

Fluctuations in output at business cycle frequencies can arise from changes in inputs or
from changes in TFP. By computing the Solow residual, we can gauge the extent to which
technology shocks drive to business cycle fluctuations. We can also estimate a stochastic
process for those shocks to productivity to use as an input to the RBC model. A result
is that the process for zt is well approximated by an AR(1) process. Typical estimates on
post-war data find that the persistence is quite high (ρz = 0.95 at a quarterly frequency)
with a standard deviation of innovations of σz = 0.007.

Limitations of the approach

One of the main criticisms of this approach to calibration is that technology shocks
are not measured directly; instead, they could simply be errors in the measurements
of inputs and outputs (see the discussion of hard-to-observe utilization rates below).
Negative shocks are challenging to understand too. On the other hand, our technologies
do advance over time and the notion that these advances are not perfectly even—occur
at faster and slower rates over time—is quite natural. A period of slow technological
development then implies negative shocks but only relative to trend.

A related point is that multi-sectoral versions of the RBC model must have tech-
nology shocks that are highly positively correlated across sectors, since sectoral outputs
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(and employment) have this feature. Is such an assumption reasonable: why would the
construction sector and the service sector experience positive technology shocks at the
same time? Clearly, there are general technological developments—such as IT—that
benefit all sectors, but it is far from clear that these dominate.

Returning to the possibility of mismeasurement, consider variable capacity utilization
as well as quality improvements in the capital stock. During booms, firms would tend to
use their capital more intensively, leading to higher measured TFP. Conversely, during
recessions, the utilization of inputs drops, leading to lower TFP. To correct for this we
can adjust capital Kt for its utilization rate ut: K

∗
t = utKt. The composition of labor

and capital can change over time. For instance, an experienced workforce or newer
machinery can lead to higher output even with the same quantity of inputs. Thus,
methods have been developed to adjust labor `t for changes in workforce composition,
education, and experience, and to adjust capital Kt for changes in the quality and type
of capital goods.

Before seeing the model in action in the next section, it’s important to note that the
research program undertaken by Kydland and Prescott was not designed or intended to ex-
plain business cycle fluctuations solely with technology shocks. The question was simply:
how much could technology shocks account for fluctuations? Their original agenda included
as a next step to introduce monetary features into the model and evaluate how much they
contribute to fluctuations. The success of technology shocks in explaining the lion’s share
of business-cycle fluctuations is what ultimately led the researchers to instead increase the
complexity and richness of the real setup. Given our previous discussions of the changing
cyclicality of productivity post-1985, had Kydland and Prescott developed business-cycle
theory in the 2000s it’s quite possible that they would have continued to explore the impor-
tance of monetary (and other) phenomena.

12.4.4 RBC model in action

After having estimated a process for TFP and specified the production technology, the final
step of the calibration is to specify and parameterize household preferences. Here, again,
Prescott wanted to restrict the degrees of freedom to be consistent with economic theory and
empirical evidence. Given that the RBC framework was built on the neo-classical growth
model, the preferences should be consistent with balanced growth. That restricted prefer-
ences over consumption to be of the CRRA form. Later, King, Plosser, and Rebelo (1988)
proved that preferences over consumption and leisure that were consistent with balanced
growth and constant hours had to be of the form:

(ctv(lt))
1−σ − 1

1− σ .
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Here, we take v to bea strictly increasing, strictly concave function, satisfying v′(0) =∞.10

In the original calibration, Prescott argued that balanced growth with increasing wages and
consumption implied a unitary elasticity of substitution between consumption and leisure,
and thus specified the aggregator between consumption and leisure as Cobb-Douglas, c1−φlφ.
The question is then how to parameterize the shares, φ, the CRRA parameter, σ, and the
discount factor, β. Again he turned to the implications of the growth model. In steady
state the real interest rate is equal to the growth rate of consumption times σ divided by
β. Then given data on the average real interest rate and consumption growth, β could be
backed out as a function of σ. The value for σ was chosen based on other estimates that
tried to measure it in the data based on life-cycle consumption patterns and the response of
consumption and stock portfolios. These data suggested that σ = 1 was a reasonable value,
implying log preferences. This then implies a quarterly value for β = 0.99, representing an
annual 4% discount rate. The period utility function was then given by:

u(ct, lt) = (1− φ) log ct + φ log lt

The last parameter to be calibrated is φ. Given that the time endowment is normalized to 1,
there are 24 hours in the day and people typically work 8 hours, we can pick the value of φ
to generate lt = 2/3. Using the first-order conditions of the model eq (12.8) and multiplying
both sides by n and dividing by c, with our functional forms we arrive at:

φ

1− φ
nt

1− nt
= (1− α)

yt
ct
.

With α specified, and the average of yt/ct measurable in the data, given a target of nt = 1/3
we can then solve for φ = 0.497.

Now that we’ve calibrated the model, we can solve for the dynamic system and simulate
the model time series to see how they compare to U.S. business cycle statistics. The sec-
ond moments are collected in Table 12.4. All variables are treated as in the data, as long
deviations from an HP filtered trend with smoothing parameter 1,600.

The key observation from the table are that TFP shocks successfully generate business
cycle fluctuations: output fluctuates significantly in response to technology shocks. The
volatility of output is larger than that of TFP, implying that the model generates amplifica-
tion. Consumption, investment, and hours are all pro-cyclical, as in the data. Investment is
more volatile than output, while consumption is less volatile than output, both relationships
consistent with the empirical findings.

While the model is successful in generating fluctuations in output, the volatility in the
model is lower than that in the data (about 1.33% in the model, compared to 2% in the
1949-1984 time period). Hours in the model are less volatile than output, whereas in the
data they exhibit approximately the same volatility. This suggests that the Frisch elasticity
of 2 is actually too low to match the fluctuations in hours worked over the cycle (which

10Boppart and Krusell (2020) later generalized these preferences to accommodate balanced growth and
falling hours, consistent with recent macro data across the OECD, or hours in the U.S. from a longer-run
perspective.
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Table 12.4: Business cycle moments in core RBC model

Standard Relative Auto- Cross correlation

Variable x Deviation Std. Dev. σy Correlation of x with y

Output y 1.33 1 0.73 1

Consumption c 0.42 0.32 0.81 0.90

Investment i 4.13 3.10 0.72 0.99

Hours n 0.64 0.48 0.72 0.98

TFP z 0.92 0.69 0.43 0.99

in turn would help increase volatility in output). Finally, the correlation of all variables
with output is higher than in the data. This is likely due to the fact that we are only
considering a single impulse to the model (the TFP shock) which generates the procyclical
co-movement between all variables. In reality, the economy likely experiences many kinds
of shocks (we will discuss government spending shocks later in this chapter) that exhibit
different co-movement patterns. Simulating the model with additional shocks could bring
down the strong correlations.

The results from the core RBC model can be understood by analyzing the two key forces
in the model. One is how willing households are to work more when the returns to working
are high. The second force involves the willingness of households to smooth consumption
over time in the face of fluctuating income. When a positive productivity shock hits, the
incentives to work increase (MPL rises) and output increases (about 1%). In the simple
model, consumption also increased one-for-one with output, implying no increase in labor
supply. Now, households have access to capital and can smooth their consumption, so
it will increase by less than output. As a result, consumption will increase a little (here
about 0.3%), but there will be a strong response of investment (more than 3%). Now, since
consumption responds little, the response of hours will be closer to the Frisch elasticity
(it will be lower, here about 0.5% because consumption does increase). One way to think
about the RBC model is that labor demand is fluctuating (as MPL moves) and moves
along the labor supply curve, which in this case is roughly a line with slope equal to the
Frisch elasticity. The adjustment is possible because capital accumulation allows households
to smooth consumption. This highlights the importance of capital for the RBC model to
generate amplification and business cycle co-movement as in the data.

To better explain the mechanism in the model in response to a TFP shock, we can
plot the impulse response functions in Figure 12.8. The IRFs show us in response to the
impulse (the TFP shock) what happens to all of the endogenous variables in the model. By
comparing how much output increases relative to TFP, we can get a measure of the amount
of amplification in the model. Similarly, we can measure the propagation of shocks by looking
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Figure 12.8: TFP Shock in RBC Model

at how long the increase in output lasts relative to the persistence of the exogenous process
of TFP. Finally, the IRFs show us the shape of the responses, where they look more linear or
hump-shaped. The basic RBC model generates amplification, but does not generate much
actual propagation of TFP shocks. We can illustrate this more concretely by solving the
model with less persistent processes for TFP. In Figure 12.9, plots the impulse responses for
the baseline calibration (ρ = 0.95) and also for iid TFP shocks (ρ = 0) and TFP shocks with
a half-life of one quarter (ρ = 0.5). The persistence of output is essentially the same as the
TFP process across the three impulse responses. The less persistent processes generate more
amplification on impact (with hours and output responding by more), because households
are more willing to intertemporally substitute their labor supply. Households take advantage
of the transitory increase in the wage to increase labor supply, but the extra earnings are
mostly saved as higher investment and only eaten down over time, to smooth consumption.

To further illustrate the sensitivity of the model to the two key forces, we explore sensi-
tivity to the intertemporal elasticity of substitution (recall with CRRA preferences the EIS
is 1/σ) and to the Frisch elasticity. In the baseline model we had an EIS of 1 and a Frisch
elasticity of 2. We can recalibrate the model with higher and lower Frisch elasticities (0.5
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Figure 12.9: Sensitivity to TFP Shock Persistence in RBC Model

and 10), and higher and lower EIS (0.5 and 2), and compare the IRFs to those in the baseline
model. In Figure 12.10 we plot the IRFs for those alternate calibrations.

Focusing first on the left panel, if we increase the Frisch elasticity, households are more
willing to intertemporally substitute labor supply, and we get more amplification. Hours
increase by more in response to the TFP shock, which leads to higher output, and more
volatile investment as households save the extra earnings to smooth consumption going
forward. With a lower Frisch elasticity we get the opposite, more dampening. The core
RBC model gave a response of hours and output that was too low relative to the data,
suggesting that a calibration with a higher Frisch elasticity may improve the fit. However,
at the same time that leads to more volatile investment, which was already too high relative
to the data.

Turnings to the right panel of Figure 12.10, a higher intertemporal elasticity of substitu-
tion also leads to more amplification of output and labor supply in response to TFP shocks.
On impact, however, the response of consumption, is non-monotonic in the EIS (it actually
falls in both cases). When households value consumption smoothing less, they are more
willing to intertemporally substitute to take advantage of the productivity shock. House-
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holds are willing to increase consumption by less today and lower leisure more to increase
investment to take advantage of the persistently higher TFP. That leads to a bigger boom
in consumption in the medium run, after househoulds have built up the capital stock. Then,
as TFP returns towards steady state, households begin eating down the extra capital that
they had accumulated. When households are less willing to intermporally substitute con-
sumption, they substitute more on the leisure margin, as can be seen by the solid yellow line
in the figure. Hours rise on impact, but quickly fall below steady state levels.
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To sum up, evaluated in the context in which the original RBC papers were published,
the model was very successful at generating business cycle fluctuations and co-movements.
The model explained nearly 80% of fluctuations in output, and replicated the relative volatil-
ities of investment and consumption. That being said, the model still featured too much
consumption smoothing and hours that were not volatile enough. Several extensions to the
core framework (some of which are discussed later in this chapter) were developed to address
some of the shortcomings of the model.

12.5 Extensions to the RBC Model

In this section, we briefly discuss some of the most prominent extensions to the RBC model,
many of which remain as the building blocks for modern business cycle analysis.

12.5.1 Extensions of the Real Business Cycle Model with Indivis-
ible Labor

One of the first extensions of the RBC model was to introduce indivisible labor. One of the
critiques of the basic RBC framework was that consumers could frictionlessly adjust their
hours at business-cycle frequencies, which was questioned by applied microeconomists. As
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discussed earlier in this chapter the implied Frisch elasticity by the calibration was approx-
imately 2. Early empirical estimates using micro data (e.g., MaCurdy (1981) and Altonji
(1986)) suggested the Frisch elasticity was close to zero.11 The “micro” Frisch elasticity
appeared small, but at the macro level the Frisch elasticity needed to be much higher to
match the data.

A second critique was that there was no notion of unemployment or inactivity: everyone
was always fully employed at the hours that she wished to work. At the same time, the data
suggest that much of the aggregate hours adjustment in the data actually occurs along the
extensive margin—because of fluctuations in aggregate employment—not because of hours
conditional on being employed. Hansen (1985) and Rogerson (1988) introduced indivisibili-
ties into the labor supply choice. They made the simple assumption that a consumer could
either work full time, supplying h̄ hours, or not work at all. The discrete choice introduces
potential non-convexities, which would complicated the dynamic programming problem of
the household. To simplify the analysis, they assumed that people had access to lotteries to
convexify their labor supply choice. For a given fraction πt of people working in period t,
the planner has to allocate consumption to those who work and those who does not:

max
c0t,c1t

Eu(ct, ht) = πtu(c1t, 1− ĥ) + (1− πt)u(c0t, 1),

subject to

πtc1t + (1− πt)c0t = ct,

where ct is per capita consumption available in period t, and πt is the probability of being
assigned to work. The solution implies c1t = c0t = ct. With additive logarithmic curvature
as in the calibration earlier, we obtain

Eu(ct, ht) = (1− φ) log(ct)− φ̂ht,

where φ̂ = −φ log(1 − ĥ)/ĥ is a constant and ht is total hours worked, i.e., ĥπt. Thus,
the model essentially collapses to the core RBC model, except now with an infinite Frisch
elasticity at the extensive margin, since the disutility of hours is linear. The model also has
a low (in this case 0 by construction) elasticity at the intensive margin. As the result, the
model can better match the large empirical employment fluctuations and at the same time
generate small fluctuations in hours worked conditional on being employed.

12.5.2 RBC Model with Capital Adjustment Costs

A second shortcoming of the core RBC model was that investment was too volatile relative to
output. One way to dampen the investment response to TFP shocks is to introduce capital
adjustment costs to explain gradual investment behavior (Hayashi, 1982). Costs represent
the real resource costs incurred by firms when changing their capital stock and are meant

11One limitations of these early studies was that they focused on prime-age males. Women and younger
and older men tend to have more elastic labor supply.
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to capture various factors, including installation and setup costs, costs related to training
workers to use new technologies, and costs associated with selling old equipment.

The investment adjustment cost shows up in the capital accumulation equation:

kt+1 = (1− δ)kt + it −Ψ(it, kt)

where Ψ(it, kt) is the functional form for the capital adjustment costs. Typically, we assume
that adjustment costs are convex (to keep the optimization problem well behaved), and

take a quadratic form Ψ(it, kt) = ψ
2

�
it
kt
− δ

�2
kt.

12 The idea is that maintain the capital

stock at its previous level by replacing the depreciated capital is costless (e.g., maintenance
as opposed to buying new machines). The quadratic formulation yields a shadow price of

“installed” capital equal to 1 + ψ
�
it
kt
− δ

�
, which we define as qt: Tobin’s q. Firms increase

investment when the price of capital exceeds that of output (or consumption), and reduce it
otherwise.

When firms face these costs in adjusting their capital stock, they will spread their in-
vestment decisions over time. This can lead to more persistent and amplified responses to
shocks, helping the model better match the observed persistence and magnitude of business
cycles. All New Keynesian models with capital also feature adjustment costs to dampen the
response of investment to movements in the real rate.

12.5.3 RBC Model Variable Capacity Utilization

Variable Capacity Utilization was introduced by Greenwood, Hercowitz, and Huffman (1988)
and further explored by others. The basic idea is that firms can choose how intensively to
use their capital stock depending on current prices for their goods. You can imagine that
machines could be run for multiple shifts of workers, up to 24 hours a day. Or they could be
used for one eight hour shift and then sit idle the other sixteen hours of the day. Variable
capacity utilization allows for more flexible responses to shocks, as firms can adjust capital
usage without immediate investment. The effective capital in the production function is thus
modified as utkt, at the cost of higher depreciation for higher capacity utilization:

kt+1 = (1− δ(ut))kt + it.

The idea is that if you utilize your capital more intensively today, then it will depreciate
faster. Variable capacity utilization allows another margin of adjustment in response to
TFP shocks. Now, firms can increase their effective capital services in addition to hiring
more labor. This leads to greater amplification of TFP shocks, as compared to the standard
model. The measurement of TFP shocks, however, now needs to be adjusted, since our
Solow residual approach assumed a constant depreciation rate in constructing the capital
stock series.

12Note also that the formulation is homogeneous of degree 1 in (i, k), so as to be consistent with zero
profits for firms.
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12.5.4 RBC Model with Additional Shocks

In the standard RBC model, there is only one shock, zt. As a result, all variables are highly
correlated with each other. One way to break the high correlation between all of the vari-
ables is to introduce additional shocks. Here we discuss two of the most common additional
shocks in the RBC literature, investment-specific technology shocks and government spend-
ing shocks.

RBC Model with Investment-Specific Technology Shocks These shocks affect the
efficiency of new capital goods. They separate the technology affecting consumption goods
production from the technology affecting investment goods production, allowing for differen-
tial productivity growth rates. The concept was introduced in a series of papers by Green-
wood, Hercowitz, and Krusell (1997b, 2000) who looked at both the long-run and business
cycle implications of investment-specific change; the long-run part is discussed in Chapter
11. Proposing investment-specific productivity shocks was motivated by the negative corre-
lation between the price and quantity of investment in equipment at long-run and business
cycle frequencies (the opposite of what one would expect from the adjustment cost model
discussed above). In addition, investment-specific shocks can break the strong correlation
between consumption and investment in the core model. The capital accumulation equation
changes as follows:

kt+1 = (1− δ)kt + qtit

where qt is the investment-specific shock. They found that investment-specific shocks can
account for roughly 30% of business cycle fluctuations.

Government Spending shocks Another common shock introduced is a government
spending shock. The shock can help break the high correlation between wages and hours,
in which is at odds with the data. Let gt indicate per capita government expenditure, so we
modify the resource constraint from the core model to read:

ct + it + gt = yt.

Why does introducing government consumption help break the correlation between hours and
wages? Suppose households care about an aggregate consumption Ct = [θgϕt + (1− θ)cϕ]1/ϕ,
where ϕ measures the elasticity of substitution between c and g. If the elasticity is very
high, government spending is like private consumption, and it will not have any effect on
the outcomes we’ve looked at so far. On the other hand, if this elasticity is low, government
spending is more like a tax and it reduce available resources, increasing labor supply due to
negative income effect.

In this section, we discussed various frictions and extensions that could be added to the
RBC model to try to bring it closer to the data. While each of these extensions improved
on the core model, it would be helpful if we had a systematic way to evaluate and quantify
which forces in the model deviate from outcomes in the data. Next, we introduce such a
methodology.
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12.6 Business Cycle Accounting

Chari, Kehoe, and McGrattan (2007) propose Business Cycle Accounting (BCA) as a method-
ology that can be used to assess how different economic frictions (such as technology shocks,
labor market frictions, or fiscal policy variations) contribute to business cycle dynamics. We
can think of the frictions as deviations from the behavior that would be implied by the core
RBC model. Their motivation was to provide a structured way to evaluate different frame-
works (including extensions to RBC) based on their ability to explain observed economic
fluctuations. The approach introduces four broad potential frictions into the RBC model:
efficiency wedges (technology), labor wedges (labor market), investment wedges (capital
investment), and government spending wedges (fiscal policy). These wedges can be inter-
preted as distortions from the planner’s allocation (recall that the equilibrium in the core
RBC model is efficient) that could arise from various frictions or policies.

The wedges amount to modifications of the equations in the dynamic programming prob-
lem faced by the households that show up as potential distortions:

1. Efficiency Wedge (zt): This wedge affects the production function, which shows up
as a TFP shock.

Yt = ztF (kt, nt)

2. Labor Wedge (1 − τnt ): This wedge shows up in the household’s budget constraint
as a tax on labor earnings and distorts the labor-leisure choice and can be seen as
distortions in the labor market. Equation (12.8) is modified as:

(1− τnt )ztF2(kt, nt) =
U2(ct, 1− nt)
U1(ct, 1− nt)

3. Investment Wedge (1/(1 + τ it )): This wedge, which multiplies investment in the
budget constraint, affects capital accumulation equation and can be interpreted as
frictions in the investment sector. Equation (12.11) is thus modified as:

U1(ct, 1−nt)
[
1 + τ it

]
= βE

[(
zt+1F1(kt+1, nt+1) + (1− δ)

[
1 + τ it+1

])
U1(ct+1, 1− nt+1)|zt

]
.

4. Government Consumption Wedge (gt): This variable affects the resource con-
straint and can be seen as reducing output (and in this sense is a distortion), given
that utility is not affected by it.

ct + it + gt = Yt

In addition, we have to modify the household budget constraint with lump-sum transfers Tt,
so that the aggregate resource constraint holds in equilibrium.

In practical terms, the efficiency wedge can capture a variety of phenomena, including
technological changes, market power, changes in regulatory environments, and other factors
that affect how efficiently an economy can convert inputs into outputs. In the framework, it
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will show up identically to a change in TFP that we’ve considered thus far. The labor wedge
captures discrepancies between the marginal rate of substitution between consumption and
leisure and the marginal product of labor. Factors contributing to the labor wedge include
search frictions, taxation, and other policies affecting labor supply and demand, such as
unemployment insurance or minimum wage laws. A significant labor wedge indicates that
the labor market is not operating efficiently, potentially leading to underemployment or an
inefficient allocation of labor resources. The frictions underlying the labor wedge will be
explored further in Chapter 18 that introduces frictional labor markets and search.

The investment wedge is a measure of any distortions affecting the relationship between
the cost of investment and the return on investment. It can arise from financial frictions, tax-
ation on capital income, and policies affecting savings and investment decisions. An adverse
investment wedge means that investment in the economy is lower than what would be ex-
pected based on the fundamentals of the economy, leading to underinvestment in productive
capital and, consequently, slower economic growth.

Finally, the government spending wedge affects the allocation of resources between private
and public sectors. It reflects the impact of government expenditure (and taxation policies
to fund this expenditure) on the economy’s productive efficiency and the private sector’s
consumption and investment decisions. A government spending wedge might arise from
government spending either crowding out private investment by raising interest rates or by
reallocating resources in ways that are not aligned with market efficiency.

In order to implement the BCA approach, we first calibrate the preference and technology
parameters of the model. Here, Chari et al. (2007) follow a similar procedure to the one
we discussed above for calibrating the core RBC model, using the same functional forms
and choices for the intertemporal elasticity of substitution and Frisch elasticity. Next, they
assume that the four aggregate shocks (the wedges) follow an AR(1) process. Then they log-
linearize the model with respect to the aggregate state and estimate the stochastic process for
the wedges via maximum likelihood comparing the model generating time series for output,
hours, investment, and government consumption from both the data and the simulated time
series generated by the model. Armed with the estimated time-series and stochastic process
for the wedges, they can then evaluate the consequences of the various wedges in isolation
(or combinations of the four).

The outcome of the BCA estimation is that the efficiency wedge and the labor wedge
are the two most important wedges for driving business cycle fluctuations: about 70% of the
variance in output fluctuations are driven by the efficiency wedge and 25% by the labor wedge.
These findings hold even when the authors look at the Great Depression (the main exercise
was based on post-war data). The findings suggest that the potentially most promising
extensions to the RBC model are ones that introduce explicit frictions in the labor market.
The estimated labor wedge in log-deviations from an HP-filtered trend and in levels are
plotted in Figure 12.11. Focusing first on the left panel, we can see that the labor wedge
and output are highly correlated and have nearly the same standard deviation over the
estimation sample: when output is low, the “tax” on working is high, making the wedge
high: it is as if people like working less in recessions. Clearly, labor-market frictions and
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Figure 12.11: The estimated labor wedge from BCA

involuntary unemployment is a plausible interpretation of this finding, but not the only one.
Turning to the right panel, the level of the labor wedge has increased significantly over time
(meaning less distortions in the labor market). The timing of the secular change in the labor
wedge coincides with the changing nature of fluctuations that we saw in the data post-1985.

Recent work on “jobless recoveries”

The labor wedge itself explains nearly 75% of the variance in fluctuations in labor,
suggesting that the labor wedge is potentially related to the phenomena of “jobless
recoveries” that we discussed earlier in the Chapter. What could explain both the
cyclical and secular trends in the labor wedge? Two recent theories have emerged that
explain “jobless recoveries” based on real phenomena. One, proposed by Mitman and
Rabinovich (2019), posits that countercyclical and unemployment-dependent extensions
of unemployment benefits act as a time-varying policy wedge. Using a framework with
frictional labor markets similar to that developed in Chapter 18, they show that benefit
extensions explain roughly 1/3 of post-war labor market dynamics, and can explain the
emergence of jobless recoveries (even though the underlying parameters of the model
and shock processes remain constant).

Another explanation points to a striking trend in the U.S. around the same time
period: namely the increase in female labor-force participation. The increase was par-
ticularly pronounced for married women. A series of recent papers (Olsson et al., 2019;
Fukui, Nakamura, and Steinsson, 2023; Albanesi, 2019) thus show that for men, even the
recessions before 1991 were “jobless”, but masked in the aggregate by increasing female
labor-force participation along the extension margin. The secular increase in participa-
tion can be explained by the decline in the gender-wage gap, which would mimic the
secular trend in the estimated labor-wedge. When the secular increase in female par-
ticipation plateaus in 1990, the jobless recoveries emerge in the aggregate. These facts
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can be rationalized in an extension to the RBC model with indivisible that takes gender
and household composition seriously.

These examples help illustrate why the core of business cycle research has moved
beyond the standard RBC model. Frictions in the labor market and household het-
erogeneity have emerged as important features in explaining business cycle phenomena
(see, e.g., Krusell, Mukoyama, Rogerson, and Şahin, 2017; Krueger, Mitman, and Perri,
2016). These will be discussed in Chapters 18 and 19, respectively.

12.6.1 Current frontiers of business cycle research

More than 40 years after the publication of Kydland-Prescott, business-cycle research con-
tinues to thrive. The COVID-19 pandemic, ensuing recession, and subsequent global surge in
inflation have made clear that the period of tranquillity leading up to the Great Recession—
known as the Great Moderation—is over. As predicted by Lucas (1980):

“One would expect developments to arise from two quite different kinds of forces. . . Of
these forces the most important. . . consists of purely technical developments that
enlarge our abilities to construct analogue economies. . . The second source of
technical developments is changes in the questions we want models to answer. . . ”

Researchers have continued to extend the core RBC framework to meet the economic
challenges of the 21st century. In the decade since the Great Recession, we have seen
progress in incorporating household heterogeneity into workhorse macro models. One of the
critiques of modern macro was its focus on the representative agent. While real business
cycle theory was built on micro foundations, the frameworks were inconsistent with extensive
empirical micro evidence on household behavior. The research frontier is now focused on
making the core RBC theory a micro-consistent framework, i.e., consistent with empirical
microeconomic evidence on household and firm behavior, expectations, and outcomes (for
consumption, an idea pioneered by Deaton 1992b). It combines incomplete markets at the
household level, and frictional product and labor markets.
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Chapter 13

Government and public policies

Marina Azzimonti, Jonathan Heathcote, and
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13.1 Introduction

The government has a large impact on economic outcomes through fiscal policy, monetary
policy, and regulation policy. In this chapter, we focus on fiscal policy; in particular, on
taxes, government spending, and debt. After presenting a summary of how governments
tax, spend and borrow in practice, we turn to theory and discuss how fiscal policy choices
impact the competitive equilibrium allocation, and how to frame the problem of optimizing
over those policy choices. Monetary policy is discussed in Chapter 16. Our discussion centers
on developed economies, with a particular focus on the United States. Chapter 22 introduces
fiscal policy in emerging markets.

In Chapter 6, we discussed conditions under which the First Welfare Theorem holds.
When markets are complete and competitive and there are no public goods or externalities
–i.e., there are no “market failures”– competitive equilibrium allocations are Pareto optimal.
Why then, do governments intervene in the economy? There are three main rationales.

The first is that there are public goods, such as national defense, that the market cannot
provide because there is no way to restrict the enjoyment of public goods to those house-
holds who choose to pay for them. There are other goods and services, like education and
healthcare, that are not pure public goods, but whose consumption confers large positive ex-
ternalities. For example, if my neighbors are vaccinated, they are less likely to make me sick.
Thus, absent government involvement, education and healthcare might be under-consumed.

A second reason governments intervene is that markets are not complete and competitive,
in part because of private information frictions. For example, it might be difficult to buy
private unemployment insurance, or annuities that insure against longevity risk. Thus, there
may be a role for the government to provide public unemployment insurance, or to fund a
public pension system. It is also possible that absent government intervention, the economy
might occasionally get stuck in an inefficiently depressed equilibrium because of frictions
in private markets. Thus, the government intervened during the Global Financial Crisis in
2008, bailing out a range of financial institutions to avoid a cascade of bankruptcies, and
cutting taxes to try to boost consumer confidence.

The third rationale for government intervention is redistribution. Market economies tend
to generate substantial income inequality, as discussed in Chapter 9 (and later in Chapter
19). This inequality may be Pareto efficient, but taxing the rich in order to fund transfers
to the poor will generate a more equal allocation of resources, and one that a majority of
households might prefer. In many economies, transfers account for most of total government
spending. We discuss redistribution in Section 13.7.1.

The impact of the government on equilibrium allocations depends not just on how much
the government wants to spend, but also on how the government pays for that spending.
In practice, the taxes that households and firms are required to pay depend on the choices
they make about how much to work and earn, how much to consume versus save, and
how much to invest. Thus the tax system distorts all those choices, ultimately reducing
output. We explore the effects of distortionary taxation by adding proportional capital
and labor income taxes to a standard neoclassical growth model. Note that higher public
consumption or higher transfers necessitates higher tax rates, implying larger distortions to
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private sector choices and lower efficiency. There is significant cross-country variation in
total government spending and in the extent of redistribution through the tax and transfer
system. That suggests societies differ in how they view the trade-off between the benefits of a
more equitable distribution of resources or higher public good provision, versus the efficiency
costs of higher and more distortionary taxes (see Figure 13.1).
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Figure 13.1: Government Spending across Countries (avg. 2010-2019).

13.2 Public Finance: An Overview of the Data

The government spends money on publicly-provided goods and services Gt, such as education
and defense, and makes transfers Tt to individuals and corporations, such as food stamps and
agricultural subsidies. These expenditures are financed out of tax revenues Revt, collected
through taxes on goods and services (sales and excise taxes), taxes on income (income and
payroll taxes), property taxes, and taxes on corporate profits. When revenues are insufficient
to cover expenditures, the government borrows from domestic households and firms or from
international lenders. Denoting the stock of debt at the start of period t by Bt−1, net
borrowing is equal to Bt − Bt−1. We denote the nominal interest rate on public debt by it,
so itBt−1 is interest payments. The government budget constraint can be written as

Gt + Tt + itBt−1︸ ︷︷ ︸
Expenditures

= Revt +Bt −Bt−1︸ ︷︷ ︸
Borrowing

. (13.1)

When expenditures – including interest payments – exceed revenues, we say that the
government runs a deficit. In that case, Bt > Bt−1 and public debt rises. When expenditures
are lower than revenues, the government runs a surplus and debt decreases. The stock of
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debt at any point in time, then, is the cumulative sum of net deficits run by a government
through history. We now review some facts about the evolution of the main components of
the government budget constraint to frame the topics discussed in this chapter.
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Figure 13.2: Revenues and Outlays, as percentages of GDP.

Figure 13.2 shows revenues and expenditures as percentages of GDP for the U.S. between
1929 and 2021. The series, which incorporate all levels of government (federal, state, and
local), were obtained from the NIPA tables constructed by the Bureau of Economic Analysis
(see Appendix 13.A.1 for details). Three key points can be drawn from this figure. First,
both revenue and spending exhibit upward trends between 1929 and 1970, and then stabilize.
Second, expenditures tend to exceed revenues, implying that the U.S. government typically
runs deficits. Between 1970 and 2021 expenditures and revenues averaged 34 percent and 28
percent of GDP respectively. Third, expenditures jump during periods of war or recession,
while revenues typically fall. Large increases in expenditure are evident during World War
II, the Great Recession of 2007-2009, and the COVID-19 recession in 2020.

Figure 13.3 describes how the sources of tax revenue in the United States have changed
over time. Over the post-war period, income and social insurance tax revenues increased
significantly, and now account for around 11 and 7 percent of GDP, respectively. Revenue
from sales and import taxes have been relatively constant at about 8 percent of GDP, while
revenue from corporate taxes has declined and is now less than 2 percent of GDP.

The theoretical literature on the impact of taxes differentiates between taxes on labor
income, on capital income, and on consumption.

In Section 13.3 we discuss the impact of these taxes on labor supply, investment, and
savings choices. Note, however, that this simple theoretical categorization does not map
cleanly into the empirical partition of taxes: in particular, while labor earnings are part of
the base for U.S. personal income taxes, income taxes taxes also apply to income accruing
to capital, including unincorporated business income, dividend, interest, and rental income,
and capital gains.
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The government can postpone taxation by using public debt to finance expenditure. Does
it matter whether the government finances spending out of current taxation versus whether
it issues debt which must be repaid out of future tax revenue? In Section 13.4 we show that
when taxes are lump-sum, the timing of taxes is irrelevant. This famous result is known as
“Ricardian Equivalence.” However, in the more realistic case in which taxes are distortionary,
the timing of taxes does matter. What is then the optimal timing of taxes? In Section 13.5,
we formalize the problem of a benevolent government that chooses a sequence for taxes and
for debt to maximize social welfare, following a formulation known as the “Ramsey problem.”
Solving this problem we demonstrate an important “tax smoothing” result: it is optimal to
finance temporary shocks such as wars, recessions or pandemics mostly by issuing debt.
Evidence that governments do in fact smooth taxes over time is presented in Figure 13.4
(left panel), showing the total deficit (expenditures minus revenues, solid line), the primary
deficit (which is the deficit excluding interest payments, dark bars), and interest payments
(light bars). The U.S. government borrowed heavily during wars and recessions, particularly
during WWII and the COVID-19 pandemic. The right panel shows the stock of debt. In the
U.S., most public debt is issued by the Federal government, the result of balanced budget
rules written into State constitutions. In other countries, a significant part of borrowing is
done by sub-national units.

While borrowing is largest during recessions and wars, we also see that the U.S. has run
persistent deficits. This raises the question of how much debt is sustainable. One way to
approach this question is to compare projections of future government deficits to the deficit
levels that are consistent with a stable debt to GDP ratio.

Let Dt denote the primary deficit at date t (government spending excluding interest
payments minus revenue). The government budget constraint (eq. 13.1) can then be written,
in nominal terms, as

Bt = Bt−1 · (1 + it) +Dt.
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Dividing through by nominal GDP at t gives

bt = bt−1 ·
1 + it

(1 + γt)(1 + πt)
+ dt,

where lower case letters denote values relative to nominal GDP, and where γt and πt denote
the growth rates of real GDP and the price level between t − 1 and t. Let 1 + rt = (1 +
it)/(1 + πt) denote the ex post gross real interest rate between t − 1 and t. Thus, the debt
to GDP ratio evolves according to

bt = bt−1 ·
1 + rt
1 + γt

+ dt.

It is clear from this equation that the value of the real interest rate relative to the real
growth rate is critical for the dynamics of public finances. When the primary deficit dt is
zero, the debt to GDP ratio will rise when rt > γt, and will fall when rt < γt.

One can ask what size primary deficit is consistent with a constant debt to GDP ratio.
Debt will rise over time (bt > bt−1) if and only if

dt >
γt − rt
1 + γt

· bt−1. (13.2)

How much debt is sustainable in the U.S.?

At the time of writing (September, 2023) U.S. government debt held by the public is
around 100 percent of annual U.S. GDP – i.e., bt−1 = 1.0. The growth rate of real GDP
in the United States varies over time, but has averaged around 3 percent per year in the
post-War period, suggesting γt = 0.03. The interest rate on 10 year inflation-protected
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government bonds is currently a little over 2 percent, suggesting rt = 0.02.
Plugging these numbers into our debt substainability equation suggests that the

largest primary deficit consistent with debt not rising is approximately 1 percent of
GDP. How does this compare to the actual primary deficit? The primary federal deficit
in fiscal year 2022 was 3.6 percent of GDP, and the Congressional Budget Office (CBO)
is forecasting primary deficits over the next 10 years of around 3.0 percent of GDP.a

Thus, the U.S. debt to GDP ratio is likely to continue to grow. But will debt explode?
Perhaps surprisingly, the arithmetic suggests not. In particular, given constant values
for r and γ > r, any size primary deficit is consistent with a stable debt to GDP ratio,
as long as that ratio is large enough. For example, suppose rt and γt are expected to
remain constant at values of 2 and 3 percent respectively. A 3 percent of GDP primary
deficit is then consistent with a stable debt to GDP ratio of 309 percent of GDP (in
terms of equation (13.2), 0.03 = 0.01

1+0.03
× 3.09). However, we should be very cautious

about this calculation. As debt rises, the equilibrium real interest rate is likely to rise
– investors will demand higher returns to buy all that debt. And once the differential
between γ and r changes sign, stabilizing the debt to GDP ratio will require primary
surpluses rather than deficits.b

aSee Table 1.1 here: https://www.cbo.gov/publication/58946.
bSee Hall and Sargent (2020) and Blanchard (2023) for more on debt sustainability. When debt

burdens become large, countries sometimes choose to default (as discussed in Chapter 22).

0%

10%

20%

30%

40%

50%

1929 1939 1949 1959 1969 1979 1989 1999 2009 2019

%
 o
f G

D
P

Expenditures

Govt Consumption 
+ Investment

Transfers

Interest Payments

0%

2%

4%

6%

8%

10%

12%

1959 1969 1979 1989 1999 2009 2019

%
 o
f G

D
P

Defense

Income 
Security

Healthcare

Other

Education
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The growth in the size of the U.S. government coincides with the creation (and expansion)
of the Social Security system and the unemployment insurance program following the Great
Depression, as well as the increase in public investment after WWII. This is illustrated by
the left panel of Figure 13.5, which decomposes expenditures into the three sub-components
shown on the left-hand side of the government budget constraint in equation (13.1). Early
on in the sample, government consumption and investment constituted the largest portion
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of expenditures and drove most of the trend. Over time, transfers expand significantly, over-
taking Gt during the COVID-19 pandemic. In the data, transfers include both redistributive
and insurance programs. Redistributive policies will be studied in Section 13.7.

The right panel of the figure shows the evolution of expenditures by function for selected
items from 1959 and onward. Public education spending is relatively constant, accounting
for 5 percent of GDP. Defense peaks in 1959 at 8 percent, but decreases significantly there-
after, to around 3 percent today. Health-care expenditure (including Medicare and Medicaid
programs), on the other hand, show a steady rise, and now exceed 8 percent of GDP. Finally,
“income security” spending, which includes unemployment insurance, retirement programs,
disability and welfare, fluctuates around 7 percent of GDP. Spending on these items rises in
recessions and decreases in booms, and as such these programs are typically referred to as
“automatic stabilizers.”

13.3 The effects of distortionary taxes

The objective of this section is to show how proportional taxes affect equilibrium allocations
and prices. We do this in the context of the neoclassical growth model. Capital depreciates
at rate δ. Households are infinitely-lived, discount at rate β, and enjoy utility each period
from consumption and hours worked given by u (ct, `t) . They save in the form of capital,
and rent capital and labor services to competitive firms at rates wt and rt. Firms produce
according to a constant returns to scale production function yt = f(kt, `t). The government
finances government consumption Gt and transfers Tt (which may be positive or negative)
using proportional taxes on consumption, on labor income, and on rental income net of
depreciation, τc,t, τ`,t, and τk,t. For now we assume no government debt (we introduce it in
Section 13.4). The resource constraint is

Ct +Gt +Kt+1 = f(Kt, Lt) + (1− δ)Kt. (13.3)

The government budget constraint is

Gt + Tt = τc,tCt + τ`,twtLt + τk,t(rt − δ)Kt. (13.4)

The budget constraint for a representative household is

(1 + τc,t)ct + kt+1 = (1− τ`,t)wt`t + kt + (1− τk,t)(rt − δ)kt + Tt. (13.5)

A government policy is a sequence {τc,t, τk,t, τ`,t, Gt, Tt}∞t=0.

Definition 13.1 : A competitive equilibrium given a policy {τc,t, τk,t, τ`,t, Gt, Tt}∞t=0 is a se-
quence of allocations {Ct, Lt, Kt+1}∞t=0 and prices {wt, rt}∞t=0 such that

i. Given policy and prices, the sequence {Ct, Lt, Kt+1}∞t=0 maximizes household lifetime
utility

∑∞
t=0 β

tu (ct, `t) subject to budget constraints of the form (13.5) for all t, initial
capital k0 = K0, and a borrowing constraint kt+1 ≥ 0 ∀t.
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ii. The allocation {Lt, Kt}∞t=0 is a solution to the firm profit maximization problem at each
date t, with `t = Lt and kt = Kt in equilibrium

max
kt,`t
{f(kt, `t)− wtkt − rtkt} .

iii. The government budget constraint eq. (13.4) is satisfied at each date t.

At each date t, the first order conditions that define optimal saving and labor supply
decisions for a household are

1 + τc,t+1

1 + τc,t
· uc (ct, `t)

uc (ct+1, `t+1)
= β [1 + (1− τk,t+1)(rt+1 − δ)] , (13.6)

−u` (ct, `t) =
1− τ`,t
1 + τc,t

· wt · uc (ct, `t) .

The conditions for profit maximization are

wt = f`(kt, `t),

rt = fk(kt, `t).

In order to discuss the distortionary effects of taxation, it is useful to compute the Pareto
optimal allocation. Because this is a representative agent economy, the efficient allocation
can be found by solving the problem of a benevolent planner that maximizes lifetime utility
subject to the resource constraint

Ct +Gt +Kt+1 = f(Kt, Lt) + (1− δ)Kt.

The first-order conditions to this problem are

uc (Ct, Lt)

uc (Ct+1, Lt+1)
= β [1 + fk(Kt+1, Lt+1)− δ]

−u` (Ct, Lt) = f`(Kt, Lt) · uc (Ct, Lt) . (13.7)

Comparing across these two sets of conditions, we can see how taxes change households
incentives to save and to work. Absent taxes, households equate the inter-temporal marginal
rate of substitution between consumption at t and at t+ 1 to one plus the marginal product
of capital, net of depreciation. With taxes, households care instead about the gross after-tax
return to saving, which is given by

1 + τc,t
1 + τc,t+1

[1 + (1− τk,t+1) (rt+1 − δ)] .

Holding rt+1 constant for a moment (in equilibrium rt+1 will depend on taxes) it is clear that
taxes on rental income depress the after-tax return to saving, and that rising consumption
taxes (τc,t+1 > τc,t) work in the same direction. Similarly, taxes on labor income depress the
return to working, as do taxes on consumption. Because taxes change workers’ incentives
to save and to work, they distort equilibrium allocations, and will typically reduce capital,
labor supply, and output relative to the solution to the planner’s problem.
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13.3.1 Long-run distortions

Suppose we consider a steady state of the economy in which tax rates and allocations are
constant. In such a steady state the household first-order conditions simplify to

1 = β [1 + (1− τk)(r − δ)] , (13.8)

−u` (c, `) =
1− τ`
1 + τc

· w · uc (c, `) , (13.9)

where

w = f`(k, `), (13.10)

r = fk(k, `).

From the first of these it is immediate that a higher capital income tax τk must increase
the steady state equilibrium rental rate for capital r. If the production function f has a

Cobb-Douglas form, f(k, `) = kα`1−α, then r = fk(k, `) =
(
k
`

)α−1
, and thus a higher rental

rate corresponds to a lower capital-labor ratio. In particular,

k

`
=

�
α (1− τk)

ρ+ δ (1− τk)

� 1
1−α

(13.11)

where ρ = 1−β
β

denotes the household’s rate of time preference. Note that because a higher
τk depresses the steady state capital-labor ratio, it will depress the steady state wage w,
in addition to raising r. In contrast, labor and consumption taxes have no impact on the
pre-tax prices r and w.

The effect of taxes on labor supply will depend on the preference specification, via the
marginal utility terms in eq. (13.9). An increase in τ` affects labor supply in the current
period directly by reducing the after-tax wage, inducing ` to fall via a substitution effect.
At the same time, because the individual becomes poorer when labor income declines, con-
sumption shrinks, which results in a higher marginal utility of consumption, incentivizing
the agent to work more via an income effect. The total effect of an increase of labor income
taxes on ` is therefore ambiguous, depending on the relative strength of substitution and
income effects.

For an illustrative example we consider a particular utility function, made famous by
Greenwood, Hercowitz, and Huffman (henceforth, GHH):

u (c, `) = ln

�
c− `1+ 1

φ

1 + 1
φ

�
.

The GHH functional form is particularly tractable because consumption drops out of the
the first-order condition for hours worked; thus, this utility function can be described as one
in which there are no income effects.1 Steady state labor supply is given by

` =

�
1− τ`
1 + τc

�φ
wφ (13.12)

1See Appendix 13.A.2 for an alternative utility function with income effects.

374



Note that hours worked depend only on the return to working, where φ defines the elasticity
of hours to after-tax wages. Higher labor income or consumption taxes depress hours worked.
Higher capital income taxes also depress hours, via their negative impact on w.

13.3.2 Tax incidence

In addition to simplifying the algebra, another feature of the GHH specification is that the
steady state of the representative agent model specification is identical, at the aggregate level,
to an alternative decentralization in which there are two household types: (i) workers, who
rent labor services but own no capital, and (ii) capitalists, who own and rent out capital but
who do not work. In what follows we focus on this worker-capitalist specification, because it
allows for a discussion of tax incidence, namely the issue of who pays different sorts of taxes
(in a representative agent setting, the representative household pays all taxes).2

From eqs. (13.10) and (13.12), we can solve for hours worked as a function of the capital
to labor ratio

` =

�
1− τ`
1 + τc

(1− α)

�
k

`

�α�φ
which, combined with eq. (13.11), gives an expression for steady state output

y =

�
k

`

�α
` =

�
1− τ`
1 + τc

(1− α)

�φ � α (1− τk)
ρ+ δ (1− τk)

�α(1+φ)
1−α

(13.13)

Note that all three tax rates affect the level of steady state output, and that the level of
output is decreasing in each tax rate. Capital income taxes depress the capital labor ratio,
but their impact on output is amplified by the fact that a lower capital-labor ratio means
lower wages, which in turn depress labor supply.

Consider the case with no transfers (T = 0). In steady state, workers consume

cw =
1− τ`
1 + τc

w` =
1− τ`
1 + τc

(1− α)y,

while capitalists consume

ck =
1− τk
1 + τc

(r − δ)k =
ρ

1 + τc

�
α(1− τk)

ρ+ (1− τk)δ

�
y.

From these expressions, it is clear that labor taxes directly depress the consumption of
workers, while capital income taxes directly depress the consumption of capitalists. Con-
sumption taxes depress the consumption of both types. Note, however, that all three types

2Why is the steady state of the worker-capitalist model identical, given the GHH utility specification, to
the steady state of the representative agent specification? The logic is that the level of consumption appears
in neither the steady state first-order condition for saving, nor in the first order condition for hours worked.
Thus the distribution of aggregate consumption between workers and capitalists has no impact on either
steady state capital or steady state hours worked.
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of taxes indirectly depress the consumption of both types via their impact on equilibrium
output.

If we are designing a tax system, we would like to know more about how effective different
sorts of taxes are in terms of raising revenue, relative to how distortionary they are in terms
of depressing output. To make further progress on this question in a tractable way, we
now make two additional assumptions. First, we temporarily rule out consumption taxes
by setting τc = 0. Second, we assume that the government has to devote a fraction g of
aggregate output to government purchases: G = gY . Thus, the steady state government
budget constraint is

gy = τ`wl + τk(r − δ)k
= τ`(1− α)y + τkρ

α

ρ+ (1− τk)δ
y

From this budget constraint we can immediately solve for the locus of budget-balancing pairs
(τ`, τk) :

τ` =
1

1− α

�
g − τkρ

α

ρ+ (1− τk)δ

�
(13.14)

Panel A of Figure 13.6 plots how the labor tax rate τ` varies with capital income tax
rate τk according to eq. (13.14). The parameters used to construct the plot are α = 0.33,
δ = 0.07, β = 0.97, φ = 1 and g = 0.2. For each τk and the corresponding value for τ` given
in Panel A, Panels B and C plot consumption of workers and capitalists, respectively. For
comparison we also plot the levels of the two types’ consumption for an economy without
taxes. Note that as τk → 1, consumption of both types converges to zero. When τk is
restricted to be non-negative, steady state consumption of capitalists is maximized at τk = 0,
while consumption of workers is a hump-shaped function of τk. Workers’ utility depends on
hours worked in addition to consumption, but given this utility function the consumption-
equivalent argument of flow utility in equilibrium is proportional to consumption:

cw −
`1+ 1

φ

1 + 1
φ

=
1

1 + φ
(1− α)(1− τ`)y =

1

1 + φ
cw.

One way to define the deadweight cost of taxation is to ask by how much is total con-
sumption reduced by taxes per unit of government consumption that the taxes finance. Let
cw,τ=0 and ck,τ=0 denote the steady state consumption levels of workers and capitalists when
τk = τ` = 0, and define the excess cost of taxation as private consumption lost net of public
consumption financed, measured per dollar of such spending:

Excess Cost =

1
1+φ

(cw,τ=0 − cw) + ck,τ=0 − ck − gy
gy

If this ratio is equal to zero, then steady state utility in consumption units is reduced
by one for each unit of government purchases. Panel D of Figure 13.6 plots the excess cost
as τk varies (in the background τ` is adjusted with τk to balance the government budget
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Figure 13.6: How Allocations Vary with τk.

constraint). When τk = 0.2, each dollar of government consumption comes with an excess
cost of 50 cents, meaning that total private consumption is reduced by $1.50 for each dollar of
public goods provided. Clearly, the excess cost of taxation is always positive. Furthermore,
the excess cost of taxation is increasing and convex in the capital tax rate τk.

13.3.3 Tax reform

Panel D of Figure 13.6 suggests that the excess cost of taxation is minimized when τk = 0.
The tax rate on capital income in the U.S., however, ranges from 10% to 37% (the ordinary
income tax brackets in 2022, applied to capital held less than a year). From Panels B and
C of the same figure, we see that if capital taxes were reduced to zero and labor taxes were
raised to support the same g = G/GDP ratio, then capitalists’ consumption in steady state
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would be much higher without much reduction in workers’ consumption. These findings
might suggest that eliminating capital income taxes would be a good idea. However, the
steady state associated with a lower τk has a larger capital stock, and if capital taxes are
reduced it will take time for the economy to accumulate this extra capital. Additional capital
accumulation will come at the cost of reduced current consumption. It is therefore important
to analyze transitional dynamics in addition to steady states when considering tax reforms.
We illustrate this with a simple example, using the worker-capitalist framework from the
previous section and again assuming no transfers, Tt = 0.3

We start from a situation in which τk = 0.25, a midpoint of the current tax brackets.
Labor taxes are set to τ` = 0.2529, obtained from eq. (13.14) to sustain g = 0.2 given the
parameters used in Section 13.3.2. We assume that the economy is in steady state until
period 10, and that a switch to τk = 0 is implemented, unexpectedly and permanently, in
period 11. At that date, we increase the labor tax to τ` = 0.2985 so that eq. (13.14) still
holds at g = 0.2 in the new steady state. We allow Gt to vary during transition to balance
the government budget date by date given constant tax rates. While the initial and final
steady states can be characterized analytically, the evolution of kt during transition requires
the use of computational methods. We assume that the economy has reached the final steady
state by date T. Knowing the initial and final conditions, k0 and kT , respectively, all we need
is a sequence {kt}T−1

t=1 consistent with the first-order conditions of workers and capitalists at
dates {0, ..., T −2}. This is a system of T −1 inter-temporal first-order conditions and T −1
unknowns, which can be solved using a standard non-linear system of equations root-finding
routine.4

The left panel of Figure 22.4 displays the evolution of capital and labor income taxes
(exogenous parameters to the model), as well as the endogenous evolution of Gt. Public
spending changes in response to the reform because prices and allocations change in equi-
librium (as seen in the right panel), in turn affecting government revenues (recall that G/Y
is identical in the initial and final steady states). The elimination of capital income taxes
encourages capital accumulation, whereas the increase in labor income taxes discourages
labor supply upon impact.5 Over time, capital grows, and because this positively affects
wages, labor supply gradually recovers, ending up only slightly below the initial steady state
level. GDP tracks labor supply in the short run, and capital in the long run, declining right
after the reform and recovering slowly over time. Aggregate consumption decreases initially,
both because output is low, and because lower capital taxes are stimulating saving and in-
vestment. Subsequently, income rises and investment slows, pushing consumption back to a

3While the steady state of the representative agent model (RA) is identical to the worker-capitalist
environment (WK), transitional dynamics are not the same. In the RA model, the first order condition with
respect to capital includes the disutility of labor (due to non-separability between c and `), whereas this is
absent in the WK environment, since capitalists set ` = 0. In the example computed above, the difference
is numerically insignificant. However, it could be sizable with other preference specifications.

4The values for consumption in the inter-temporal first-order condition can be substituted out using the
budget constraint of capitalists, (1 + τc,t)ck + kt+1 = kt + (1− τk,t)(rt − δ)kt. It is important to verify that
T is large enough that the economy has indeed converged to the new steady state.

5The latter is an artifact of the specific utility function used, since it exhibits no income effects. In
Appendix 13.A.2, we re-compute this experiment using an alternative specification.
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Figure 13.7: Eliminating capital income taxes.

Notes: Except for the tax rates, variables are plotted as percentage deviations from their
values in the pre-reform steady state.

value close to the initial steady state.

While agents are eventually better off as the economy becomes more efficient (they work
less than in the initial steady state but enjoy similar consumption), the exercise highlights
that transitions can be painful. Whether the reform is beneficial for society overall depends
on how much weight is assigned to capitalists versus workers. Capitalists are definitely better
off, as their income always grows, whereas workers may be significantly worse off, as their tax
burden increases (see, e.g., Domeij and Heathcote 2004.) Even when considering a represen-
tative household, whether public spending is valued or not is important in this calculation.
The reform is more desirable if agents derive utility from government consumption – which
rises over time – than if public spending is entirely wasteful.

13.3.4 The Laffer Curve

Another question of interest is: what combination of tax rates maximizes steady state tax
revenue? A government that is fighting a war and wants to purchase the largest possible
number of tanks might be especially interested in answering this question. When the planner
only has access to taxes on labor earnings and rental income, and when tax rates must be
positive, the revenue maximizing pair of tax rates is given by

τ` =
1

1 + φ
τk = 0.
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Note that the higher is the Frisch elasticity of labor supply, φ, the lower is the revenue-
maximizing labor tax rate.6

Figure 13.8 plots tax revenue as a function of τ`, holding fixed τk at τk = 0. This type of
plot was popularized by Arthur Laffer in the 1970s, and is thus called a Laffer curve. Revenue
is hump-shaped in the tax rate, and for tax rates above the revenue-maximizing rate, raising
rates reduces revenue, because the tax base shrinks faster than the rate increases. Such a
situation is known as “being on the wrong side of the Laffer curve.” To see why the Laffer
curve must be hump-shaped, it is enough to observe that at τ` = 0, no revenue is raised
because no taxes are levied, while at τ` = 1 no revenue is raised because hours worked and
output are equal to zero, and thus there is nothing to tax.

6These rates are the solution to the problem:

max
τ`≥0,τk≥0

§
τ`(1− α)y + τkρ

α

ρ+ (1− τk)δ
y

ª
,

where output y is given by eq. (13.13). The first-order condition with respect to τ` gives the solution

τ` =
1− τk ρφ

1−α · α
ρ+(1−τk)δ

1 + φ

Given this value for τ`, tax revenue is declining in τk at τk = 0, indicating that τk = 0 is the revenue-
maximizing rate when tax rates must be positive.
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13.3.5 Theories of G

So far, we have assumed that public spending is exogenously given and generates no benefits
to society; revenues are “thrown into the ocean.” However, as shown in Figure 13.5, public
expenditures are composed of government consumption, public investment, transfers, and
interest payments. Here, we briefly describe theories of government consumption and public
investment. Interest payments will be described in the next section, after we introduce
debt into the model, and transfers and welfare programs will be described at the end of the
chapter.

First, let us focus on how to model government consumption. We typically assume
that the government has the technology to provide public goods that are valued by society.
These include defense, law and order, taking care of parks and common areas, sanitation,
etc. A key assumption is that the government uses resources to produce these goods, which
then provide utility to agents. We typically assume that agents derive utility from public
and private goods, u(c, g), with ug > 0 and ugg ≤ 0. The first best solution (e.g., when
the government has access to lump-sum taxation) prescribes equating the marginal utility of
private consumption to the marginal utility of public consumption: uc(c, g) = ug(c, g). When
taxes are distortionary, the government must take into account, in addition, the deadweight
losses associated with taxation.

A second strand of theories of government spending focuses on the role of the government
to provide key infrastructure such as roads, bridges, and schools. Letting kg denote ‘public
capital,’ the neoclassical growth model augmented to include public investment involves a
production function,

f(k, kg, `) = Akα`1−αkθg ,

and a law of motion for kg,

kg,t+1 = ig,t + (1− δg)kg,t,
with ig,t denoting public investment in period t, and δg the rate of depreciation of public
capital. The parameter θ controls the elasticity of output with respect to public capital.
If θ > 0, there are increasing returns to scale. Estimates of θ vary, from as low as 0.05
(see Leeper, Walker, and Yang (2010)) to as high as 0.39 (Aschauer (1989)). If revenue can
be raised in a non-distortionary way, then it is optimal to equate the marginal products of
private and public capital, net of depreciation, fk,t+1 − δ = fg,t+1 − δg.

13.4 Government debt and Ricardian Equivalence

We now add government debt to the analysis. To simplify the presentation, we abstract
from capital, as this reduces the number of state variables. Using a two-period example,
we present conditions under which debt is irrelevant. This result is known as “Ricardian
Equivalence.” We then introduce distortionary taxation and explain how the government
can use debt to smooth out tax distortions over time. The optimal sequence of taxes solves
what is known as the “Ramsey Problem.”
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Consider a two-period representative household model. The government can issue debt
in period t = 0 and can levy lump-sum taxes or hand out lump-sum transfers in periods
t = 0 and t = 1. Suppose that the government contemplates a lump-sum transfer T0 in the
first period, financed by issuing government debt B0, which will be paid back by levying a
lump-sum tax τ1 in the second period.

The representative household has utility defined over consumption and hours worked in
periods 0 and 1 given by

u(c0, `0) + βu(c1, `1).

Households choose labor supply, consumption and saving in each period, taking as given
exogenous wages, w0 and w1, and an exogenous return to saving, r0. Abstracting from other
taxes, the budget constraints in the two periods are

c0 + b0 = w0`0 + T0

c1 = w1`1 + (1 + r1) b0 − τ1,

where b0 is the amount of debt the household buys in the first period, and r1 is the interest
paid on that debt. Dividing the second equation through by 1 + r1 and adding it to the first
equation expresses the budget constraint in present value form:

c0 +
c1

1 + r1

= w0`0 +
w1`1

1 + r1

+ T0 −
τ1

1 + r1

.

Note that the value for debt purchases, b0, drops out of the present-value version of the
budget constraint. In addition, note that given a promised interest rate of r1, the second
period tax τ1 will have to satisfy τ1 = (1 + r1)B0 = (1 + r1)T0. Thus, the tax and transfer
terms in the present value budget constraint must sum to zero, regardless of the size of the
initial transfer T0. Since the tax and transfer scheme does not affect the lifetime budget
constraint, the household’s optimal allocation of consumption and hours must be identical
to that in the case of zero taxes and transfers (T0 = τ1 = B1 = 0). The household must
therefore respond to the initial transfer T0 by increasing savings by exactly T0. This extra
savings will (i) exactly match the additional supply of government bonds issued, and (ii)
provide exactly enough second period income to pay the expected lump-sum tax τ1. This
neutrality result is an example of Ricardian Equivalence. Note that this result hinges on
the assumptions that taxes are lump-sum, that households face no credit constraints, and
that the households who get the transfers are the same ones that must repay the debt. The
result does not hinge on there being no capital. Using the same logic, it is possible to show
that the result extends to an infinite-horizon economy (see also Barro 1974 and Heathcote
2005b).

13.5 Ramsey Taxation

It is traditional in public finance to assume that the government cannot impose lump-sum
taxes. Why? In a representative agent economy, there is no reason not to impose lump-
sum taxes: such taxes are a distortion-free way to raise revenue. But in practice, actual
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households differ widely in terms of their income. Some households are so poor that they
could not afford to pay a moderate lump-sum tax. Equally importantly, many people would
find it unfair if the poor were expected to pay as much tax as the rich. Thus, the literature
has focused on taxes that are proportional to income (see Chamley (1986) and Judd (1985)
for early examples, and more recently Straub and Werning (2020)). Of course, one could
consider making taxes a more complicated function of income – and we shall do so shortly
– but proportional is simple, and simplicity can be viewed as a virtue.

But even if taxes are proportional to income, there is no need to tax different types of
income at the same rate. In particular, earned income (income from labor) can be taxed at
a different rate to unearned income (income generated by wealth). And if the government
can save or borrow by issuing government debt, then it can also choose how tax rates should
vary over time. We now consider a simple two period model and ask how a government that
seeks to maximize the welfare of a representative agent should optimally set proportional
taxes.

The timing assumptions are as follows. The government moves first, and announces tax
rates for both periods, which we label periods 0 and period 1. To start, we assume that the
government commits to these tax rates, and does not have the ability to deviate at t = 1
from the policies announced at t = 0. Later we will discuss how the analysis might change if
the government does not have this commitment power.

A tax plan is feasible if there is a competitive equilibrium characterized by allocations
and prices such that (i) those allocations are optimal choices for households and firms given
prices and the tax rates described in the plan, (ii) the government budget constraint is
satisfied, and (iii) markets clear.

A tax plan is optimal if it is feasible and the associated competitive equilibrium maximizes
the welfare of the representative household. The optimal tax plan is called the Ramsey plan,
and the associated equilibrium the Ramsey equilibrium.7 In general, lots of different fiscal
plans will be feasible, but only one will be optimal. There are two different approaches in
the literature to solving for the Ramsey plan.

The first and more intuitive approach is to work with the full set of equilibrium equations
and variables, and to conceptualize the planner choosing tax rates to maximize household
welfare, internalizing how changes in tax rates will affect all equilibrium variables. This is
called the dual approach.

An alternative approach, called the primal approach, is sometimes easier to implement
(see Atkeson, Chari, and Kehoe, 1999). Under the primal approach, we think of the plan-
ner as choosing equilibrium allocations for consumption and hours directly, subject to two
sets of constraints. The first set of constraints ensure that allocations are technologically
feasible. The second set of constraints ensure that there exists a set of tax rates such that
the allocation is the competitive equilibrium given those taxes. These second constraints
are called the implementability constraints. No equilibrium prices or tax rates appear in the
primal problem. Once one has solved the primal problem, one can back out the tax rates

7After Frank Ramsey, who wrote a handful of important papers in economics and more in the fields of
mathematics and philosophy, before his death in 1930 at the age of 26.
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that decentralize the solution in a final step.

13.5.1 The primal approach to optimal taxation: A simple exam-
ple

The best way to understand how the primal approach works is to consider a simple example
economy. Consider, in particular, the following two period model. There is a representative
household with utility defined over consumption and hours worked in periods 0 and 1 given
by

u(c0, `0) + βu(c1, `1).

The representative household supplies labor to a representative firm that produces output
according to

y0 = A0`0,

y1 = A1`1,

where At denotes potentially time-varying labor productivity. Because labor markets are
assumed to be competitive, equilibrium wages equal productivities:

w0 = A0, (13.15)

w1 = A1.

Households (and the government) can save or borrow using a storage technology that
converts one unit of output at date 0 into 1 + r units of output at date 1, where r is an
exogenous constant.8 Let bt−1 denote household wealth at the start of period t. Assume that
b−1 = 0.

The government must finance exogenous expenditures g0 and g1 in periods 0 and 1. It
can raise tax revenue via proportional taxes on labor income at rates τ0 and τ1, and by taxing
income from wealth in period 1 at rate τb,1.

9 A tax plan is a vector {τ0, τ1, τb,1} .
Let bg,0 denote government savings in the storage technology at date 0. The government

budget constraints for periods 0 and 1 are

g0 + bg,0 = τ0w0`0,

g1 = τ1w1`1 + τb,1rb0 + (1 + r)bg,0.

Note that government savings at t = 0 delivers income at t = 1. If bg,0 < 0, the government
is borrowing. These two constraints can be combined to give

g0 +
g1

1 + r
= τ0w0`0 +

τ1w1`1

1 + r
+
τb,1rb0

1 + r
.

8One interpretation might be that the economy is small and open, and r is the world interest rate.
9The household has no wealth at date 0, so a tax on wealth or income from wealth at date 0 would not

raise any revenue. If the household did have wealth at date 0, the government would like to tax that wealth,
since that would effectively amount to a non-distortionary lump-sum tax. In the spirit of not allowing for
lump-sum taxation, it is typically assumed that the Ramsey planner cannot tax initial wealth, or that there
is an upper bound on the feasible initial tax rate.
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Given taxes and wages, the representative household solves

max
{c0,`0,c1,`1,b0}

u(c0, `0) + βu(c1, `1)

s.t.

c0 = (1− τ0)w0`0 − b0,

c1 = (1− τ1)w1`1 + (1 + r(1− τb,1))b0,

where again the two budget constraints can be collapsed to give

c0 +
c1

1 + r(1− τb,1)
= (1− τ0)w0`0 +

(1− τ1)w1`1

1 + r(1− τb,1)
.

The first-order conditions that characterize the solution to the household’s problem are

uc,0w0(1− τ0) = −u`,0, (13.16)

uc,1w1(1− τ1) = −u`,1,
uc,0 = β(1 + r(1− τb,1))uc,1,

where uc,t denotes the marginal utility of consumption in period t.
Resource feasibility in this economy can be summarized by a single equation, which states

that the present value of private plus public consumption is equal to the present value of
output

c0 + g0 +
c1 + g1

1 + r
= A0`0 +

A1`1

1 + r
. (13.17)

What about the implementability constraints? An allocation is a competitive equilibrium
if it satisfies the three first-order conditions from the household problem, the two equilibrium
expressions for wages, and the household and government budget constraints. We now show
that these six equations can be collapsed into a single implementability condition. The idea
is to take the household lifetime budget constraint, and to use the household first-order
conditions to substitute out for (1− τ0)w0, (1− τ1)w1, and 1 + r(1− τb,1). In particular, the
first-order condition for saving implies that, in any competitive equilibrium, it must be the
case that

1 + r(1− τb,1) =
uc,0
βuc,1

,

while those for labor supply imply

(1− τt)wt = −u`,t
uc,t

.

After these substitutions, the household lifetime budget constraint can be written as

c0 +
c1
uc,0
βuc,1

= −u`,0
uc,0

`0 −
u`,1
uc,1

`1
1
uc,0
βuc,1

, (13.18)
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or, after multiplying through by uc,0, as

uc,0c0 + βuc,1c1 = −u`,0`0 − βu`,1`1.

This is the implementability condition. It can be shown that any allocation that satisfies
the resource constraint and the implementability condition can be implemented by some
feasible tax plan (see, e.g., Atkeson et al., 1999).

It should be clear that the implementability condition embeds the household optimality
conditions for labor supply and savings in addition to the household budget constraint. But
what about the government budget constraint? We do not have to worry separately about
that, because if the resource constraint and the household budget constraint are satisfied,
the government budget constraint must also be satisfied, by Walras Law.

The Ramsey problem is to maximize lifetime utility for the representative agent, subject
to the resource and implementability constraints. Writing this problem as a Lagrangian,
with multipliers λ and µ on the resource and implementability constraints, we have

max
c0,c1,`0,`1

{u(c0, `0) + βu(c1, `1)

+λ

�
A0`0 +

A1`1

1 + r
− c0 − g0 −

c1 + g1

1 + r

�
+µ (uc,0c0 + βuc,1c1 + u`,0`0 + βu`,1`1)}

The first-order conditions are

uc,0 − λ+ µuc,0 + µucc,0c0 + µu`c,0`0 = 0,

u`,0 + λA0 + µu`,0 + µuc`,0c0 + µu``,0`0 = 0,

βuc,1 −
λ

1 + r
+ βµuc,1 + βµucc,1c1 + βµu`c,1`1 = 0,

βu`,1 +
1

1 + r
λA1 + βµu`,1 + βµuc`,1c1 + βµu``,1`1 = 0.

where, for example, ucc,0 denotes ∂uc,0/∂c0.
These four first-order conditions alongside eqs. (13.17) and (13.18) constitute six equa-

tions that can be used to solve for the six unknowns (c0, c1, `0, `1, λ, µ). Thus, one can solve
for the Ramsey allocation. Consider, in particular, a separable utility function of the form

u(c, `) =
c1−σ

1− σ −
`1+ 1

φ

1 + 1
φ

.

In this case, the cross derivative terms drop out, and the second derivatives simplify to

ucc,tct = −σuc,t, u``,t`t =
1

φ
u`,t.
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Thus, the first-order conditions can be written as

uc,0(1 + µ− µσ) = λ

u`,0

�
1 + µ+

µ

φ

�
= −λA0

βuc,1 (1 + µ− µσ) =
1

1 + r
λ

βu`,1

�
1 + µ+

µ

φ

�
= − 1

1 + r
λA1

Comparing the first and the third, it is immediate that, at an optimum

β(1 + r)uc,1 = uc,0.

Comparing the first and the second, we see that

uc,0A0 ·
1 + µ− µσ
1 + µ+ µ

φ

= −u`,0

Similarly, the third and the fourth give

uc,1A1 ·
1 + µ− µσ
1 + µ+ µ

φ

= −u`,1

Comparing these expressions to the first order conditions for saving and for working in
the original economy (eqs. 13.16), and noting that, in equilibrium, w0 = A0 and w1 = A1,
it is clear that the only way both sets of first order conditions can be satisfied at the same
allocation is if

τb,1 = 0,

τ0 = τ1 = 1− 1 + µ− µσ
1 + µ+ µ

φ

=
µ
�

1
φ

+ σ
�

1 + µ+ µ
φ

.

Thus, this simple example illustrates two classic results in the Ramsey taxation literature.
First, the government should commit to neither tax nor subsidize income from savings (see
Chamley 1986 and Judd 1985). Second, the labor tax rate should be constant over time,
and will be positive as long as either g0 or g1 is strictly positive (so that revenue must be
raised). This result is described as tax smoothing, and the idea is that because distortions
from taxes increase with the tax rate in a convex fashion, constant tax rates are preferable
to time-varying tax rates (see Barro (1979) and Lucas and Stokey (1983)).

13.5.2 Time consistency

Let us assume that parameters are such that the household saves in period 0 under the
Ramsey plan. One parameter configuration that would deliver this is β(1 + r) = 1 – so that
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the Ramsey allocation features c1 = c1 – and A0 > A1, so the Ramsey allocation features
A0`0 > A1`1.

Recall that our analysis above presumed that the government announced a tax plan at
date 0 and stuck to the plan at date 1. Suppose now that we give the planner the ability
to redesign taxes in period 1. At t = 1 the planner can raise revenue either by taxing labor
earnings (as promised in the original plan) or by taxing household income from savings.
What combination of taxes would a benevolent planner choose? The answer is that such a
planner would set τ1 = 0 and τb,1 as high as necessary to fund required government purchases.
The reason is that once period 1 rolls around, household wealth b1 is already determined,
and taxes on income from wealth are effectively a lump-sum tax. In contrast, taxes on labor
earnings are distortionary. Because the planner would like to deviate from the Ramsey plan
at date 1, given the chance to do so, the plan is said to be time inconsistent (see Kydland
and Prescott (1977)).

There are many policy questions where time consistency arises as a central issue. For
example, Chapter 22 focuses on debt policy. If governments can commit to repaying debt,
they will be able to borrow cheaply. But those promises to repay may not be time consistent,
in the sense that once debt has been accrued the government might be better off defaulting.

Does the fact that the Ramsey plan described above is time inconsistent mean that we
should not take it too seriously as a practical policy prescription? It is certainly useful to
know what policy would be optimal given commitment and to understand how the planner
might be tempted to deviate from the Ramsey plan. It might be possible to design institu-
tions in such a way that the planner has more commitment power – for example, by writing
a constitution that precludes frequent tax changes. At the same time, there is a large litera-
ture that attempts to characterize the best time consistent policies (see Klein, Krusell, and
Ŕıos-Rull (2008)).

13.6 Debt and pensions with overlapping generations

We close this chapter by studying fiscal policy in a non-dynastic economy and return to
the two-period overlapping-generations endowment economy discussed in Section 5.5. We
extend this model to incorporate government debt, a pay-as-you-go (PAYG) pension system,
and taxes. To simplify the exposition, we assume a small open economy with access to a
global bond market.

The population grows at a constant rate n. Let Nt = (1 + n)t denote the size of the
newborn young population at date t. The share of young people is Nt/ (Nt +Nt−1) =
(1 + n) / (2 + n). Only the young work and their endowment of efficiency units grows at
rate γ. Thus, the labor income of an individual born in period t is yt = (1 + γ)t ω and
aggregate labor income is Yt = ytNt = (1 + n)t (1 + γ)t ω.

The government operates a PAYG pension system and provides a public good Gt. The
pension system pays pt to every old individual, financed by taxing labor income at rate τp.
The pension per retiree is therefore

pt = (1 + n) τpyt.
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Spending on the public good is assumed to be a fixed fraction of GDP: Gt = gYt. Government
spending is financed by taxing labor income by a flat tax τt and by issuing debt. We abstract
from taxes on capital income. The government budget constraint is given by

Gt + ptNt−1 + (1 + r)Bt−1 = (τp + τt)Yt +Bt,

where Bt is the issuance of new debt that matures next period and the interest rate r
is exogenous and fixed. Because the pension system is self-financing, the budget can be
expressed as follows,

g +
1 + r

(1 + n) (1 + γ)
bt−1 = τt + bt,

where bt is the debt to GDP ratio at the end of period t.
Individuals maximize discounted utility, u (cy,t) + βu (co,t+1) , subject to budget con-

straints when young and old,

cy,t + at = (1− τt − τp) yt, (13.19)

co,t+1 = (1 + r) at + pt+1, (13.20)

where at denotes saving at t, and where, in equilibrium, pt+1 = (1 + n)(1 + γ)τpyt. The
sequence for optimal consumption can then be computed from two equations: a lifetime
budget constraint and an Euler equation:

cy,t +
co,t+1

1 + r
=

�
1− τt − τp +

(1 + n) (1 + γ)

1 + r
τp

�
yt (13.21)

1 = (1 + r) β
u′ (co,t+1)

u′ (cy,t)
. (13.22)

Note, first, that a pension system is equivalent to issuing a particular form of government
debt. To see this, consider an individual who has no pension tax or transfer (τp = pt+1 = 0)
but who is forced to purchase bp,t government bonds with a promised return rp. The budget
constraints for this individual would be

cy,t + at + bp,t = (1− τt) yt, (13.23)

co,t+1 = (1 + r) at + (1 + rp) bp,t. (13.24)

If we set bp,t = τpyt and 1+rp = (1 + n) (1 + γ) ≈ (1 + n+ γ), then the budget constraints
with “pension debt” (13.23-13.24) are equivalent to those with a pension system, (13.19-
13.20). Note that the return on forced saving in the PAYG pension system is equal to
the growth rate of output. Therefore, the pension system increases the present value of
household income for the young if and only if wage growth exceeds the interest rate, i.e., iff
γ+n > r (this condition determines whether the right-hand side of eq. (13.21) is increasing
in τp). This insight has an important implication: if the interest rate is larger than the
growth rate of output n + γ (a “normal” scenario) then the pension system is effectively a
tax on the young generation. The generation who are old when the system is first introduced
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gain because they receive benefits without having paid taxes when they were young. But the
current young generation and all future generations lose because they get a higher return on
private savings than on pension contributions. However, if the interest rate is lower than
the wage growth rate n + γ, then all generations gain from introducing a pension – both
the initial old generation and all generations of young. In this case, introducing a PAYG
pension system is Pareto improving. This corresponds to an equilibrium featuring dynamic
inefficiency, as discussed in Section 6.4.1.

A major change in this overlapping-generations model relative to the standard infinite-
horizon model is that Ricardian equivalence no longer holds. In particular, the timing of
taxes and transfers now matters for the distribution of consumption across cohorts, and
for the trajectory of aggregate consumption. To see this, consider a one-time transitory
tax holiday in period t in an economy with zero initial debt. Thus, τt = 0 and Bt = gYt.
Moreover, assume that the government finances the repayment of this debt by increasing
taxes in period t+ 1 and does not issue debt thereafter. Note, first, that this “tax holiday”
increases the present value of consumption for generation t and lowers the present value of
consumption for generation t + 1; see equation (13.21). Thus, the debt-financed tax cut
shifts the tax burden from generation t to generation t + 1. The result is that aggregate
consumption will increase in period t and fall in period t+ 2.10 Thus, Ricardian equivalence
breaks down. This is different from the case we studied in Section 13.4. There, Ricardian
equivalence held because the government’s debt policy did not affect the present value of
taxes for the representative household. Here, in contrast, debt policy reshuffles the tax
burden across generations.

Policy implications

Real-world pension systems are not purely PAYG and many countries have accumulated
pension funds. However, public pension savings are relatively small: the U.S. Social
Security Administration is scheduled to deplete its trust fund by 2033.

Two factors have strained public pension systems in OECD countries. First, the
number of retirees relative to the number of workers has increased and will continue
to increase in coming decades. Population aging is driven by both lower mortality
(retirees living longer) and by lower fertility. This can be interpreted as a lower n in the
model above. Second, the productivity growth rate has fallen in recent decades (secular
stagnation). For example, the U.S. growth rate of GDP per capita – γ in our model –
fell from 2.3% between 1950 and 2000 to 1.2% between 2000 and 2020.

The analysis above suggests that pension promises are a form of debt. What is
the total level of effective government debt for the U.S. federal government? A narrow
definition of debt corresponds to the value of government bonds outstanding. For the
U.S., federal debt held by the public was 94% of GDP in the second quarter of 2023.a A

10The effect on aggregate consumption in t + 1, Ct+1 = c0,t+1Nt + cy,t+1Nt+1, is ambiguous because the
tax cut will increase c0,t+1 and lower cy,t+1.
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more comprehensive definition includes the implicit debt in the pension system, i.e., the
present value of future federal pension promises. For the U.S. federal government this
measure of debt is $65.9 trillion, or almost 2.5 times annual GDP.b This massive figure
excludes the future costs of Medicare (the federal health care program for retirees).
These two measures of government debt—94% versus 94+245=339%—are strikingly
different. The de facto debt burden therefore depends on how seriously one should take
promises about financial debt versus promises of future pension benefits. An outright
default on nominal debt is ruled out by the U.S. Constitution. However, the government
could increase surprise inflation and thereby inflate away some of the debt. Pension
promises, in contrast, do not enjoy any constitutional protection and the government is
always free to reduce social security benefits or raise the age at which people are eligible
to collect them.

aDebt held by the public excludes the holdings of government debt by Federal government entities
such as the Social Security Trust Fund, but includes debt held by the Federal Reserve.

bSource: 2023 OASDI Trustees Report, Table VI.F2.

13.7 Taxes and transfers as instruments for redistribu-

tion

An important function of government is to redistribute and provide social insurance. To this
end, the tax and transfer system includes a wide array of taxes, social insurance programs
and means-tested benefits at different levels of government (federal, state, and local). To
illustrate the extent of redistribution embedded in the U.S. system, Figure 13.9 plots pre-
versus post-government income for each percentile of the pre-government income distribution.
Pre-government income is income before taxes and transfers. Post-government income is
disposable income, defined as pre-government income plus transfers minus taxes. Each dot
in the plot shows average pre- and post-government income for one percentile of the pre-
government household income distribution. The relationship is approximately linear, except
at the lowest income percentiles. This suggests that the U.S. tax- and transfer system can
be well approximated by a log-linear function:

y − T (y) = λy1−τ , (13.25)

where y is pre-government household income, T (y) is taxes minus transfers, and y− T (y) is
disposable income. The parameter λ controls the level of taxation, while the parameter τ
can be interpreted as a measure of tax progressivity. To see this, note that when 0 < τ < 1,
the tax system is progressive in the sense that the marginal tax rate T ′(y) is larger than
the average tax rate T (y)/y for any positive income level. Conversely, when τ < 0, the
marginal tax rate is lower than the average tax rate, T ′(y) < T (y)/y, implying that taxes
are regressive. When τ = 0, the tax system is flat, with a constant marginal tax rate
T ′(y) = T (y)/y = 1− λ.

The right panel of Figure 13.9 plots average net tax rates, defined as taxes minus transfers
divided by pre-government income. The picture illustrates that the average net tax rate is
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Figure 13.9: Left plot: Scatter plot of pre-government income against and post-
government income for percentiles of U.S. households. Right plot: Average net
tax rates by household income, defined as taxes minus transfers as a share of
income, for households with children.

Source: Congressional Budget Office (CBO), 2016.

increasing with income. The U.S. tax and transfer system can therefore be said to be
progressive.

13.7.1 A macro model of progressivity

We now illustrate the effects of tax progressivity on inequality and the macro economy using
a simple static model of redistribution. The economy is populated by a unit continuum of
individuals indexed by i. The utility function u is

u (ci, `i, G) = log ci −
`

1+ 1
φ

i

1 + 1
φ

,

where ci and `i are consumption and labor supply of individual i.
The tax and transfer system is assumed to take the log-linear form described in equation

(13.25). The government’s budget must be balanced, which imposes a constraint on the set
of feasible fiscal policy choices (τ, λ,G).

The aggregate resource constraint dictates that output is spent on either private con-
sumption or on public goods:

Y =

∫ 1

0

ci di+G.
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Individuals differ with respect to labor productivity. Their labor income is wi`i, where
wi is individual i’s productivity. Individuals have no wealth, so consumption must equal
disposable income:

ci = λ (wi`i)
1−τ .

Taking a first-order condition with respect to hours worked, one can solve in closed form
for the equilibrium allocation. Hours worked and consumption are given by

log `i =
log(1− τ)

1 + 1
φ

, (13.26)

log ci = log λ+ (1− τ)
log(1− τ)

1 + 1
φ

+ (1− τ) logwi. (13.27)

Hours worked are falling in τ but are independent of the individual wage, wi. Progressivity
(τ > 0) reduces hours because workers internalize that if they increase hours they will face
a higher marginal tax rate, depressing the after-tax return. In the limit as τ → 1, workers
anticipate that disposable income will equal λ, irrespective of hours worked, and thus hours
will shrink to zero. Hours are independent of the wage because the utility function is in the
balanced growth class.

Consumption is increasing in individual productivity, wi. Tax progressivity dampens
the pass-through from wages to consumption: a one percent increase in wages translates
to a 1 − τ percent increase in consumption. Thus, tax progressivity reduces consumption
inequality: the variance of log pre-government earnings is var (logw), while the variance of
log consumption is (1− τ)2 var (logw). In conclusion, this simple economy illustrates the
fundamental trade-off between efficiency and redistribution in a setting with an empirically
plausible tax- and transfer system: higher progressivity reduces hours worked (lower effi-
ciency) but also reduces consumption inequality (more redistribution). For more discussion
of this trade-off, see Heathcote, Storesletten, and Violante (2017).
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15.1 Introduction

So far, this textbook has exclusively discussed real variables. In the models covered, money
simply is not present, and “dollars” have no special meaning. In microeconomics, on which
the macroeconomic models here are based, the label money is sometimes used but merely to
denote a numéraire. That is, the only prices that matter are relative prices between goods
and services traded. In macroeconomics more broadly, however, money is very frequently
in focus. First, people are concerned with inflation and the notion that it may erode the
purchasing power of people’s income. This mechanism, moreover, maybe a more serious
problem for some people than for others, so inflation affects the degree of inequality in
society. Second, one of the main macroeconomic policy tools available to governments is
monetary policy, conducted by central banks by controlling the stock (supply) of money or
the nominal interest rate, i.e., the rate of exchange between dollars at different points in
time (overnight, or from year to year). Historically, monetary policy was perhaps primarily
used as a source of revenue (seigniorage): the printing of new money (notes and coins) is
cheap and allows the government to help finance its operations. Today, the monetary policy
conducted by central banks is more about maintaining price stability and stabilizing business
cycles: to limit fluctuations in macroeconomic activity.

In most developed countries up until 2021, the need to control inflation from becoming too
large had almost disappeared from public debate, since inflation rates had been maintained
at well under 5 percent for three decades and the (explicit or implicit) target for inflation
of 2 percent that most economies maintain had even been difficult to reach, with episodes
nearing deflation during and around the Great Recession period. Then quite suddenly, at
least at first glance as a result of world events—e.g., supply-chain challenges in the aftermath
of the 2020 coronavirus pandemic and Russia’s 2022 invasion of Ukraine—many prices, such
as those for goods and later energy, rose sharply, and significantly and inflation rates were
again well above 5 percent. Today, inflation control is again an important topic in developed
economies.

Meanwhile, many less developed and emerging-market economies have struggled with
inflation rates remaining at high levels, disrupting daily life in major ways. When inflation
runs out of control completely, we speak of hyperinflation, which may seem merely like
an intellectual curiosity to those who were fortunate enough not to have experienced one,
but which quite clearly is disastrous for the economy. Thus, first-order questions for the
present chapter include: what determines the price level and causes inflation, how is human
welfare affected by inflation, and how can stable prices be maintained? These questions
fundamentally hover around the “dollar bill”: what is it really for and how does the market
and government policy jointly determine its value?1 We will therefore introduce theories
of money, in an effort to explain the role money has in the economy. We will also discuss
less ambitious theories —they do not attempt to explain money’s role—but are at least
theories with money that are frequently used. With these frameworks, we will discuss the
determination of inflation and discuss a variety of options for monetary policy.

1Like Barbie, the dollar bill asks itself “What was I made for?”.
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A particularly salient phenomenon in monetary economics is indeterminacy : the idea
that there are many (competitive) equilibria in a given economic environment and that
these equilibria may be associated with different real allocations. In a basic sense, this
should perhaps not be surprising: money’s value today ought to depend on its value in the
future, which in turn depends on its value after that, and so on. Can hyperinflations, for
example, simply be unfortunate equilibria in economies where there is also an equilibrium
with a stationary price level? We will see that in many economic environments, the answer is
yes. Thus, it seems that at least in theory, the view held by many, including Milton Friedman,
that (hyper)inflation can only result as a consequence of the central bank allowing the money
supply to increase (a lot), is not correct.2 Whether hyperinflations are associated only with
excessive money growth empirically is, however, not so much in focus in the chapter: the
main purpose here is merely to cover basic monetary theory.

The need for theory with (or of) money in monetary economics is not a foregone conclu-
sion, however: in the framework that is most frequently employed in policy-making settings
today, the New Keynesian model developed in Chapter 16, money is not even present. That
setting hence abstracts from monetary aggregates and instead focuses entirely on the role of
nominal stickiness (of prices and wages) and how it can make monetary policy have signif-
icant real effects. In contrast, in the present chapter, prices will always be assumed to be
flexible, so that the discussion can be focused sharply on more basic issues. However, we
will demonstrate how the New Keynesian model without money can be motivated, namely,
as the “cashless limit” of a model economy with money.

The chapter begins in Section 15.2 with the first fundamental model of money: the
overlapping-generations model, with which Samuelson (1958) made a case that intrinsically
useless paper money—fiat money—could have value under some circumstances. The idea
here is that in the overlapping-generations setting when the young’s endowments and pref-
erences are such that they want to save, in the absence of capital or other assets, there is no
one they can lend to. However, the presence of fiat money can allow this saving. When fiat
money has value, it is therefore an example of an asset bubble: money is an asset, without
a dividend, and when people then accept money in exchange for goods and services it must
be that people believe in its value only because others do. In this model, money’s function
is that of a store of value, and it has value so long as there is no other asset that dominates
money in return, e.g., bears interest. Moreover, the section demonstrates that there is equi-
librium indeterminacy: there are also hyperinflationary equilibria as well as an equilibrium
where money never has value.

Next, Section 15.3 looks at models with infinitely lived agents. There, we first show
that money cannot have value, even when other assets are missing. The intuition behind
this result is that in a finite-horizon economy, money quite trivially cannot have value in
the very last period, since it is fiat: at that time, no seller of goods or services will accept
money as payment. Hence, it is never valued earlier either. Subsection 15.3.1 shows that

2Milton Friedman’s famous 1963 speech in India includes the assertion “inflation is always and everywhere
a monetary phenomenon.” Friedman’s message, which was based on empirical observation, was that money
printing, i.e., central bank policy, is a necessary and sufficient condition for inflation to occur.

399



this intuition survives also with an infinite horizon but, most importantly, the section sets
up a general consumer budget constraint with money as well as government bonds. Next,
we move to models with money, where a reduced-form liquidity value of money is assumed
directly. Section 15.3.2 thus begins with the cash-in-advance model where money is assumed
to be needed to purchase goods. The motivation is money’s second role: the medium-of-
exchange role. Similarly, in money-in-transactions-costs and money-in-the-utility-function
models, real money balances are assumed to save on transactions costs and to give direct
utility, respectively. These models feature rate-of-return dominance: other assets, that bear
interest, do not yield these kinds of liquidity services (by assumption). The simple cash-in-
advance model we present can also be seen as a motivation for the quantity theory : M/P
is a constant times real output. Not only undergraduate textbooks but also some advanced
research papers use a demand for money formulation that is simply an assumed quantity
equation.3 Using the reduced-form models, in Section 15.3.3 we then briefly discuss optimal
monetary policy (absent any stabilization concerns), including the well-known Friedman
rule. We also show that in the models with reduced-form liquidity as well, there can be
equilibrium indeterminacy.

We then move to several other important conceptual topics. One is the cashless limit
mentioned above: the idea that it is possible to use nominal quantities without even having
a money stock present in the model. In fact, one of the main purposes of this chapter is to
prepare the ground for Chapter 16 on New Keynesian models, where we then simply begin by
assuming that money is absent but that prices are sticky in nominal units. The cashless limit
is non-trivial and involves the notion of monetary policy rules, such as interest-rate rules. In
particular, when the interest rate is set as an increasing function of the price level, a range
of equilibria are eliminated. This insight underlies the use of Taylor rules in New Keynesian
models and in practical policy-making, where interest rates respond to the price level or the
inflation rate. Finally, yet another policy rule that has received significant attention involves
the interaction between fiscal and monetary policy: the fiscal theory of the price level. We
explain its origin and the intuition behind why it can be seen as a mechanism for eliminating
equilibria and, yet, is controversial.

Before briefly discussing another way to motivate money as a store of value—namely
based on there being a limited set of other assets available in the economy, the topic of
Section 15.4—we then look at multiple monies, i.e., exchange rates, in Section 15.5. The
idea is not to venture into international economics; rather, we discuss the implications of
our basic theories of money for the relative values of different fiat currencies that might even
circulate within a given economy. This section therefore also involves a short discussion of
crypto-currency.

In Section 15.6, we finally look at theories of money as a medium of exchange. Here,
the idea is that search frictions among traders of goods/services with an absence of double
coincidence of wants can be seen as a deep friction motivating a value for fiat money.

3See, e.g., Mankiw and Reis (2002).
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15.2 Money in overlapping-generation models

Historically, various kinds of monies have circulated, often in the form of real objects of
intrinsic value (such as precious metals), with a variety of price stability and longevity
outcomes. However, today money—as defined by notes and coins— is fiat, i.e., it has no
intrinsic value, and it is not “backed” (say, by gold). Rather, people voluntarily choose to
accept money as a means of payment for goods and services because they expect money to
have real value later when they want to use it. Money is thus an asset, but not one that
promises anything real of direct value. Asset pricing, as discussed in Chapter 13, should thus
be useful, but we need to specify more clearly what the potential future benefits of money
might be for someone considering accepting it today.

Undergraduate textbooks mention three roles of money: it is a store of value, a medium
of exchange, and a unit of account. In this first part of the chapter, we look at money as
a store of value. For that, we begin with the overlapping-generations model, which already
Samuelson (1958) realized could be used to explain why money—under some conditions—
will have equilibrium value, despite being fiat. That model satisfies Neil Wallace’s dictum
(see Wallace (1998)): the use of money should not be an assumption, but an outcome, and
in fact one among many, since another plausible outcome is that people do not believe it
will ever have value. Thus, let us now revisit the overlapping-generations model considered
in Chapter 5. We proceed using simple examples, which can be easily elaborated on and
extended.

15.2.1 An endowment economy

So first consider an endowment economy without production or storage. Each period a
new cohort enters that lives for two periods and there is a representative agent per cohort.
The endowment vector of any agent entering the economy at time 0 or later is (ωy, ωo),
and the agent’s preferences are assumed to be logarithmic: log cy + log co. The initial old
representative agent at time 0 has endowment ωo and utility that is strictly increasing in co.
Thus the economy is stationary.

There is fiat money in the environment: an amount M of perfectly divisible and intrin-
sically useless objects. We assume that the initial old ones own these. The core question
now is whether fiat money can have market value. Clearly, the idea here is that money can
be used as a store of value. As such, it may be valuable since the endowment economy does
not allow saving (and the young have no one to lend to that will be able to pay back).

Let pm,t denote the time t value of a unit of money in terms of consumption goods at
time t. Thus, money has value if pm,t > 0. But if pm,t = 0 for all t we have a non-monetary
equilibrium, where no one values money. Then, the maximization problem of the generation
t agent is

max
cy ,co,M ′

log cy + log co (15.1)

s.t. cy + pm,tM
′ = ωy, co = ωo + pm,t+1M

′, and M ′ ≥ 0.
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The last inequality is natural: money can only be held in positive amounts. This is unlike
other assets we discussed so far; for example, we assumed that one can borrow by issuing
bonds, that is, holding negative amounts of bonds. The agent of generation −1 has a trivial
decision and simply sets co,0 = ωo + pm,0M . Recall that the initial old agents hold the
available stock of money M .

We will continue to assume, for now, that money has value, that is, pm,t > 0. We can then
combine the constraints from (15.1) to describe the available budget set for the consumer,
without explicitly involving money. This delivers

cy +
co

pm,t+1/pm,t
= ωy +

ωo
pm,t+1/pm,t

and ωy − cy ≥ 0. (15.2)

The implied budget set is presented in Figure 15.1; the inequality constraint, which reflects
non-negative money holdings, implies that consumption when young cannot exceed endow-
ments when young. As can be seen, the gross real return on money, pm,t+1/pm,t, is the slope
of the budget constraint.

cy

co

ωo

ωy

pm,t+1

pm,t

Figure 15.1: Budget set in the economy with fiat money

Solving the maximization problem is straightforward. Since the consumer’s indifference
curves are strictly convex and strictly decreasing we realize from the figure that either the
solution is a point on the downward-sloping budget line that is tangent to the indifference
curve—and, hence, the inequality constraint is slack—or it is right at the kink of the budget
set, with cy = ωy.

4 To find out which case applies, first ignore ωy − cy ≥ 0 and solve the

4Alternatively, use Kuhn-Tucker optimization; here, the Kuhn-Tucker multiplier will be zero in the former
case and positive in the latter.
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first-order conditions combined with the budget. The solution becomes

cy =
1

2

�
ωy + ωo

pm,t
pm,t+1

�
,

co =
1

2

�
ωy + ωo

pm,t
pm,t+1

�
pm,t+1

pm,t
.

Now check to make sure that cy ≤ ωy. This amounts to

ωy ≥ ωo
pm,t
pm,t+1

⇐⇒ pm,t+1

pm,t
≥ ωo
ωy
.

That is, if the gross real return on money is at ωo/ωy or above, the solution is valid. The
smaller is the ratio ωo/ωy, the larger is the consumer’s desire to smooth consumption over
time and save, but of course the consumer is also dissuaded from saving if the return on
money is low. If pm,t+1/pmt < ωo/ωy, the solution is cy = ωy and co = ωo (and M ′ = 0): the
consumer would want to buy a negative amount of money (borrow), but of course cannot.
In sum, individual money demand by the young at t as a function of the money prices at t
and t+ 1 is

pm,tM
′
t = max

§
1

2

�
ωy −

ωo
pm,t+1/pm,t

�
, 0

ª
. (15.3)

Given the demand function, we can solve for equilibrium, which amounts to the young
buying the entire money stock from the old:

M ′
t = M ∀ t. (15.4)

There are two cases to consider. In one, money has no value at any point in time. This
amounts to pm,t = 0 for all t.5 Recall that, in this case, (15.2) is not valid. Instead, the
consumer is simply unable to save because no matter how much money they acquire, it will
be worthless when they are old. Hence, there is an equilibrium where money does not have
value.

If pm,t is instead positive so that money has real value, then we can combine the expression
for money demand (15.3) with the money market clearing condition (15.4) and solve for next
period’s price of money as a function of the current period’s price,

pm,t+1 =
ωopm,t

ωy − 2Mpm,t
. (15.5)

This is a non-linear first-order difference equation where the initial value pm,0 is not given:
it is endogenous (this is the whole point!). Thus, if we can find a solution to this difference
equation where pm,t is positive at all points in time, we have a monetary equilibrium. For
this, consider the following two cases: (i) ωy > ωo, and (ii) ωy ≤ ωo. First, we can see that

5In this case, M ′t = M can still be assumed to hold: if money is free (and of no use), we can assume it is
passed on in full from generation to generation.
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there is a constant solution to this difference equation: pm,t = p̄m = (ωy − ωo) /(2M). This
value is positive for case (i), but it is not for case (ii).

Is the constant solution of case (i) the only possible solution or could there be non-
stationary equilibria, where the price level changes over time? We plot the dynamics of
equation (15.5) for cases (i) and (ii) in the two panels of Figure 15.2.

pm,t

pm,t+1

p̄m

p̄m

p̃m

(i) ωy > ωo

pm,t

pm,t+1

p̃m

ωy = ωo

ωy < ωo

(ii) ωy ≤ ωo

Figure 15.2: Price Dynamics

In Figure 15.2 (i) we plot the difference equation for case (i). The difference equation is
defined only for pm,t < p̃m = ωy/2M , since for any current price equal or greater than p̃m
next period’s price is infinite or negative. On the interval [0, p̃m) the difference equation is
monotonically increasing and it has two steady states at pm,t = 0 and pm,t = p̄m. The slope
of the difference equation at the two steady states is less than one if money has no value
and greater than one if money has value. Now consider an initial price for money pm,0 > p̄m.
We see, following the kind of Solow-picture dynamics seen in Chapter 3, that no such value
can be part of an equilibrium: sooner or later, pm,t+1 will exceed p̃m, which cannot be an
equilibrium. On the other hand, if pm,0 < p̄m, we see that the price dynamics will involve
monotonically declining prices, converging to zero. Thus money will have zero value in the
limit.

Case (ii), on the other hand, is one where no monetary equilibrium exists. We plot the
difference equation for case (ii) in Figure 15.2 (ii) and it is again increasing on the interval
[0, p̃m). But now there is only one steady state at the origin when money has no value.
Furthermore, the slope of the difference equation at the origin is equal (greater) one when
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ωo = ωy (ωo > ωy) and increases in the current price. Thus, for any positive pm,0, pm,t+1 will
eventually exceed p̃m, though how long this takes depends on how high a pm,0 is selected.

To summarize. If ωy > ωo, there is a continuum of equilibria indexed by an initial price
level pm,0 ∈ [0, p̄m]. Of these different initial values of money, only one, pm,0 = p̄m, gives
money a positive value in the limit, and for all the others money’s value goes to zero. And
if ωy ≤ ωo the only equilibrium is one where money has no value ever, pm,t = 0.

Finally, note that the amount of nominal units in the economy has no real import: it is
possible to rewrite the equilibrium difference equation (15.5) as mt+1 = ωomt/ (ωy − 2mt),
where mt ≡ pmtM . Thus, the equilibrium determines the real value of the total money stock,
independently of how many fiat money units are available.

15.2.2 Welfare comparisons across equilibria

This model satisfies Wallace’s dictum: money is not a “primitive” in that it may or may not
have value. Moreover, there are important observations to make regarding welfare. In short,
money can become a store of value when a store of value is missing, as we shall now argue.

Recall the welfare characterization of overlapping-generations equilibria from Chapter 5:
the Pareto efficiency of equilibria is all about the asymptotic marginal rate of substitution
between consumption when young and when old or, equivalently, the gross marginal return
on saving between consecutive periods. Namely, if this return is above or equal to one,
the equilibrium is efficient, and if it is below one, it is inefficient.6 Hence, in the ωy ≤ ωo
case, where money cannot have value, there is Pareto efficiency. When money can have
value (ωy > ωo), all equilibria (non-stationary monetary as well as non-monetary) are Pareto
inefficient, except for the stationary monetary equilibrium: the long-run return on saving is
ωo/ωy < 1 in the former cases and 1 in the stationary monetary equilibrium.

Is it the case that monetary equilibria, when they exist, are helpful from a welfare per-
spective? In particular, do they provide a Pareto improvement on the autarky allocation?
Clearly, the stationary monetary equilibrium does: the initial old are happier in it, since they
can sell their money for a positive amount, and all the other cohorts obtain utility equal to
2 log((ωy +ωo)/2), which exceeds logωy + logωo.

7 Notice that the fully smoothed allocation
is better than autarky for all cohorts also in the case where ωy < ωo but money cannot help
attain this allocation. Moreover, if it could, it would make the initial old worse off.

In fact, all the non-stationary monetary equilibria do improve on autarky as well. More-
over, the monetary equilibria are ranked in the following sense: the larger is pm,0 ≤ p̄m, the
higher is utility for all generations. We will leave these results as an exercise for the reader;
the key insight is that a higher return on saving is better for the consumer in this case.

6The non-monetary equilibria described here do not have a return on saving since there is no active
savings vehicle. However, we can introduce borrowing and lending, which have to equal zero in equilibrium.
The gross interest rate therefore needs to adjust to ωo/ωy to make the young choose exactly zero borrowing.

7Make sure that you can show this!
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15.2.3 Extensions: a neoclassical growth economy and policy

The basic results of the previous section extend in various ways. The essential ingredient in
obtaining a value of money is the lack of a (good) store of value. Put differently, for money
not to have value here, either people don’t need a store of value—such as when ωy < ωo—
or a “good enough” alternative store of value is available. So, consider the overlapping-
generations version of the neoclassical growth economy of Chapter , where people can save
using physical capital. Clearly, capital would then compete with money and potentially rule
out monetary equilibria.

Now the characterization of equilibria is somewhat more cumbersome than in the en-
dowment case. However, consider any such equilibrium, and for the preferences assume
log cy + log co, just as above. Recall that an equilibrium is still Pareto inefficient if, as time
goes to infinity, the limit for the gross interest rate is below one. This, moreover, is an out-
come that is possible in the neoclassical model. It’s another good exercise to try to derive a
condition under which you can see this to be true.8 In such a case, fiat money can have value
and real effects on economic activity. Capital will not be competed out entirely if production
is Cobb-Douglas, so money and capital will both be used and both give a gross return of 1
asymptotically.

It is straightforward to introduce money printing into the model, e.g., as lump-sum
transfers. If the government increases the money supply at a gross rate of 1+µ every period,
then the same type of equilibrium characterization as above obtains, with the difference that
the stationary monetary equilibrium is now replaced by one where the real return on money
is below one—it is 1/(1 +µ)—and where the total value of the money stock is lower. Money
printing can also be used as a source of income for the government (seigniorage) to pay
for its expenditures or debts. One can thus also introduce government bonds easily. If
they are in positive supply, bonds would compete with money as a store of value. Open
market operations can be studied, whereby the government would change its outstanding
stock of bonds over time, which in general will also affect allocations and the value of money.
However, the effects on allocations only materialize if the present-value budget of a cohort is
changed; otherwise, a Ricardian-equivalence theorem applies, as studied in Chapter 13. We
will return to some of these issues in the next section.

Thus we can construct versions of the overlapping-generations model for which valued
money co-exists with alternative means of storage if it pays the same rate of return as these
alternative assets. However, the overlapping generations model still has trouble explaining
why people in actual economies hold money despite there being other assets that dominate
it in return.

8To find at least one example, look at a case where there is a closed-form solution, such as when ωo = 0
and δ, the rate of depreciation of physical capital, is 1.
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15.3 Money in dynastic models

Dynastic models are different from overlapping-generations models in that their competitive
equilibria, absent other frictions, are Pareto optimal. Thus, at least in this sense, money
is not needed (as a store of value or otherwise). We will thus begin to demonstrate that
indeed, money cannot have value in the basic dynastic settings. Then we introduce, one by
one, additional assumptions that will give money value.

15.3.1 Fiat money has no value

We now show that in a standard infinite-horizon environment with dynastic households fiat
money has no value if it only only serves as a store of value. For this and the following sec-
tions, we will consider variations of a representative agent production economy with labor or
one with endowments only (both covered in Chapter 5). Unlike in the section on overlapping
generations, we will now explicitly consider a more general structure with government bonds
as well as changes in the stock of money.

The household’s preferences over consumption, c, and leisure, l, and the production of
consumption through labor are described by

∞∑
t=0

βtu (ct, lt) (15.6)

ct = z (1− lt) . (15.7)

We have assumed a fixed time endowment of one.9 The planning solution would hence
maximize the stated utility subject to this constraint; the solution is time-independent and
characterized by zuc(c, l) = ul(c, l).

The household’s budget constraint, in real terms, is

ct + qtat+1 + pm,tMt+1 + pm,tBt+1 = wt (1− lt) + at + pm,tMt + pm,t (1 + it−1)Bt − τt (15.8)

Here, a is a real asset with discount rate qt = 1/(1+rt), and rt is the net real return between
t and t+1. Real wages are w, and the government imposes a lump sum tax, τ . M and B are
nominal holdings of money and bonds, respectively, denominated in units of money, and pm
is the price of money. Hence an equilibrium where money has no value would have pm,t = 0
for all t. The nominal net interest rate on bonds held between time t and t+ 1 is it.

The household is allowed to borrow or lend in the real asset and nominal bonds, but
cannot borrow by issuing money,

Mt ≥ 0. (15.9)

The government’s budget constraint (where we abstract away from real expenditures) is
given by

pm,t(Mt+1 −Mt) + pm,tBt+1 = pm,t (1 + it−1)Bt − τt. (15.10)

9Note that in the other chapters of this textbook we use ` for labor supply. In the context of this chapter
we have l + ` = 1.
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In equilibrium, the representative household holds outstanding fiat money and nominal gov-
ernment debt and real assets are zero, at = 0. Thus, the resource constraint is satisfied:
ct = z(1− lt).

Let mt ≡ pm,tMt and bt ≡ pm,tBt denote the real value of money and bonds and define
ât = at + mt + bt(1 + it−1) to be total real wealth at the beginning of the period. By using
this definition, along with some algebra, we can rewrite the budget as

ct + qtât+1 +

�
1− qt

pm,t+1

pm,t

�
pm,t
pm,t+1

mt+1 +

�
pm,t
pm,t+1

− qt (1 + it)

�
bt+1 = wt (1− lt)− τt + ât.

(15.11)
In this budget constraint, â (and no other variable) allows saving from t to t+ 1. The terms
involving mt+1pm,t/pm,t+1 and bt+1 are “static”: they are losses/gains at t to the extent
the expressions in square brackets are positive/negative. Thus, first, the household would
not want to hold money if its real return, pm,t+1/pm,t, is below the real interest rate 1/qt.
Second, the household would be able to attain unbounded consumption for given wealth and
prices if the real return on bonds, (1 + it)pm,t+1/pm,t were not equal to the real interest rate:
if the return is higher (lower), the consumer could obtain unbounded resources by raising
(lowering) bt+1 without bound. Thus, for an equilibrium with positive money holdings to
exist, the following needs to hold:

qt =
pm,t
pm,t+1

=
pm,t
pm,t+1

1

1 + it
. (15.12)

The no-arbitrage condition means that we can write the budget constraint in more compact
form as

ct + qtât+1 +
it

1 + it
· pm,t
pm,t+1

mt+1 = wt (1− lt)− τt + ât. (15.13)

We see immediately from equation (15.12) that money cannot be held in positive amounts—
it cannot have real value, i.e., pm will have to equal 0—if the nominal interest rate on bonds
is positive. If it > 0, money would then be dominated in return by bonds and be a pure
loss too hold in positive amounts. Second, if it is zero at all times (or nominal bonds are
not available in the economy), then money (or bonds, which are now equivalent to money)
cannot have value either.10 To see this, note that the consumer’s optimization problem col-
lapses to a problem with one asset with real return 1/qt, equation (15.13). We know that for
this problem the transversality condition is a necessary condition for optimality. Applying
the condition to the real value of money holdings we obtain

0 ≥ lim
T→∞

q0q1 . . . qTmT = lim
T→∞

pm,0
pm,1

pm,1
pm,2

. . .
pm,T−1

pm,T
pm,TMT = pm,0 lim

T→∞
MT . (15.14)

Thus, if fiat money is not vanishing (i.e., being withdrawn) in this economy, money cannot
have value earlier on. In other words, for money to have value in this economy it must
disappear in the limit. We will return to this point.

10Recall that nominal interest rates at zero were observed for an extended period in the aftermath of the
Great Recession, so this case is not just a theoretical one.
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So far we have been interested in whether fiat money can have value, that is, whether the
price of money in terms of goods can be positive. In the following we will mainly deal with
environments for which money does have value, that is, pm > 0. For these environments
we are often interested in the price of goods in terms of money, that is, the price level,
P = 1/pm, and the rate at which the price level is changing, that is, the gross inflation rate,
1 + π = P ′/P = pm/p

′
m. For nominal bonds, this means that we will frequently write the

expression for their return as the Fisher equation:

1 + it = (1 + rt) (1 + πt) , (15.15)

which states that the gross nominal interest rate equals the gross real interest rate times the
gross inflation rate. In our perfect foresight environment, the Fisher equation can be seen
as an arbitrage condition involving real and nominal bonds.

15.3.2 Fiat money with reduced-form liquidity services has value

There are different ways to give value to money by assuming, in a reduced-form way, that
it matters to consumers. We now briefly look at them, one by one. Because government
bonds, from the perspective of the consumer, are identical to borrowing and lending—both
b and a can be held in positive as well as negative amounts and hence will yield the same
return—we only keep a in the frameworks. We will sometimes refer to the nominal interest
it, which as before means the money return at t+ 1 on a nominal bond bought at t.

The cash-in-advance model

We first impose the constraint that money has to be used in transactions; in particular, we
assume that goods can only be purchased using money. This constraint, commonly known as
a cash-in-advance (CIA) constraint, from Clower (1967), gives rise to an equilibrium where
money has value and is dominated in return by other assets.

Let us first incorporate the CIA into the household’s budget constraint

ct ≤ pm,tMt (15.16)

qtat+1 + pm,tMt+1 = at + pm,tMt − ct + wt (1− lt)− τt. (15.17)

The first expression is the CIA constraint and states that money is needed to buy goods.
The second expression states that money that is not spent today can be saved holding money
or the asset a. The two expressions combined also state that current earnings from the sale
of goods are not available contemporaneously for consumption.

Consider now the modified consumption-savings problem of the representative agent

max
{ct,lt,mt+1}

∞∑
t=0

βtu (ct, lt) (15.18)

s.t. ct ≤ mt, (15.19)

ct + qtat+1 +
pm,t
pm,t+1

mt+1 = at +mt + wt (1− lt)− τt, (15.20)
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where we have again replaced nominal money balances with real balances. The first-order
conditions for the household’s problem are

uc (ct, lt) = λt + µt (15.21)

ul (ct, lt) = λtwt (15.22)

λtqt = βλt+1 (15.23)

λt
pm,t
pm,t+1

= β (λt+1 + µt+1) , (15.24)

where βtµt and βtλt are the Lagrange multipliers on the CIA constraint (15.19) and on the
budget constraint (15.20), respectively.

Now consider a stationary equilibrium for a constant money stock M and labor produc-
tivity, z. In the equilibrium the household holds all of the money, net assets are zero, a = 0,
and consumption and leisure are c = z(1− l). From the FOCs for consumption and leisure
it follows that the Lagrange multipliers are constant, and from the FOC for assets it follows
that the discount rate on assets is equal to the discount factor, q = β.

If the CIA constraint is binding then the price of money is constant, c = pmM , which
as before delivers a nominal interest rate such that q(1 + i) = 1, as there is no inflation.
From the FOC for real balances it then follows that the Lagrange multiplier on the CIA is
positive, µ > 0. Combining the FOC for consumption and leisure we obtain

ul(c, c/z)

uc(c, c/z)
= z

λ

λ+ µ
= βz, (15.25)

where we have also used the Euler equation for real balances, (15.24). Equation (15.25) pins
down the steady-state consumption level, from which all the remaining equilibrium variables
can be obtained.

Notice that the CIA must be binding in the stationary equilibrium. To see why, suppose
it is not binding, that is, c < pm,tM and µ = 0. From the first-order condition for real
balances it then follows that the return on money is equal to the interest rate. But this
implies that the price of money is increasing over time. So the CIA constraint remains
satisfied, but the TVC is now violated as shown in the previous section.

Also notice that compared to the same economy without the CIA constraint, the marginal
rate of substitution between leisure and consumption is less than the marginal rate of trans-
formation: βz < z. But this means that in the CIA economy leisure is higher and consump-
tion is lower. Effectively, the real wage is lower in the CIA economy because today’s labor
income can only be used tomorrow and the return on saving the labor income is less than
the real interest rate. Is there a way to fix the problem?

Suppose the government imposes a nominal lump sum tax on the representative house-
hold, Tt, to be paid using money. Also, assume that money is withdrawn at a constant
rate, Mt+1/Mt = γ < 1. Then the implied real lump sum tax is τt = pm,t(Mt −Mt+1) =
(1 − γ)pm,tMt. With a binding CIA constraint the price of money increases as the money
stock shrinks, Mtpm,t = ct, and the discount rate for real balances is γ. We can still find
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a stationary equilibrium where the value of the total money stock is constant: the nominal
stock changes at a gross rate γ, but the value of each unit of money changes at 1/γ; for
γ > 1, this means a constant rate of inflation and for γ < 1 a constant rate of deflation.
We can, in particular, choose γ = β such that the return on assets and money is equalized.
For this policy the TVC is satisfied since the nominal money stock is vanishing in the limit.
This result—that withdrawing money from the economy at the rate of discount makes the
equilibrium optimal, and constitutes optimal monetary policy—is known as the Friedman
rule. Milton Friedman cast this policy in terms of “paying interest on money”, which is
something the central bank in principle could engineer. With the money stock shrinking at
rate β, people are not constrained in the use of money, and similarly if money paid interest
and were therefore identical to bonds, they would not be constrained either.

The CIA model of money does not satisfy Wallace’s dictum: though we have not demon-
strated it, money will always be valued here because it has been hard-wired to be equal to
consumption (in real terms, and hence its value could not be zero, or else consumption would
be zero). Money is a store of value in the CIA model but one that is worse than bonds and
other assets: its value derives from it being required in order to buy goods. Money is thus
used as a medium of exchange, though the exchange is not explicitly modeled. One way
to describe the CIA constraint is that it imposes a quantity equation of sorts: the equation
VM = Py = Pc is met by assumption with a velocity of 1, V = 1.

The quantity theory in the data

Defining characteristics of the Quantity Theory of Money (QTM) are the presence of
a stable demand for money and that money growth and inflation move one for one.
Suppose that money is neutral over the long run, that is, real activity is independent
of money growth over the long run. Then price inflation will move one-for-one with
money growth over the long run if the demand for money is stable and proportional to
the nominal transaction volume.

For an empirical evaluation of QTM one thus needs measures of the money stock, the
transaction volume, quantities and prices, and the opportunity cost of holding money.
From the point of view of money as a means to execute transactions, one can think
of various measures. Standard measures of money published by central banks include
M1, consisting of currency and checkable demand deposits, and M2, which adds savings
deposits to M1. Regulatory changes and technical advances may affect what should be
included in a measure of money, see Lucas and Nicolini (2015). For example, before the
1980s regulation Q in the U.S. imposed limits on the ability of banks to pay interest on
accounts. Once Regulation Q was abolished banks started to offer new interest-bearing
liquid accounts, e.g., money market deposit accounts with limited transaction features.
In the mid-1990s IT improvements made moving funds between demand deposits and
money market accounts easier (SWEEP accounts), making the latter close payment
substitutes. Payments from bank accounts have also been made easier using electronic
transfers that can be initiated using mobile phones. Bitcoin and other digital currencies
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may represent additional future means of payment. Thus what should be included in
a measure of money changes over time, which affects the stability of money demand
as defined by a fixed measure of money. Furthermore, the M1 and M2 measures listed
are simple sums of their various components, but these components may well differ in
their ability to perform transactions. Divisia indices have been proposed for construct-
ing aggregate money stocks; see Barnett (1980). This approach is analogous to how we
aggregate different final goods into an aggregate output measure like GDP. The stan-
dard measure of transactions in the literature is GDP, but obviously, many transactions
precede the purchases of final goods in the economy: there usually are multiple stages
of production. Thus using GDP as a sufficient statistic for the transaction volume im-
plicitly assumes that the production structure is not changing much over time. Finally,
various short-term interest rates have been used for the opportunity cost of holding
money. For the U.S. that includes the Federal Funds rate, the rates on short-term com-
mercial paper or short-term U.S. Treasuries. In the following, we study how well the
QTM holds up for the U.S. for the period 1901 to 2023 using M2 as a measure of the
money stock, GDP as a measure of transactions, and the 6-month commercial paper
rate as a measure of the opportunity cost of holding money. Using other measures of
money and interest rates produces very similar results.

We first consider the long-run relation between M2 growth and GDP inflation, fol-
lowing Sargent and Surico (2011). For this purpose we calculate long-run movements of
M2 growth and inflation as 15-year symmetric moving averages. In Figure 15.3 we plot
the filtered M2 growth rates and GDP inflation for annual data from 1902–2023 for five
sub-samples: 1902–1928, 1929–1954, 1955–1983, 1984–2005, 2005–2023. The first pe-
riod precedes the Great Depression, the second period covers the Great Depression and
World War II, the third period covers the post-WW-II period including the inflationary
1970s, the fourth period covers what has been called the Great Moderation and the
adoption of inflation targeting among advanced economies, and the fifth period covers
the Great Recession and the policy of Quantitative Easing (QE). We see that inflation
moves roughly one-for-one with money growth but that there is notable variation in that
relation across subsamples. On the one hand, during the period covering high inflation
in the late 1960s and 1970s, inflation appears to respond strongly to changes in money
growth. On the other hand, during the Great Moderation and inflation targeting, the
response of inflation to changes in money growth is much weaker, and during the QE
period, inflation appears to decline as money growth increases.
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Figure 15.3: Inflation and money growth

Notes: Each panel plots the filtered GDP inflation rates against the filtered M2 growth

rates (red circles), and contains the 45-degree line (thin black line) and the fitted values

from an OLS regression of inflation on money growth (thick red line). The estimated OLS

coefficients for the sub-samples are in the lower right-hand corner with heterogeneity and

auto-correlation corrected standard errors in parentheses.

We now consider the long-run stability of money demand. In Figure 15.4 we plot
the M2-GDP ratio and the 6-month commercial paper rate for both the actual data
and their 15-year symmetric moving averages. At first inspection, Figure 15.4 seems
to provide evidence for the long-run stability of money demand despite the large and
persistent deviations of the variables from their long-run trends. Whenever the filtered
short rate increases, the filtered M2-GDP ratio declines. This stable relationship for
the filtered data disappears, however, when we look at the sub-samples as in Figure
15.3. Now, the OLS regression coefficients of the M2-GDP ratio on the short rate can
be either positive or negative, and they are usually not significant.
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Figure 15.4: Inflation and money growth

Notes: We plot annual data for the ratio of M2 to nominal GDP (red crosses) and the

6-month Commercial Paper (CP) rate (blue circles). The solid red and blue lines are the

15-year symmetric moving averages of respectively the M2-GDP ratio and the CP rate.

Shading and its absence sets apart the five subsamples from Figure 15.3.

A cautious summary is that the evidence on QTM is mixed.

The CIA model is an often-used framework and arguably it can be used to address
some questions in monetary economics that do not involve endogenous changes in the way
money is used in exchange. The CIA constraint is sometimes also used to motivate the
notion of “aggregate demand” used in many undergraduate textbooks: a downward-sloping
relationship with output on the x-axis and the price level, P , on the y-axis. On the surface
and due to the language, this demand function looks like it is just taken from microeconomics,
but recall that such relations in microeconomics involve relative prices between goods and
P is not such a price: P is the average dollar price of all goods and services or, put in terms
of the one-good economy we use as a benchmark macroeconomic model, it is the dollar price
of a unit of the good. Thus, to the extent P is a relative price, it is not comparing goods
but it is comparing goods and dollar bills, the latter of which is not valued in utility or
production. However, to the extent it reflects money’s value in exchange as described by
a CIA constraint, this relation can be seen as an argument behind why a relation like the
aggregate demand curve may exist.

Besides a CIA constraint, there are other ways to introduce money into a standard
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representative agent economy without frictions. Next, we consider two prominent examples.
The first example posits that transactions are costly, but less so if one holds money. The
second example simply represents any inherent value to money by incorporating it into the
utility function.

Money reduces transactions costs

Consider the budget constraint (15.20) but assume that the purchase of consumption goods
involves a real cost in terms of the consumption good

ct + qtat+1 +
pm,t
pm,t+1

mt+1 = at +mt + wt (1− lt)− τt − ψ
�

ct
mt+1pm,t/pm,t+1

�
ct, (15.26)

where ψ(x) = κxη is an increasing function, κ, η > 0. Thus transaction costs are increasing
in consumption, decreasing in real balances, which we recall are Mt+1/Pt = mt+1pm,t/pm,t+1,
and homogeneous of degree one in consumption and real balances jointly. Here current real
balances facilitate transactions, unlike in the CIA model which requires real balances carried
over from the previous period to make transactions.

Using a subscript t on ψ and its derivative to indicate evaluation at ct/ (mt+1pm,t/pm,t+1),
we obtain first-order conditions for the household’s problem as follows.

uc (ct, lt) = λt

�
1 + ψ

′

t ·
ct

mt+1pm,t/pm,t+1

+ ψt

�
(15.27)

ul (ct, lt) = λtwt (15.28)

λtqt = βλt+1 (15.29)

λt
pm,t
pm,t+1

�
1− ψ′t ·

�
ct

mt+1pm,t/pm,t+1

�2
�

= βλt+1, (15.30)

where βtλt is the Lagrange multiplier on the budget constraint (15.26). Combining the FOCs
for the real asset and real balances, (15.29) and (15.30), we obtain

1− qt
pm,t/pm,t+1

= ψ′t ·
�

ct
mt+1pm,t/pm,t+1

�2

. (15.31)

Recalling the Fisher equation (15.15) for the nominal interest rate and using the functional
form for ψ we arrive at an expression,

Mt+1

Pt
= ct

�
1

κη

it
1 + it

�−1/(1+η)

, (15.32)

which relates the demand for money to the value of transactions and the opportunity cost of
holding money, the nominal interest rate. This expression is in line with the usual expressions
for money demand, unlike in the simple CIA model above, for which money demand is
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interest-inelastic.11 That is, real money demand is equal to consumption (or output, if
output is defined net of transactions costs) times the inverse of velocity, an expression that
is decreasing in the nominal interest rate.

We have so far described this model only from a single consumer’s perspective. To solve
for a general equilibrium, we would need to specify production; we could assume linear
production as in the previous model with wt = z. As before, we would then assume that the
consumer holds the entire money stock and that at is zero at all times. The budget constraint
would then reduce to the economy’s resource constraint, which says that consumption equals
production minus transactions costs. Finally, the Fisher equation is used, relating inflation
and the nominal interest rate to the real interest rate; in the absence of inflation, in a
stationary equilibrium, this would boil down to q(1 + i) = 1.

Money in the utility function

We have just assumed that real balances are for some reason helpful in executing consumption
purchases. We could take an even more reduced form approach and assume that real balances
are valuable, period. For this purpose, we simply include real balances in the utility function
of the representative agent, rather than modifying the budget constraint. So, assume that
preferences are

∞∑
t=0

βt
�
u

�
ct,mt+1

pm,t
pm,t+1

�
+ v (lt)

�
; (15.33)

here, the second argument of u is simply the real amount of money purchased at t, Mt+1/Pt,
but expressed in terms of m and pm. The specific functional form used is convenient but of
course not the only possibility. The FOCs for the household’s consumption-savings problem
with preferences (15.33) and budget constraint (15.20) are

uc,t = λt (15.34)

v′t = λtwt (15.35)

λtqt = βλt+1 (15.36)

λt
pm,t
pm,t+1

= um,t
pm,t
pm,t+1

+ βλt+1, (15.37)

where we have suppressed the arguments of the derivatives of u and v for compactness.
Another equation is also relevant: our budget constraint (15.20) does not explicitly feature
nominal government bonds paying interest it between t and t + 1, but that is because of
the no-arbitrage condition between real and nominal bonds that yield the Fisher equation,
qt(1 + it) = pm,t/pm,t+1. Using this equation together with equations (15.36) and (15.37), we
obtain 1 = um,t/uc,t + 1/(1 + it). This delivers an expression that is very similar to equation
(15.31):

um,t
uc,t

=
it

1 + it
. (15.38)

11More elaborate versions of the CIA model also feature interest-elastic money demand.
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If we assume that u(c,m) is a homothetic function, that is, it is a monotone transformation
of a homogeneous of degree one function, we again obtain a money demand equation that
relates the ratio of real balances to consumption, m/c, to the opportunity cost of holding
real balances, i/(1+ i), similar to (15.32). We can then again treat this equation as a (static)
money demand relationship much like that in the transactions-costs case. And as in that
case, the stationary general equilibrium allocation is obtained by adding assumptions on
production and market clearing.

15.3.3 Policy and the value of money in the reduced-form models

We will now illustrate some key features of the reduced-form models of money. For most of
the discussion, we will limit attention to the case with money in the utility function.

Stationary equilibria: quantity theory and optimality

All of our reduced-form models of fiat money give rise to a well-defined demand for real
balances. In the CIA model, this demand for real balances is independent of the nominal
interest rate, equation (15.19) with equality. But for the models where real balances reduce
transaction costs or provide utility directly, this demand may depend on the nominal interest
rate, e.g., equations (15.32) and (15.38). Since the environment in our examples is stationary
so far we have studied their stationary equilibria for which quantities and prices are constant.
In these equilibria real balances are constant and therefore the price of money is inversely
proportional to the money stock. This reflects the quantity theory which is usually taken to
state that the price level is proportional to the money stock.

The Friedman rule In the CIA model we have shown that in general the stationary
equilibrium outcome is sub-optimal relative to the economy without frictions, that is, without
the CIA constraint. We also saw that the outcome of the frictionless economy can be
recovered if the money stock is shrinking at a rate such that the price of money is increasing
and the real rate of return on money is equal to the real discount rate. In other words,
the price level is shrinking and there is deflation at the real interest rate. Furthermore,
from the Fisher equation, it then follows that the nominal interest rate is zero. This is the
Friedman Rule: if money is dominated in return but fills a function in the economy, then
optimal policy is to reduce the opportunity cost of holding money to reduce distortions. For
the CIA model such a policy can eliminate the distortion completely, but for the two other
reduced-form models of money the full optimum can only be reached exactly if additional
“satiation assumptions” are made. In the first economy, transactions cost need to reach zero
for some finite value of real balances; in the second, u needs to have a minimum in it second
argument.
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Equilibrium indeterminacy

A feature of monetary economies is that they naturally give rise to multiple equilibria. This
is mainly because forsaking real resources and buying money today is less advantageous if
it loses value entirely in the next period (i.e. if others are not willing to buy it): the price
of money today depends naturally on the price of money in the future. In the overlapping-
generations economy of section 15.2, money was only used as a savings vehicle and there is
therefore always an equilibrium in that economy where money never has value. As we shall
see here, reduced-form models often also deliver indeterminacy.

Hyperinflation In the reduced-form models, equilibria where money never has value can
occur but only under special assumptions on preferences/transactions costs.12 There may,
however, exist non-stationary monetary equilibria. Consider, for example, the CIA model
from section 15.3.2. Combine equations (15.21)-(15.24), assuming that the CIA constraint
is binding, and normalize z = 1. We obtain

ul (mt, 1−mt)
pm,t
pm,t+1

= βuc (mt+1, 1−mt+1) . (15.39)

Now assume that through lump-sum transfers (negative taxes) the money stock changes at
the constant gross rate γ > 1, Mt+1 = γMt, and we arrive at a first-order difference equation
in real balances, mt,

γul (mt, 1−mt)
mt

mt+1

= βuc (mt+1, 1−mt+1) . (15.40)

with no initial condition for real balances. This makes clear how expectations fundamentally
drive equilibrium outcomes. One solution is a steady state, but this may not be the only
possibility. To make this point particularly sharp, suppose that leisure and consumption are
separable and that the marginal utility of leisure is constant and equal to 1: with a slight
abuse of notation, u(c, l) = u(c) + l. This yields

γmt = βmt+1u
′ (mt+1) . (15.41)

If in addition limm→0mu
′(m) = 0, then this expression defines two steady states: one with

positive real balances, γ/β = u′(m̄), and a limiting steady state where money has no value
and real balances are zero. Furthermore, for any initial real balances 0 < m0 < m̄ the
path of real balances defined by equation (15.41) converges to the steady state with zero
real balances.13 Given M0 an initial m0 corresponds to a price pm,0, and pm,0 < p̄m,0 for

12In the CIA model, a non-monetary equilibrium would mean zero consumption, which is only possible if
utility is bounded below in consumption. In the model where money reduces transaction costs, these costs
would need to be bounded at zero real money balances, and in the model where money enters the utility
function, this function must be bounded below in real balances.

13Linearizing the dynamic system around m = m̄, we see that the system is locally unstable. Linearizing
around m = 0, however, delivers stability, provided γ/ [βu′(0)] < 1. Note also that along paths where
mt → 0, the real return on money is always less than 1/γ, that is, for γ > β the CIA is binding.
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m0 < m̄0. Thus, for any initial pm,0 < p̄m,0 the price of money converges to zero faster than
the money stock increases, and the value of real balances vanishes in the limit.14

Local indeterminacy In a different environment, the same policy of constant money
growth through lump-sum transfers can result in a continuum of nonstationary equilibria
that all converge to the unique stationary equilibrium. For a version of the reduced-form
model with money in the utility function from section 15.3.2, Obstfeld (1984) shows that the
local dynamics of perfect foresight paths at the steady state allow for a continuum of paths
that all converge to the steady state if consumption is a normal good and the magnitude of
the elasticity of marginal utility of consumption with respect to real balances is sufficiently
small. For all of these equilibria, the price level relative to the money stock remains bounded.

In Section 15.3.3 we will study the interaction of monetary and fiscal policy and explore
how policy modifications can lead to a unique equilibrium.

Different monetary rules

In the above discussion, there is an implicit assumption about the conduct of monetary
policy: the monetary authority selects a path for the money supply, a sequence that will be
given to the economy, and for which one can then examine the set of implied equilibrium
allocations. We learned—for the economies we looked at—that for a money supply path
featuring growth at a constant rate, there is a unique steady-state equilibrium in which the
rate of inflation equals the inverse of the money growth rate. We also learned that other
equilibria may exist under some conditions. For the case in which there are government
bonds, the nominal interest rate consistent with the money stock sequence would follow
from the Fisher equation. However, in most economies of today, monetary policy is not
described this way; rather, the more appropriate description of the conduct of monetary
policy is that of a “choice of a sequence of nominal interest rates”, possibly associated with
a rule such as the Taylor rule as described below. We now discuss how to define equilibria
where the central bank directly chooses interest rates (and the money supply path becomes
endogenous).

Interest rate rules

Sims (1980) popularized the use of vector autoregressions (VARs) as a way of studying
the effects of exogenous shocks on macroeconomic time series while imposing minimal
assumptions to identify the exogenous shocks. Usually, shocks are identified by imposing
restrictions on the covariance matrix of the residuals from estimated structural, i.e.,
theory-based, VARs (SVARs). Early VAR applications that studied monetary policy
as a source of economic fluctuations were influenced by QTM arguments. Sims (1972),

14The example in this section relies on specific assumptions on utility. Under other assumptions, there is a
unique equilibrium. If u(c) = log c, which violates the condition stated as limm→0mu

′(m) = 1 > 0, equation
(15.41) allows us to solve uniquely for m0, m1, and so on.
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in a small-scale VAR of the U.S. economy with real GDP and nominal money finds a
quantitatively large contribution of money shocks to output fluctuations. But later work
considered larger-scale SVARs and once short-term interest rates were added to the list of
variables, interest rate shocks replaced money shocks as a source of output fluctuations.
Bernanke and Blinder (1992) then argued that monetary policy actions set a particular
short-term interest rate, namely the Federal Funds rate, and thus interest rate shocks
reflect the impact of monetary policy. The Federal Funds rate is the overnight interest
rate in the market for interbank loans. Contemporaneously, Goodfriend (1991), based
on a reading of U.S. monetary policy implementation at the Federal System, argues that

”Except for the period from 1934 to the end of the 1940s when short-term
interest rates were near zero or pegged, the Fed has always employed either
a direct or an indirect Federal funds rate policy instrument.” (p.8)

In particular, he observes that the Federal Funds rate is adjusted infrequently and that
rate changes usually occur in a sequence of consecutive small steps. Taylor (1993a) then
provides the “Taylor rule” as an example of a monetary policy rule with an interest
rate instrument that also well represents Fed behavior. According to the Taylor rule,
the Federal Funds rate responds to deviations of inflation from a 2% target with a
coefficient of 1.5 and to percentage deviations of real GDP from potential real GDP
with a coefficient of 0.5. Figure 15.5 from Taylor (1993a) plots the actual and rule-
prescribed Fed Funds rate path. Variations of the Taylor rule are now an integral part
of most quantitative monetary models. The Federal Reserve Bank of Cleveland and
the Federal Reserve Bank of Atlanta provide utilities that calculate Fed Funds rate
prescriptions for a collection of Taylor-rules.Percent 
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Figure 1. Federal funds rate and example policy rule. 
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Figure 15.5: The Taylor Rule

Price level indeterminacy under pure interest rate rules First, consider a monetary
policy that would just specify a sequence of nominal interest rates. Since long, such a policy
has been viewed as perilous, as it leaves the price level indetermined. To see why, consider
a pure interest-rate peg in the context of the general-equilibrium cash-in-advance model
from section (15.3.2). In particular, assume a path for the nominal interest rate for which
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it > 0. As in Section (15.3.3) on hyperinflation, we specialize utility to be linear in leisure;
in particular, let period utility be u(c)+ l and let labor productivity z be equal to one. Then
recall that the equilibrium conditions, which we only studied in a steady-state version in
section 15.3.2, will read (in the order stated in that section) ct ≤ pm,tMt, u

′(ct) = λt + µt,
1 = λt, qtλt = βλt+1, and λtpm,t/pm,t+1 = β(λt+1 + µt+1). From this follows that qt = β and
that pm,t/pm,t+1 = β(1 + it), using the Fisher equation, for all t ≥ 0. Thus, the interest-
rate peg determines inflation. This also means, using the last equilibrium condition, that
pm,t/pm,t+1 = βu′(ct+1), thus, pinning down ct+1 for all t ≥ 0. Thus, conditional on the
initial price of money, pm,0, the peg delivers a determinate deterministic equilibrium from
the second period on.

However, pm,0 is not determined. Suppose that the CIA constraint in the initial period
does not bind, that is, the initial CIA multiplier is zero, µ0 = 0, and consumption is deter-
mined by u′(ĉ0) = 1. For the given initial money stock M0 any positive initial price of money
pm,0 > p̂m,0 = ĉ0/M0 will then satisfy the CIA and represent an equilibrium. Alternatively,
if pm,0 ≤ p̂m,0 then the initial CIA constraint binds, and the initial price together with the
CIA determines initial consumption, c0, and the FOC for consumption determines the CIA
multiplier, µ0. So, any initial positive price of money indexes an equilibrium, and there is
real, and not just nominal, indeterminacy.

Note that, since the nominal interest rate is always positive the CIA always binds, which
then determines a path for the money stock Mt+1 for all t ≥ 0. In other words, policy has to
adjust the outstanding money stock in order to support the interest rate peg, either through
transfers or through open market operations. For example, if it = ĩ then u′(c̃) = 1 + ĩ and

p̃m,t/p̃m,t+1 = β(1 + ĩ) = M̃t+1/M̃t. This looks like the money growth rule that is consistent
with hyperinflation.

Interest rate rules with a target Now consider amending monetary policy with an
interest rate rule: a function relating the set interest rate to the price level (or, more common
in practice, to the inflation rate, as in the Taylor rule)

it = φ

�
Pt

P̃t

�
. (15.42)

Here, P̃t is a target price level, which in general can change over time. The idea is that, under
appropriate restrictions on the function φ, the basic price level indeterminacy disappears.

How does the addition of the interest rate rule affect the determination of the price level?
Let us go through the case of money in the utility function. Suppose, for a moment, that
the real side of the economy is not affected by nominal variables. That would mean that the
path for rt can be taken as given. To make matters even simpler, suppose that rt is constant:
rt = r for all t. The Fisher equation then reads 1 + it = (1 + r) (Pt+1/Pt). Now note that a

target for the price level path implies a target for the inflation rate, 1+π̃ = P̃ ′/P̃ , and through
the Fisher equation an implicit target for the nominal interest rate 1 + ĩ = (1 + r)(1 + π̃).
For simplicity assume that the inflation target and therefore the nominal interest target are
constant.
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Combining the Fisher equation with the interest rate rule we can then write the evolution
of the price level deviation from target as

Pt+1

P̃t+1

=
Pt(1 + it)/(1 + r)

(1 + π̃)P̃t
=
Pt

P̃t

1 + φ
�
PtÜPt�

1 + ĩ
, (15.43)

Equation (15.43) thus defines a first-order difference equation for the nominal price relative
to its target, without an initial condition. Its local dynamics around a steady state of 1 are
straightforwardly determined by the use of a first-order Taylor approximation: Pt+1/P̃t+1 ≈�
Pt/P̃t

�
(1 + φ′(1)) /

�
1 + ĩ

�
. If φ′(1) > 0, the local dynamics are determinate: there is a

unique bounded solution with Pt = P̃t for all t. If, on the other hand, φ′(1) < 0, then
there is indeterminacy: a continuum of paths are consistent with convergence to the given
steady state.15 In conclusion, we see that if the central bank uses a rule that raises the
nominal interest rate in response to an increase of the price level relative to its target, then
the indeterminacy of nominal prices is no longer a problem. The corresponding demand for
nominal money then follows from the money demand equation (15.38).

The discussion here has taken as given an exogenous path for rt that, moreover, is con-
stant. The arguments extend to an exogenous path for rt that converges to a constant. How
restrictive is the assumption that the path for rt is exogenous? We know that the Euler
equation for the real rate when money is in the utility function from equations (15.34) and
(15.36) will in general involve nominal variables and hence make the analysis more involved.
A full equilibrium treatment would require specification of the production side and the equi-
librium conditions would then need to be solved for. One possibility is that we again use the
assumption that production is linear in labor, c = z(1− l), and that the government does not
consume. Then the consumer’s first-order condition for leisure, zuc(ct,Mt+1/Pt) = v′(lt), can
be used directly to solve for time-independent ct = c and lt = l if we also assume that u is
separable in consumption and real money balances. Hence, we can obtain rt = r.16 For the
more general case of non-separability, one would need to examine the joint system of prices
and real money holdings. It is of course possible to do so and to establish joint conditions on
φ and u such that the equilibrium is determinate. The details are not important, so we omit
them here. Nevertheless, dealing with the general case is relevant since a utility function
where money enters separately from consumption is hard to motivate: after all, money’s role
is meant to be tied to the purchase of consumption goods.

Paying interest on money Recall Friedman’s proposal: to pay interest on money. It is
indeed conceivable for the central bank to pay interest on money, and it is even a policy in
practical use, because many central banks pay interest on reserves. Letting im denote the
interest paid on money, if im = i at all times, money is equivalent to bonds in financial terms

15The knife-edge case φ′(1) = 0 leads to indeterminacy as well: a continuum of non-diverging price ratios

Pt/ÜPt are possible (constant) solutions to the equilibrium equations.
16This argument works also if z depends on time but is converging to a constant, in which case rt converges

to a constant.
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for the household. Hence, with an interest rate rule, no reduced-form approach is necessary
for obtaining a value of money. If im < i, money is still financially dominated in return and
a reduced-form demand would need to be added for money to have value in equilibrium.
Now, the compact budget constraint (15.13) would have (i− im)/(1 + i) multiplying M ′/P
and this is now the real financial cost of holding each unit of money. Using an im ∈ (0, i) as
an additional policy variable would not add conceptually to the rest of the analysis in this
chapter, which is why our benchmark maintains im = 0.

The cashless limit

An important part of the New Keynesian model, to which chapter 16 is devoted, deals with
price determination in the absence of a demand for money: money balances never appear in
that model. The price level is still nominal—set in units of currency—and serves a different
role: it is the unit in which prices are assumed to be sticky. Price stickiness is not the
subject of the present chapter, however; suffice it to say that in the New Keynesian model, a
firm’s price in dollar terms cannot be changed freely. But how is it possible to have nominal
variables in the model without having money? We now discuss how Woodford (2003a)
motivates his approach.

So consider again the model with money in the utility function. We just saw that a
framework in which u is additively separable in consumption and real money balances is
consistent with price-level determinacy under an interest rate rule, which is also the standard
assumption about monetary policy made in the New Keynesian model. Moreover, money
balances do not matter for the determination of either real variables or the price level, but
they are simply given residually from the money demand relationship um,t/uc,t = it/(1 + it).
This economy is not cashless but it is consistent with using nominal variables without having
to mention money balances. However, we also pointed out that additive separability is a
very special, and arguably unrealistic, case.

Woodford considers the limiting cashless case for the more general model without additive
separability. Thus money matters for real allocations and for price-level determination, but
it matters less and less. For this approach we assume that the “relevance” of real money
balances in the utility function (in comparison to consumption) can be represented by a
parameter, ω, that can be taken to zero. Is it possible that for this limit in equilibrium (i)
real money balances go to zero, while (ii) the price level remains finite and determinate and
the remaining real variables can be pinned down as well? For this case consumers would
demand less and less money from the central bank (in nominal terms), since they care less
and less about money as ω approaches zero. Let us look into this possibility here.

Thus, consider the Euler equation for nominal bonds,

1 + it = β−1 uc,t(ct,Mt+1/Pt)

uc,t+1(ct+1,Mt+2/Pt+1)

Pt+1

Pt
,

which combines the Euler equation for real bonds, equations (15.34) and (15.36), with the
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Fisher equation, together with the money demand equation (15.38),

um,t(ct,Mt+1/Pt)

uc,t(ct,Mt+1/Pt)
=

it
1 + it

.

These two equations are interdependent but let us consider the first equation only in a
limiting case. Let us again focus on an interest rate rule with a constant inflation target,
1 + π̃ = P̃t+1/P̃t, and implicit interest rate target, 1 + ĩ = 1 + φ(1) = (1 + r)(1 + π̃). With
constant consumption in steady state, we have 1 + r = 1/β. The idea is now to examine
local determinacy around steady states, with successively smaller ω’s, i.e., with lower and
lower values for real money balances in steady state, with a particular focus on the limiting
case of zero. We will define the local dynamics in logarithms; the interpretation is thus one
of how percentage changes in variables relate to each other, which is a robust notion also
when some variables are close to zero. We thus define

ît ≡ log
1 + it

1 + ĩ
, ĉt ≡ log

ct
c̄
, Òmt ≡ log

Mt+1/Pt
m̄

, and π̂t+1 ≡ log
Pt+1/Pt
1 + π̄

where bars denote the steady states of variables associated with the policy implied interest
rate ĩ. We obtain the first-order Taylor expansion of the Euler equation,

ît = ηuc,c (ĉt+1 − ĉt) + ηuc,m (Òmt+1 − Òmt) + π̂t+1,

where ηuc,c ≡ −∂uc
∂c

c
uc

and ηuc,m ≡ −∂uc
∂m

m
uc

. The idea is now to parameterize the utility
function with an ω such that, when ω approaches zero, the associated steady-state m̄ value
goes to zero, ηuc,m goes to zero, and ηuc,c goes to a finite value. If so, the dynamics implied
by the linearized Euler equation do not involve money at all, so together with the interest
rate rule, it defines a complete system.17

A complete characterization of the class of utility functions satisfying these requirements
is beyond the scope of the treatment here. An example, however, can be provided. So
suppose that u is an increasing, strictly concave function, f , of a constant returns-to-scale
CES index, h, in the two arguments c and m

h(c,m) = [(1− ω)cρ + ωmρ]1/ρ .

Here our key parameter appears: ω is the weight on real balances.18 With this formulation,
the money demand equation um/uc = hm/hc = i/(1 + i) becomes

Mt+1

Pt
= ct

�
ω

1− ω ·
it

1 + it

� 1
ρ−1

. (15.44)

17We have not commented here on how c might interact with real money balances but rather assumed it
does not.

18Notice that we use m as short-hand (without time subscript) for real balances purchased at time t,
Mt+1/Pt.
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This implies a money demand which has unitary elasticity with respect to consumption and
a constant (negative) elasticity with respect to the cost of holding money, i/(1 + i).19 These
features hold regardless of the value of ω: if ω → 0, then Mt+1/Pt → 0 but the elasticities

remain unchanged. Thus, if Pt is targeted to equal P̃t, with the aid of the interest rate rule,
it must be that Mt+1 → 0.20 It remains to be shown that when ω approaches zero, ηuc,m goes
to zero while ηuc,c goes to a positive constant. It is straightforward, but somewhat tedious,
to show this to be true under the functional assumptions given.21

Notice that the interest-rate rule is critical for the logic of the cashless limit to go through:
the interest rate is fixed in a relation to prices such that, as ω goes to zero, M/P goes to
zero through M going to zero. If monetary policy was instead governed by a money supply
rule—the simplest form of which is to have M constant over time—then P would go to
infinity (and pm to zero) as ω and M/P went to zero, and the New Keynesian model could
not be built on a core where the price level is infinity.

Monetary-fiscal interactions

In this section we look more carefully at the government’s budget constraint and at how
it interacts with monetary policy. This will allow us to touch on a number of conceptual
issues. Throughout, we maintain a consolidated view of the government sector, i.e., the fiscal
authority plus the central bank. We do not model their behavior but rather discuss the set
of policies they could undertake. An alternative would be to formulate a game between two
authorities with different objective functions, and a private sector responding to policy, but
there is no established approach to that in the literature.

The financing of a given path of primary deficits In real terms, the flow budget
constraint of the government reads

gt + (1 + it−1)
Bt

Pt
= τt +

Bt+1

Pt
+
Mt+1 −Mt

Pt
. (15.45)

Here, the left-hand side is government spending—real purchases of goods plus debt payback,
including interest—and the right-hand side describes how spending is financed: via taxes,
new borrowing, or money printing, also known as seigniorage. This budget constraint con-
solidates the budgets of the fiscal and monetary authorities; in particular, B denotes debt

19We assume that ρ < 1 so that the demand for real balances is a decreasing function of the opportunity
cost of holding money.

20For a more general utility function, note that (i/(1 + i))m/c = (um/uc)m/c from the money demand
equation. Thus (i/(1 + i))m/c = (umc)m/uc)/(ucmc/uc). A more general condition that delivers m/c → 0
under a constant interest rate is therefore that ηuc,m/ηum,c → 0 as m/p → 0, i.e., that the ratio of cross-
elasticities of marginal utility goes to zero.

21Note, that uccc/uc = (f ′′c/f ′)hc + hccc/hc since uc = f ′hc. It is easy to see, by taking successive
derivatives of the CES function h, that in the limit as ω → 0, the second term hccc/hc → 0. However,
the first term becomes f ′′(c)c/f ′(c), which is strictly negative; hence, ηuc,c is strictly positive. Turning to
ucmm/uc, we obtain (f ′′/f ′)hmm + hcmm/hc. As ω → 0, both these terms go to zero: the h function has
the property that both hmm and hcmm/hc go to zero. Hence ηuc,m goes to zero.

425



to the public, and any debts between the fiscal and monetary authorities are thus netting to
zero. In equilibrium the present value of the budget constraint reads

∞∑
t=0

q0,t (gt − τt) + (1 + i−1)
B0

P0

=
∞∑
t=0

q0,t
Mt+1 −Mt

Pt
, (15.46)

where discounting, q0,t =
∏t

s=0 qs = 1/
∏t

s=0(1 + rs), uses the Fisher equation.22 The left-
hand side of this equation is the present value of the primary deficit, g − τ , plus the initial
debt (including interest), and the right-hand side indicates the total remaining financing
needs that will have to be covered by money printing. In this obvious sense, the central
bank’s operations play a role in the consolidated budget.

There is also an alternative description of the consolidated constraint, which we can
obtain by definingDt ≡ (1+it−1)Bt+Mt as the total liabilities of the consolidated government
at time t. Here, M is not a liability in the usual sense of something having to be paid back,
but rather it is an item on the central bank’s balance sheet.23 Using this definition, the
flow budget constraint can be written (along the lines of the description of the household’s
constraint, equation (15.13)) as

dt = τt − gt +
Mt+1

Pt

it
1 + it

+
1

1 + rt
· dt+1. (15.47)

Thus, the given initial liabilities d = D/P , which can be seen as a present value, equal the
current primary surplus, τ − g, plus the seigniorage revenue from the current presence of
money in D, plus the present value of the liabilities left for next period, d′. This notion
of seigniorage is more narrow and it represents a form of arbitrage that the government
carries out: to the extent the private sector appreciates money for non-financial reasons,
the government saves on its financing costs by substituting non-interest-bearing money, M ,
for interest-bearing debt, B, while maintaining the same value for total liabilities, D. The
interest savings, per unit of money, is it/(1 + it), and the total savings are larger, the larger
the real balances share of the liabilities. We can also think of this form of seigniorage as that
accruing keeping the path for D/P fixed.

The seigniorage Laffer curve in equilibrium and in the long run The previous
discussion merely describes government variables, assuming that in equilibrium money and
bonds are held by private agents in the amounts specified. The value of money to the private

22One might think that the government’s present value budget constraint represents the forward solution
of the flow budget constraint (15.45), subject to a no-Ponzi game condition, analogous to the household’s
budget constraint in Chapter 4, Section 4.3.1. There is, however, no optimization problem associated with
the government, and thus there is no reason to impose a NPG condition on the government. Rather, we
derive the government’s present value budget constraint from the household’s present value budget constraint
by imposing market clearing. In this sense, the present value budget constraint (15.46) represents not only
a constraint but an equilibrium condition.

23In the distant past, when some central banks promised that each unit of money could be exchanged for
a fixed number of units of gold, the liability was more apparent.
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sector has been the subject of the previous sections; in the case of money as a mere storage
instrument (the overlapping-generations argument), money would only have value (P <∞) if
nominal interest rates are zero, so let us instead adopt the reduced-form liquidity perspective
here. There, we could derive a static money demand equation as Mt+1/Pt = ctf(it), with c
being private-sector consumption and f a strictly decreasing function.24 Thus, taking ct as
given, the arbitrage-based seigniorage expressed in (15.47) is proportional to f(i)i/(1 + i).
This function has a decreasing part, f(i), multiplying an increasing part, i/(1 + i), that
starts at 0 and is bounded above by 1. So, clearly, under rather weak assumptions on f ,
the product expression will have a maximum and describe a “Laffer curve.” As the nominal
interest rate i increases above zero, money is made, but at some point, further increases in
i will lead to declining seigniorage revenues.

Let us now consider a stationary, long-run equilibrium: taxes and spending are constant,
τ̄ and ḡ, as is consumption, c̄, inflation, π̄ = P ′/P , the real and nominal interest rate,
q̄ = 1/(1 + r̄) and ī, and the real liability and money demand levels, d̄ and m̄. Then, the
government budget constraint (15.47) will read

ḡ +
r̄

1 + r̄
d̄ = τ̄ + c̄f (̄i)

ī

1 + ī
.

Many of the models in the literature have exact, or approximate, separation between purely
monetary and real phenomena in the long run. With that motivation, let us consider ḡ, r̄,
and c̄ to be given here. Then an increase in government liabilities (be it through an increase
in money or bonds) must cause an adjustment in the nominal interest rate. If, in addition,
the economy is on the “benign” side of the Laffer curve, then an increased d̄ will raise ī.
Because of the Fisher equation and r̄ is given, inflation will need to rise.

The long-run version of the government’s budget constraint allows us to touch on the
well-known Sargent and Wallace (1985) piece “Some Unpleasant Monetarist Arithmetic”. In
that paper, the authors argue that if the central bank at any point wishes to fight inflation
through an open-market operation where the money stock is decreased and the stock of
debt is increased (borrowing to buy and withdraw money from the economy), then because
debt pays interest, d̄ will rise. So in the long run, d̄ will be higher (unless the short-run
action is reversed), which will increase ī and, therefore, inflation. I.e., the arithmetic of the
consolidated government’s budget makes fighting inflation difficult if the fiscal authority does
not collaborate by increasing its primary surplus. Sargent and Wallace framed their argument
as one where a “fiscal dominance regime”—where the fiscal authority independently commits
to primary surpluses—makes it hard even for a monetarist central bank to fight inflation.
Sargent and Wallace’s argument can be made without restricting the analysis to steady
states, but we omit the details here.

The irrelevance of open-market operations Another well-known result in the early
literature on money—Wallace (1981)—concerns a situation where open-market operations,

24The unitary elasticity in c here obtained under special functional-form assumptions only but is not key
to the argument here.
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i.e., changes in the central bank’s balance sheet involving changes in the amount of money in
the economy and the amount of outstanding government bonds, do not affect the economy
at all. This occurs in a special situation where money functions as a store of value and
is not dominated in return by government bonds. The consolidated budget setting here
allows us to explain the irrelevance; the original argument in Wallace (1981) instead used
the overlapping-generations model of money to derive the result.

Again recall the budget constraint (15.47) and suppose now that it = 0 for all t. Then
the budget simply reads

Mt +Bt

Pt
= τt − gt +

1

rt

Mt+1 +Bt+1

Pt+1

.

It is not clear from this budget constraint whether (and why) money has value, but the
maintained assumption is that the private sector regards M and B as fully exchangeable,
perfect substitutes. In addition, it is not clear how many equilibria may exist. How-
ever, the following can be said: if an equilibrium exists, in the form of a set of sequences
{Mt, Bt, τt, gt, rt}∞t=0 along with other variables (consumption, output, relative prices, etc.),

then any
¦
M̂t, B̂t, τt, gt, rt

©∞
t=0

with other variables maintaining their values, is also an equi-

librium so long as M̂t + B̂t = Mt + Bt for all t. The proof is trivial: the government’s
budget constraint is still met and the private sector’s situation is entirely unchanged, so if
the original sequences constitute an equilibrium, so does the proposed alternative.

All in all, the only truly central assumption behind the irrelevance proposition is that
money and bonds be perfect substitutes. This assumption might make you think that the
proposition itself is irrelevant: in reality, bonds give interest payments and money does not!
However, the recent long period of zero interest rates again made the proposition relevant:
it is really saying that quantitative easing, QE, is irrelevant at the zero lower bound. Or, put
differently, for QE to have real impact, it would have to be that bonds and money are not
identical for some reason. The irrelevance proposition thus forces us to think more about
how money and bonds really differ. Moreover, during periods with positive, but low, nominal
interest rates, could QE really have quantitative importance, given that money and bonds
are very similar quantitatively?

Indeterminacy issues: fiscal back stops and the fiscal theory of the price level We
have seen, in the various discussions of different models of money, that equilibria may not be
unique. Moreover, the number of equilibria may depend on the monetary policy assumed. We
now consider two examples. In the first example, a “fiscal backstop” eliminates all equilibria
for which money loses value in the limit. In the second example, illustrating the fiscal theory
of the price level, a policy that fixes the present value of government net-revenues eliminates
a continuum of equilibria that start away from the stationary equilibrium but eventually
converge to it. In either case, we are left with the unique stationary equilibrium.

So, first, recall the hyperinflation example from section 15.3.3 with a continuum of equi-
libria indexed by the initial price level P0, where the equilibrium price path increases without
bounds for any initial P0 > P̄0 in such a way that money loses value entirely in the limit. The
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fiscal-monetary policy specification for this example was constant money growth Mt = γMt−1

implemented through lump-sum transfers, that is, negative taxes. A simple fiscal backstop
that eliminates the equilibria with price level growth that exceeds the money growth is one
where the government promises to buy an unlimited amount of money if, at any time, the
price level exceeds a critical value, P̃t = P̃0γ

t, with the purchases financed by lump-sum
taxes; see Wallace (1981) and Obstfeld and Rogoff (1983). The critical value grows at the
rate γ, since in the stationary equilibrium with constant real balances the price level grows
at the money growth rate. If the market considers this policy credible, the hyperinflation-
ary equilibria cease to exist. Thus fiscal policy is used to support a monetary equilibrium
through an off-equilibrium action.25

Now consider another example where fiscal policy is used to rule out indeterminacy of
the equilibrium path. In particular, consider the pure interest-rate peg in the context of
the general-equilibrium cash-in-advance model that we studied in section (15.3.3). For this
policy the initial price level, P0, is indeterminate and indexes all perfect foresight equilibria.
Furthermore, the interest rate peg is supported by a path for the nominal money stock, Mt+1.
We now describe a policy that eliminates equilibrium indeterminacy. The policy is general
in nature: it only relies on the government’s budget constraint as it holds in equilibrium.
Hence, it works for a general class of models displaying indeterminacy. The idea is to commit
to a fiscal adjustment in every period period conditional on the outcomes of P and M (which
are those subject to indeterminacy). Such a commitment, then, is constructed to completely
undo the impact on the government budget of any change in the price level and implied
change in the money stock (and hence seigniorage). For our interest rate peg, a simple rule
for lump-sum taxes will do

τt − τ̃ = −Mt+1 −Mt

Pt
(15.48)

for a given τ̃ and fixed spending gt = g̃. Here, lump-sum taxes decline one-for-one with the
magnitude of the real money stock change necessary to support the interest rate peg on the
equilibrium path. Thus, if seigniorage were to decline, so that the right-hand side would rise,
the lump-sum tax would go up to compensate for the seigniorage shortfall. Substituting the
tax rule into the government’s budget constraint (15.46) yields

(1 + i−1)B0

P0

=
∞∑
t=0

βt
�
τt − gt +

Mt+1 −Mt

Pt

�
=
∞∑
t=0

βt (τ̃ − g̃) =
τ̃ − g̃
1− β (15.49)

Here, the only endogenous variable is the price level P0, and the promise of future fiscal
adjustments thus implies a unique solution for the price level. The fiscal theory of the price
level refers to the notion that the fiscal rule (that is committed to for the indefinite future)
determines the present value of primary surpluses, which forces the price level to adjust so
that the initial real debt is covered by the present value of future surpluses. The argument
of course requires that B0 > 0, but the other details of our example are not important. One

25Notice that this fiscal-monetary policy effectively amounts to a promise to give money value in the
future. I.e., money would be “backed” (by goods, not gold).
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can view government debt here as an asset: a (forward-looking) claim to future payments in
the form of primary surpluses.

Compare the outcome for this fiscal rule with the outcome for an interest rate peg we
studied in section (15.3.3) when the interest rate is determined by a state contingent rule,
equation (15.42). There we have shown that if the interest rate rule is sufficiently responsive
to deviations of the price level from a target the equilibrium is also unique. But if the price
level is unique, how can we the sure that it is consistent with the price level as determined
by the government’s present value budget constraint? Here it becomes important that the
present value government budget constraint represents an equilibrium outcome. Therefore if
the nominal interest rate rule (15.42) results in a unique equilibrium with associated paths
for the price level and money stock then fiscal policy, lump sum taxes and spending, has to
adjust such that the present value budget constraint holds. Again, the problem is related to
the Sargent and Wallace (1985) piece “Some Unpleasant Monetarist Arithmetic”: the price
level being uniquely determined by the interest rate rule implicitly assumes a “monetary
dominance” regime.

The fiscal theory of the price level might seem counterintuitive in that price setters
today—imagine a fruit seller—are modeled as needing to set the price so as to make sure
that the value of the government’s debt becomes equal to a certain value. But note that we
are talking about equilibrium prices in a dynamic competitive equilibrium, and in general,
we study the properties of an equilibrium and do not ask how an equilibrium comes about.
Nevertheless, when indeterminacy is an issue and off-equilibrium path behavior is needed
to rule out all equilibria but one, macroeconomics turns into subtle game theory and such
analysis is advanced material.

15.4 Missing assets

As we have seen, in the overlapping-generations model, money can have value under some
restrictions on primitives, primarily involving utility functions and the time profile of en-
dowments. In the dynastic models we then looked at, money will not have value without
some reduced-form assumptions on the benefits of holding money. In the present section,
we look at a final possibility: the idea that some valuable assets are not available and that
money can (at least partially) replace the missing assets. This feature can be introduced in
overlapping-generations models too, but we look at a dynastic version and one that is closely
related to material earlier in the book: consumer heterogeneity and incomplete insurance
against idiosyncratic shocks.

So consider the Huggett model studied in Chapter 9, with the tightest possible borrowing
constraint: agents cannot borrow, a′ ≥ 0. In a stationary equilibrium agents solve

vω(a) = max
a′≥0

u(a+ ω − qa′) + β

∫
ω′
vω′(a

′)F (dω′|ω).

We obtain an autarky equilibrium where nobody borrows or lends. The agent valuing the
bond the most is indifferent between borrowing and lending, and the agent’s Euler-equation
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determines the discount rate; everybody else is borrowing-constrained. In the simplest,
two-state case with nontrivial probabilities, we obtain

qu′(ωhi) = β
(
πhi|hiu

′(ωhi) + πlo|hiu
′(ωlo)

)
and hence the gross real interest rate is

1

q
=

1

β
· 1

πhi|hi + πlo|hi
u′(ωlo)
u′(ωhi)

<
1

β
.

Now suppose 1/q < 1, that is, we have a negative (net) real interest rate, like in the
overlapping-generations case. Here as well, people would like to save (rather badly if
u′(ωlo)/u

′(ωhi) is very high) but are lacking assets for it: intra-personal loans are not allowed
because the asset cannot be held in negative amounts. That is, an asset is prevented from
existing. Other assets are missing too—insurance claims written contingent on idiosyncratic
endowment outcomes—but the key here is that a riskless asset is missing.

Now consider introducing fiat money in the economy: suppose there is a fixed stock of
M nominal units. If the price level is constant, Pt = P , then money can play the role of
a riskless asset, m = a, with gross real return one, q = 1, that helps consumers with high-
endowment realizations save and smooth consumption.26 What would the steady-state real
value of this money be? The answer can be obtained by solving

vω(a) = max
a′≥0

u(a+ ω − a′) + β

∫
ω′
vω′(a

′)F (dω′|ω);

with implied decision rule: a′ = gω(a). Thus the total value of the money stock is simply
the total savings in this economy

m =

∫
a≥0,ω

gω(a)Γ(ω, a),

where Γ is the stationary distribution implied by the decision rule and the distribution of
endowment shocks. Given the fixed stock of nominal money, this expression then determines
the price level. Of course, the role played by money could also be played by (real) government
bonds.

An even simpler missing-asset model is a deterministic version of the model above where
endowments alternate between high and low: for half of the population, endowments are
high (low) in even (odd) periods, and for the other half of the population they are high (low)
in odd (even) periods. If borrowing is not allowed (individual debt assets are ruled out),
then the equilibrium would be autarky. But money could be introduced and would have
value if the autarky interest rate in the original economy is below zero. This is essentially
the environment of Townsend (1980)’s turnpike model of money. Like the overlapping-
generations model, the missing-asset model has the attractive feature that it can account
for valued money without simply assuming it, but it cannot explain why money continues
to have value when being dominated in return.

26As for the overlapping-generations model, one can also imagine non-stationary equilibria here, where
money would lose value over time and be worthless in the limit.
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15.5 Multiple currencies

Exchange rate determination is a major topic in international macroeconomics: what deter-
mines the exchange rate between two currencies, such as the dollar and the euro? Under-
graduate textbook treatments refer to certain “parity” conditions—purchasing power parity
or (covered or uncovered) interest rate parity—as guidance. Here, the purpose is to discuss
exchange rate determination from the perspective of the models considered so far. In so
doing, we will also more generally touch on implications for determining the value of other
money-like assets, such as crypto-currency.

15.5.1 Money as a store of value: Kareken-Wallace exchange rate
indeterminacy

In models where money’s only role is that of a store of value, such as in the overlapping-
generations model, what if we introduced more than one type of money (or currency)? The
main discussion here will be in the context of one country only. One reason for this is that it
simplifies the exposition. Another is that consumer heterogeneity or multiple types of goods
does not appear central to any arguments. We will also consider the possibility that the
stocks of currencies grow at different rates, hence mimicking differences in monetary policies
across countries. The discussion follows Kareken and Wallace (1981).

So consider an overlapping-generations model with one good, one (type of) consumer per
cohort, and two monies, a and b, for the consumer to invest in. The prices of the two monies
in terms of the consumption good are pa and pb. The consumer born at t thus faces budget
constraints

cy + pa,tM
′
a + pb,tM

′
b = ωy and co = ωo + pa,t+1M

′
a + pb,t+1M

′
b,

and the non-negativity constraints on monies: M ′
a ≥ 0 and M ′

b ≥ 0. The choice is over
(cy,M

′
a,M

′
b, co) and let us for simplicity use u(cy, co) = log cy+log co as the objective function

to maximize. Here, the consumer faces four prices but what matters for decision-making are
the real returns pa,t+1/pa,t and pb,t+1/pb,t. Because short-selling is not possible, the consumer
cannot conduct arbitrage based on rate of return differences between the currencies. Thus,
if at any point in time t one money has a lower return than the other money, no consumer
will hold the low-return money: its price will be zero. It then follows that the price would
be zero also before that date since no consumer would buy the money for a positive price
and sell it later for a zero price. Similarly, the price of this money after the date t would
also have to be zero since otherwise, markets would not clear in the period before the price
becomes positive: consumers would demand an infinite amount of money at that point.
Hence possible equilibria have the structure that at all times, either (i) both monies are
valued; (ii) only one of the monies is valued; or (iii) no money is valued. As the discussion
in Section 15.2 should make clear, case (iii) will apply if ωy ≤ ωo. If ωy > ωo, however, (i)
and (ii) are possible. But case (ii) is subsumed in our previous analysis. If, for example,
future agents do not value currency a, present agents will not either, and hence pa,t = 0
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at all times and we are back to the overlapping-generations economy with one money. So
instead consider case (i) and let et be the nominal exchange rate between the currencies,
et ≡ Pb,t/Pa,t = pa,t/pb,t. The exchange rate measures how many units of money b need to
be given up to obtain one unit of money a: if e is above 1, one unit of currency a is more
valuable than one unit of currency b. Clearly, from pa,t+1/pa,t = pb,t+1/pb,t at all times, it
follows that et must be constant over time: et = e. Moreover, we can define the total money
holdings, in currency b units, as M ′ ≡ eM ′

a + M ′
b and pbM

′ as its real value. Thus, the
consumer’s budget constraints become

cy + pb,tM
′ = ωy and co = ωo + pb,t+1M

′,

and, just as in Section 15.2, demand for total money by the consumer born at t satisfies the
equation Mt+1pb,t = max {(ωy − ωopb,t/pb,t+1) /2, 0}. To close the model, we need to specify
money supplies. Suppose first that they are constant over time: for all t, Ma,t = Ma and
Mb,t = Mb. Thus, focusing on equilibria where money has value, M = eMa + Mb and the
equilibrium is determined by

pb,tM =
1

2

�
ωy −

ωo
pb,t+1/pb,t

�
holding at all times. As in the one-money model, this defines a set of equilibrium sequences
for pb,tM : one is a steady state, where pb,tM is constant and equal to (ωy−ωo)/2; but there is
also a continuum of other paths with pb,tM converging to zero over time. The key observation
here, however, is that there is no other equilibrium condition, and hence e is not determined.
To be more concrete: select an arbitrary e ∈ (0,∞). This will define M = eMa +Mb, since
(Ma,Mb) are given. Then pb,t follows from knowing pb,tM in the given equilibrium. This
allows us to find pa,t: it equals epb,t at all times. Since the consumer’s demands for individual
currencies are not pinned down—there is complete indifference, since the currencies give
identical returns—we can then set Ma,t+1 = Ma and Mbt+1 = Mb at all times, since their
value sum is then equal to their chosen total amount of saving (eMa +Mb)pb,t.

Suppose now that the money stocks change over time because the government provides
lumpsum transfers of the two monies to the agents when old. We can still, for an arbitrary e,
define a total money supply as Mt = eMa,t+Mb,t, which will now in general depend on time.
Incorporating the lumpsum transfers and after some algebra we derive a modified demand
for money that again defines a difference equation for real balances

pb,tMt =
1

2

§
ωy −

ωo + pb,t+1(γt − 1)Mt

pb,t+1/pb,t

ª
,

where γt = Mt+1/Mt. A solution will, then, be nonstationary (due to γt appearing in the
equation). Let us consider a particularly simple case where both money stocks grow at
constant gross rates, γa and γb. Without loss of generality, suppose γa ≥ γb. Then γt will
converge to γa. One can show that an equilibrium exists where total real balances converge
to a positive constant with the limit being pbM = (ωy − γaωo) / (1 + γa).

27 That is the

27Since the proof is a bit complicated we leave it to the reader to consult the Appendix of Kareken and
Wallace (1981).
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faster-growing money will dictate the long-run real value of the total money stock, and it
will comprise all of the money stock, eMa/M = 1. This can be interpreted as a version of
Gresham’s law: “bad money drives out good money,” where “bad” refers to a faster-growing
stock. This statement, of course, is conditioned on an equilibrium of type (iii); another
equilibrium is always that where e = 0, in which the value of the total money stock will
converge to pbM = (ωy − γbωo) / (1 + γb), which is higher.

15.5.2 Dynastic models with a reduced-form liquidity demand

With a reduced-form liquidity demand, a key question immediately arises: how should the
two monies appear (in cash-in-advance constraints, in a transactions-cost technology, or in
utility)? In an early paper, Lucas (1982) considers a two-country model where there are
two traded goods and consumers in both countries value both goods. Country 1 consumers,
however, are only endowed with goods of type 1 and country 2 consumers are only endowed
with goods of type 2. He, then, assumes that good 1 is subject to a cash-in-advance constraint
involving only country 1 money, and similarly for good 2: you need country 2 money to buy
it. Therefore, all consumers need both types of currency. The model gives a uniquely
determined exchange rate: the value of country 1 money is tied, via the cash-in-advance
constraint, to the total demand for good 1, which is real. Thus, the exchange rate is directly
tied to the relative demands for the two consumption goods (and to the relative money
stocks).

A similar result to Lucas’s can be obtained with any of the other models where money has
reduced-form liquidity demand. One can, for example, assume that foreign money has some
(quantitatively limited) value to one’s utility. Monetary policies will matter for exchange
rates since the real value of money is pinned down by its reduced-form real role, as well as its
financial return. If a country increases its money stock at a slower rate than other countries,
then its exchange rate will appreciate over time, everything else equal.

Discussion: theory and data

Exchange rates fluctuate significantly over time and are typically described as random
walks, implying that their movements are very hard to predict. To what extent can
the theories used here be used to understand these facts? The overlapping-generations
model we studied above sharply violates these fluctuations: it predicts a constant ex-
change rate. However, extensions of the Kareken-Wallace insight to allow for extrin-
sic uncertainty (i.e., non-fundamental random fluctuations, such as “sunspots”) imply
that the indeterminacy is even greater and allows movements in exchange rates that
are unpredictable (martingales). Reduced-form liquidity models admit randomness in
exchange rates to the extent there is randomness in fundamentals, such as in money
supplies or output.

Relatedly, practitioners (and basic undergraduate textbooks) often refer to Purchas-
ing Power Parity (PPP) as a guide for understanding what the value of an exchange rate
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should be: it should cost the same to buy a given set of (tradable) goods in one currency
directly as it would if one swapped into another currency and bought the goods using
that currency.a Domestic prices do not fluctuate nearly as much as do exchange rates
(prices are “sticky”), implying that PPP cannot hold at all points in time, even though
it might hold on average over time. So to the extent one could identify a basket of goods
that is available in two countries, couldn’t this be a way to think about exchange rate
determination? Clearly, in the models described above—the overlapping-generations
model and the reduced-form liquidity models—PPP holds: there is free trade in goods
and currencies. If purchasing power parity appears to be violated in the data, then in a
strict sense it is a violation of these theories. But the idea here would be to argue that
the theories still hold on average over time, and hence they can be used to predict an
upcoming adjustment in exchange rates in the direction of making PPP hold. However,
PPP can be restored also by adjustments in the price levels: these are fundamentally
endogenous. Prices may move slowly over time, but gradual movements would also allow
us to move toward restoring PPP, thus not necessarily involving exchange rate adjust-
ments. A similar condition is interest rate parity : the notion that investing in bonds in
one country should give the same return as investing in bonds in another country. In
particular, a dollar invested in U.S. bonds gives an interest of it between t and t + 1;
alternatively, the investor could buy euro at the time t exchange rate, invest in euro
bonds paying ĩt, and convert the proceeds back to dollars at the t + 1 exchange rate.
Again, in all the theories considered above, these two transactions would give the same
return. Can apparent departures from this kind of parity be used to argue that the
current exchange rate is too high or too low? No. Parity does not give a prediction for
what the exchange rate at t ought to be (conditional on knowing it and ĩt): it gives a
prediction for the exchange rate at t + 1 relative to that at t. Hence, it cannot help us
understand the level of an exchange rate.

Because of their large fluctuations and violation of parity conditions, exchange rate
movements are challenging to understand with our basic theories. The overlapping-
generations model and its indeterminacy predictions does suggest a way of thinking
about fluctuations. But it does not allow us to understand why dollars are used in most
transactions in the United States and euro in euro countries. Reduced-form models,
with the stroke of a pen, allow this feature. They also predict that if a country prints
money at a faster rate than another country, and it experiences higher inflation as a
result, then its exchange rate will depreciate. This feature is broadly in line with data.
One interesting example is the Swiss franc, a currency that has experienced decades of
consistent appreciation. Is this appreciation because Swiss inflation has been low in an
international comparison? Maybe yes, but the appreciation is much stronger than what
can be accounted for (using a PPP relationship) by its low inflation. Thus, the obvious
fundamentals go some, but far from all of, the way toward understanding the facts.

aThe so-called Big Mac index is another example of this idea, though a Big Mac can hardly be
regarded as tradable.
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15.5.3 Crypto-currency

Crypto-currency is a form of digital currency aimed to work as a medium of exchange and
a store of value. The circulation of alternative currencies, for example in the form of paper
money issued by commercial banks, has a long history. Whether the digital nature of crypto-
currency makes it special is not clear but it does have certain distinguishable properties: it is
costless to “carry” and, typically, has a way of securing privacy in that your holdings are, for
example, not directly observable to the government. Thus, for example for criminal activity,
crypto-currency may have a comparative advantage, especially as regulation against money
laundering has been made more and more potent in many countries. But crypto-currency
can be given different formats too; in some versions, it is marketed as an asset simply with
above-market return (for some time), and in others as a safe store of value (e.g., the so-called
stable-coins, whose value is tied to the dollar).

How can crypto-currency be understood given the above theories? The overlapping-
generations model would say that it is just another money that can, based on the expectations
of the behavior of future consumers, potentially be used as a store of value. I.e., its value
could, when introduced, be positive, but how large is indeterminate. And its exchange
rate with standard currencies could move randomly. This theory does not rely on any of the
specific properties that crypto-currency has. The reduced-form models of liquidity could also
accommodate more monies. A cash-in-advance theory could allow other monies as allowable
means of payment for some or all of the goods. A money-in-the-utility function model could
introduce another variable in utility, perhaps nested with standard money in a CES form.
Of course, none of these approaches seem satisfactory since the results (in the form of the
equilibrium value of crypto-currency) appear to follow very directly from the assumptions.

15.6 Models of money as a medium of exchange

The cash-in-advance and transaction cost models described above share the feature that
money can be described as being used together with consumption and, in that sense, func-
tioning as a medium of exchange. However, these are not models that explain the reason
why money may be important in exchange. In undergraduate texts, the informal motivation
for money’s role as a medium of exchange is the absence of double coincidence of wants. I.e.,
when buyers meet sellers they are rarely in a situation where a direct change of goods or
services is mutually beneficial (without access to some form of public record-keeping tech-
nology). The model in Kiyotaki and Wright (1989) is the first to carefully spell out frictions
that can motivate this idea formally. We briefly describe a setting like theirs here (without
equations). A modern version of their model is contained in Lagos and Wright (2005). In
all these settings, trade is fundamentally decentralized : people don’t (always, at least) trade
in centralized markets. Also, markets are anonymous : there is no record-keeping. In this
sense, they are similar to the search/matching model in Diamond (1982).

436



Kiyotaki and Wright’s (1989) model We will simply describe the core setting and
attempt to explain verbally how it works. There are three kinds of people, all deriving
utility from the consumption of a good, but a consumer of type i ∈ {1, 2, 3} only consumes
good i+1, modulo 3 (i.e., i+1 is interpreted as 1 when i = 3). We denote the utility benefit
of consumption by ui for consumer i. Moreover, there is production: upon consuming, a
person of type i produces a good of type i and, hence, is also a producer. Hence, a person’s
identity i is the good she produces. All goods must be indivisible: production, when it
occurs, always delivers one unit of a good. Each period, people meet pairwise. Thus, by
construction, when people meet, there is never double coincidence of consumption wants.
For example, a person of type 1 can offer her produced good 1, but only a person of type
3 likes that good, and unfortunately that person produces good 3, which person 1 does not
consume.

In this economy, storage of goods is possible. In particular, good i can be stored from
t to t + 1 at utility cost ci that is additive (does not interact with consumption utility).
Thus, it is conceivable that a producer of type i, when meeting someone, swaps the good
just produced for another good with the idea of storing it and possibly swapping this good
for good i+ 1, and thereby experience a future utility benefit (produce again and then carry
the own-produced good into the period after). The stored good would then function as a
medium of exchange. Search is assumed to be random and a person of type i is equally likely
to meet a person of type i+ 1 and i+ 2, modulo 3.

In each period of the model, a person only has one choice to make: upon meeting another
person, whether or not to swap goods, i.e., trade, as a function of what good the other person
is carrying. A Nash equilibrium concept is used whereby a swap will only occur voluntarily,
i.e., if both people’s choices are to trade.

It is relatively straightforward to characterize the set of steady-state equilibria for this
model. People’s decisions will be made based on an expectation of what other people will
do. Hence, deciding to accept a good and store it only makes sense if one’s expectation is
that this good will be accepted by others and that such an exchange can (eventually) lead
one to be able to consume.28 Thus, the distribution of goods holdings in the population and
the associated exchange strategies of agents is key for decision making today. Existence of
equilibria is made easier if randomization is allowed, but pure-strategy equilibria can occur
as well. Which good(s) might appear as a medium of exchange is a function, naturally, of
the relative storage costs, but also of the relative utility benefits and of consumers’ rate of
discount. Similarly, whether a given good is a general medium of exchange (and thus is
accepted in trade against all other goods) depends nontrivially on the parameters of the
model. Several steady-state equilibria may also exist, which is not surprising due to the
central role played by expectations.

Now fiat money would enter this economy as another good that a subset of agents is
endowed with at time zero: “fiat” means that it is intrinsically useless in that no consumer
likes to consume it, or has any production benefits from it. Like other goods, money is also

28Here, for example, one possibility is that person 1 trades the just-produced good 1 to obtain good 3,
stores good 3 and then manages to trade good 3 for good 2.
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indivisible and it can be carried from period to period (in no greater quantity than one)
at a utility cost c$. In addition, the storage properties of money are attractive: c$ is low.
There is thus a fixed amount of money in the economy that could, potentially, function
as a medium of exchange. Kiyotaki and Wright show that there are assumptions on the
primitive parameters such that money, indeed, functions as a medium of exchange, and can
be a general medium of exchange. Naturally, there is also another equilibrium where money
has no value: it is never accepted in exchange, since it is not expected to be used in exchange
in the future.

Discussion The Kiyotaki-Wright model of medium exchange satisfies Wallace’s dictum:
the patterns of exchange emerge endogenously and non-trivially, including the role of fiat
money in exchange. In the absence of public record-keeping, whereby people could get
“credit” from giving up a good and hence obtain a good without exchange in the future,
money at least partially plays this role: if a person comes into a meeting holding money,
it must mean that that person gave up a good for money at some point in the past. The
model has shortcomings, to be sure, the indivisibility of goods and money being one (relative
“prices” in exchange are therefore either 1, 0, or infinity). The full absence of (centralized)
markets also makes it difficult to imagine how monetary policy would be conducted. However,
the original paper was followed up by many others, gradually relaxing strong assumptions.
In particular, Lagos and Wright (2005) relax all the assumptions just mentioned, yet their
model remains tractable due to special assumptions made on utility functions whereby the
distribution of money holdings collapses: all agents carry the same amount of money into
each period.29 To go through that framework in detail is second-year material, however. For
a textbook treatment of the Lagos and Wright (2005) model and the literature that uses
that framework see Rocheteau and Nosal (2017). It is also interesting to note that whereas
the New Keynesian model, to be described below in Chapter 16, has been generalized in
the direction of consumer and firm heterogeneity as well as a labor market with search
frictions, it has not been merged with the medium-of-exchange settings. At least in part,
this is because the New Keynesian model focuses on (i) cashlessness, with the argument
that cash is more and more rarely used, and (ii) sticky prices, which is not the focus of the
medium-of-exchange literature.

29It is, however, difficult, using their setting, to rule out the use of bonds as a means of payment in the
decentralized market. Hence the setting becomes close to a cash-in-advance model where bonds are ruled
out as a means of payment by assumption.
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Chapter 16

Nominal frictions and business cycles

Alisdair McKay and Morten Ravn
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16.1 Introduction

The Great Depression was a key event in the development of macroeconomics as a field. To
many observers, this episode revealed that market economies can perform very poorly as the
mass unemployment of the Depression was a clear sign that something was very wrong. It
was then natural to ask what lead to this failure and what could be done about to improve
the situation.

The Keynesian school of thought emerged as a result of the Depression and provides a
perspective on business cycle fluctuations of all magnitudes not just crises like the Depression.
One core idea of Keynesian economics is that the productive factors of the economy may
not be used at the optimal level. A second core idea in Keynesian economics is that the
level of nominal demand influences the level of production. A central piece of most economic
theory is that, in the long run, nominal values are unimportant and simply a choice of units.
However, going back at least to Hume’s 1752 essay Of Interest, it has also been recognized
that changes in nominal demand such as a change in the money supply may have real effects,
at least temporarily, because the process of adjusting prices is neither perfect nor immediate.

This chapter serves several purposes. We will review the evidence that (a) prices adjust
only infrequently and do not immediately react to changes in market conditions and (b)
changes in nominal variables (here nominal interest rates) affect real outcomes such as real
output. We also present the modern incarnation of the Keynesian tradition in the form of
the workhorse New Keynesian model. Using this model, we will explain why imperfect price
adjustment leads to a role for nominal demand in determining real outcomes, why the market
equilibrium can differ from the efficient level of production, and what types of policies can
lead to better outcomes.

16.2 Empirical evidence on price rigidity

Here we will review the empirical evidence on price rigidity. We will concentrate on nominal
rigidities in prices because this is also the focus of most of our theoretical analysis, but
many of the same issues that apply to the prices of goods and services also apply to wages.
The research we review here examines data on the prices of individual goods as opposed to
economy-wide price indices. We discuss aggregate evidence later in the chapter.

The literature on the adjustment of individual prices developed significantly since the
early 2000’s. In a line of important papers focused on the U.S., Bils and Klenow (2004),
Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) exploited access to the
survey-based micro data underlying the construction of the Consumer Price Index (CPI) to
document a series of facts about goods-level price adjustments. Much of this work has now
been extended to other countries.1

1In this respect, an important effort has been made by the European Central Bank in its Inflation
Persistence Network which has been summarized in Dhyne, Alvarez, Le Bihan, Veronese, Dias, Hoffmann,
Jonker, Lunnemann, Rumler, and Vilmunen (2006).
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The data underlying the U.S. CPI is collected by the Bureau of Labor Statistics (BLS).
The BLS surveys are carried out monthly or bi-monthly in 75 urban areas collecting price
quotes from about 23,000 retail and service establishments for about 85,000 individual items.
These individual items are then classified into about 300 goods categories known as entry
level items (ELIs).

One feature of these data that has received particular attention is the frequency of price
changes. Suppose a price has a probability 1 − θ of changing each month. The expected
time between price adjustments is then

∞∑
t=1

(1− θ)θtt =
θ

1− θ .

Thus, observing the length of time a price of a good remains at a certain level is informative
about the frequency of price changes for this good. In the data, such price change frequencies
depend on the category of goods. For instance, magazine prices tend to change very infre-
quently while the prices of energy and food items tend to be adjusted much more frequently.
The mean and median price duration of all items in the CPI are 6.2 months and 3.4 months,
respectively (see Klenow and Malin, 2010).2 The very considerable difference between the
mean and the medians indicates significant heterogeneity across categories.

One of the features of these data is that prices have memory—sellers often return the price
of an item to a level they have set in the past. One key source of this memory is sales, i.e.
temporary discounts. The key problem presented by sales is whether such episodes should
be excluded or not when estimating the frequency of price changes. If firms introduce sales
as a direct response to a temporary change in market conditions, it would seem appropriate
to include sales. In contrast, if the timing and size of the temporary price discount are
not affected by economic conditions, price changes associated with sales may not reflect
true flexibility in prices and should therefore be excluded. The literature therefore typically
report estimates with or without controlling for sales.

Many individual products change over time and are replaced by new versions. Such
product replacements imply that for a subset of goods, while their prices have been observed
in the past, prices cannot be observed this month (and future months) because they are no
longer for sale. In constructing the CPI, the BLS will substitute a new comparable product
for the unavailable product. These product substitutions are often associated with price
adjustments. It is an open question whether and how one should control for such product
substitutions when computing measures of price rigidity. To the extent that product turnover
presents an opportunity to adjust prices in the face of shocks, it would seem natural to include
such price adjustments in measures meant to inform about the level of price rigidities. At
the same time, by its very nature, when there is product substitution, the precise nature of
the good changes and so the price change may be unrelated to market conditions.

When temporary sales prices are excluded, the estimates of the mean and median price
durations rise to 8.0 months and 6.9 months, respectively (see Klenow and Malin, 2010).

2The statistics reported here are computed from the price change frequencies within ELIs weighted using
CPI weights. These results relate to survey prices in the three largest cities in the U.S.
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Hence, it is clear that whether sales are included or not makes a big difference especially
if one concentrates on the median price duration estimates. These estimates treat price
quotes as referring to the same item even in the face of product substitutions. Eliminating
these as well, the mean and median price durations increase further to 10.1 and 8.3 months,
respectively.

In summary, judging from the evidence across goods, there is considerable evidence of
infrequent price changes with the range of empirically plausible estimates of price durations
for the U.S. ranging from 6 months to 11 months depending on whether one focuses on the
mean or the median and depending on the price measure. Estimates for European economies
are typically in the upper range of this interval (see Dhyne et al., 2006).

What is not clear from this evidence is whether prices change infrequently because there
are infrequent shocks to “market conditions” or because there are frictions that prevent prices
from adjusting. Eichenbaum, Jaimovich, and Rebelo (2011) use data from a large retailer
to estimate how the prices of products respond to the replacement cost of the goods and
find that the price-cost margin varies within a fairly narrow range implying prices respond
quickly to changes in market conditions.

Movements in individual prices are large relative the changes in the aggregate price level.
For example, the median absolute price change is 11.5 percent (see Klenow and Kryvtsov,
2008). The obvious interpretation of this fact is that most price changes reflect conditions
in a specific market as opposed to macroeconomic conditions. It is possible that prices can
respond strongly and quickly to sector-specific shocks while adjusting slowly and imperfectly
to aggregate shocks.3 Boivin, Giannoni, and Mihov (2009) find evidence in support of this
idea. They study disaggregated data on consumer and producer prices and examine how
consumer prices respond to common and sector-specific shocks. They find that most price
changes are driven by sector-specific developments rather than aggregate conditions and
disaggregated prices are sticky in response to macroeconomic conditions.

16.3 The New Keynesian model

Early Keynesian theories were based on simple relationships between aggregate variables
that did not have a close connection to the microeconomic decisions made by individuals.
Research in the 1980s and 1990s developed the New Keynesian model that is based on the
same principles of optimization and equilibrium that underlie modern macroeconomics and
incorporate frictions that interfere with the immediate and perfect adjustment of prices.

Nominal rigidities can be modeled in several ways. One natural way to model them is to
assume prices are fixed for a certain period of time. For example, many employment contracts
are reviewed and adjusted at an annual frequency (see Grigsby, Hurst, and Yildirmaz, 2021).
Apartment rents are another type of transaction with long-term contracts. The same may

3This may occur due to information frictions, e.g. sellers are unaware of all the macroeconomic develop-
ments that may impact the optimal price. Price adjustments may also be imperfect if firms want to keep
their prices near those of other firms who are not simultaneously updating their prices. This force is known
as “real rigidities” and it amplifies the effect of nominal rigidities.
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be the case for wholesale prices where prices of goods are subject to longer term contracting
between firms. Taylor’s (1980) overlapping-contracts model adopts such a view of nominal
rigidities and assumes that each price is fixed for some number n periods and therefore each
period 1/n of the prices in the economy is updated. This assumption requires the modeler to
keep track of n different prices. A simpler approach is to assume that a fraction 1−θ ∈ [0, 1]
of the prices in the economy is updated each period, but unlike Taylor’s model, the prices
that are updated each period are randomly drawn from the existing prices. This assumption,
which was introduced by Calvo (1983), leads to a much more tractable model because it is
no longer necessary to keep track of the previously set prices as we will explain below.

Environment. A representative household has preferences for consumption and leisure as
represented by

U0 = E0

∞∑
t=0

βt
�
C1−σ
t

1− σ −
L1+ψ
t

1 + ψ

�
, (16.1)

where Ct denotes consumption and Lt is labor supply and β ∈ [0, 1]. The household chooses
how much to work, how much to save, and how much to consume. The vehicle for savings
is a one-period nominal bond that pays interest it in period t+ 1 and is in zero net supply.

The household consumes a final good, which is produced by a representative competitive
firm out of a continuum of intermediate inputs indexed by j ∈ [0, 1]. The final goods producer
operates a constant elasticity of substitution production function. Letting Yt be the quantity
of final goods produced, the production function is given as:

Yt =

�∫ 1

0

y
ε−1
ε

j,t dj

� ε
ε−1

, (16.2)

where yj,t is the quantity of the jth intermediate input used and ε > 1 is the elasticity
of substitution between varieties. The intermediate inputs are produced according to the
production function

yj,t = At`j,t, (16.3)

where `j,t is the amount of labor used in producing good j and At is an aggregate productivity
that follows a first-order Markov process. The real marginal cost of producing one unit of
intermediate goods is common across firms and equal to wt/At, where wt is the real wage
denominated in units of final goods.

To model nominal rigidities we necessarily have to depart from perfect competition. After
all, if all firms are price takers, no firm can be said to set its price, and when prices are sticky,
firms need to stand ready to satisfy demand at the possible preset price which a competitive
firms may not be willing or able to do. We therefore adopt monopolistic competition as
a convenient framework in which to model market power. We have seen the production
function (16.2) before in Chapter 6. Using the argument that we introduce there, the final
goods producer’s cost-minimization problem yields a price index

Pt =

�∫ 1

0

P 1−ε
j,t dj

�1/(1−ε)

,
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where Pt is the cost of producing one unit of the final good and Pj,t is the price of a unit of
the jth intermediate good.4 As the final goods producer is competitive, it sells its output at
marginal cost, and Pt is therefore also the price of a unit of final goods.

It also follows from the final goods producer’s cost-minimization problem that the demand
for intermediate good j is given by the following iso-elastic function of the good’s relative
price:

yj,t =

�
Pj,t
Pt

�−ε
Yt. (16.4)

Note that the price elasticity of the demand facing an intermediate goods producer is ε.
Both Pj,t and Pt are nominal prices meaning they are set in terms of units of money.

Money does not feature in this version of the New Keynesian model except as the unit
of account for prices and bonds. Here we are making use of the cashless-limit argument
introduced in Chapter 14, in which case households hold zero cash balances yet money can
serve as the numeraire. However, extending the model with money demand derived from
a money-in-the-utility-function assumption would produce exactly the same equilibrium as
long as the marginal rate of substitution between consumption and leisure is independent of
real cash balances.5

The key assumption that distinguishes New Keynesian models is that they feature nom-
inal rigidities—that is, one or more prices in the economy is sticky. These nominal rigidities
can apply to goods prices, to wages, or both; but here we will assume that the prices of
intermediate inputs are sticky with the price-setting friction modeled as in Calvo (1983).
Specifically, an intermediate goods producer has an i.i.d. probability 1 − θ ∈ [0, 1] of being
able to update its price each period. In the monopolistic competition model, the intermedi-
ate goods producers who are allowed to adjust prices in a given period then set prices taking
as given the actions of other firms, input prices, and all aggregate variables. Firms serve
whatever demand they face given the price they are quoting. Thus, in the short run, output
is “demand determined” in the New Keynesian model.

The government is the final participant in this economy. The government sets the nominal
interest rate and its choices are often represented through an interest rate rule that specifies
the interest rate as an explicit function of macroeconomic variables such as the rate of
inflation. We defer making detailed assumptions about the monetary policy rule.

Decision problems. The household’s decision problem is to maximize

E0

∞∑
t=0

βt
�
C1−σ
t

1− σ −
L1+ψ
t

1 + ψ

�
,

subject to the budget constraint

Bt+1 + PtCt = PtwtLt + (1 + it−1)Bt + Pt

∫
mjtdj ∀t,

4Formally, Pt is the derivative of the cost function for the final goods producers with respect to the
quantity produced.

5Adding money demand would simply determine money supply.
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where Bt+1 is the nominal bonds held from date t to date t + 1 and mjt is the date-t profit
earned by firm j. In addition to the budget constraint, the household must also satisfy a no
Ponzi game condition of the kind introduced in Chapter 4. It is convenient to rewrite the
budget constraint in real terms by dividing both sides by Pt

bt+1 + Ct = wtLt +
1 + it−1

1 + πt
bt +

∫
mjtdj,

where at ≡ Bt/Pt−1 is the real value of savings in period t− 1 and 1 + πt+1 ≡ Pt+1/Pt is the
gross rate of inflation between periods t and t+ 1.6

This decision problem results in two optimality conditions. The Euler equation

C−σt = βEt
�

1 + it
1 + πt+1

C−σt+1

�
(16.5)

and the intratemporal labor supply condition

C−σt wt = Lψt . (16.6)

The Euler equation in (16.5) implies that the intertemporal path of consumption is deter-
mined by the (gross) real interest rate, (1 + it)/(1 +πt+1). Hence, household’s intertemporal
choices are no different than in standard flexible price models encountered earlier in this
book. Likewise, the labor supply condition in equation (16.6) is also standard and equalizes
households’ marginal rate of substitution between consumption and work with the real wage.
Nominal rigidities affect these conditions only through equilibrium changes in real wages and
real interest rates.

An intermediate goods firm chooses how to price its good when it has the opportunity to
reset its price. As usual, it is only relative prices that matter so we will define pjt ≡ Pjt/Pt.
Suppose a firm has a relative price pjt at date t. If at date t + 1 the firm does not update
its nominal price, its new relative price will be

pjt+1 =
Pjt
Pt+1

=
Pjt
Pt

Pt
Pt+1

=
pjt

1 + πt+1

.

If the firm instead does update its price at date t + 1, it faces the same decision problem
as any other firm that is updating its price that period because there are no firm-specific
state variables other than the price they set in the past, which is no longer relevant to the
firm updating its price. Let PR

t+1 be the nominal price set by firms who update their prices
in t + 1, which is known as the reset price. Let pRt+1 = PR

t+1/Pt+1 be the corresponding
relative price.

In period t, the real profits of firm j are

mjt = pjtyjt − wt`jt = (pjt − wt/At)yjt = (pjt − wt/At)p−εjt Yt,
6Note that in the standard notation used here, it applies to savings from t to t+ 1 while πt refers to the

inflation between t− 1 and t. Both variables are determined at date t.
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where the we have used eq. (16.3) to substitute for `jt and eq. (16.4) to substitute for yjt.
The value function of a firm with relative price p is

V (p,S) = u′(C(S))

�
p− w(S)

A(S)

�
p−εY (S)+βE

�
θV

�
p

1 + π(S ′) ,S
′
�

+ (1− θ)V
(
pR(S ′),S ′

)�
,

where S is the aggregate state, which evolves independently of an individual firm’s decisions
because of the monopolistic competition assumption. On the right-hand side of this Bellman
equation, the first term is the period payoff, which is the profits earned during the period
valued at the marginal utility of consumption of the representative household (the owner of
the firm). The second term is the continuation value, which has two components. The first
component represents the value if the firm does not update its price next period while the
second component is the continuation value if it does update.

A firm that updates its price maximizes V (p,S) therefore finds the price that solves:

pR(S) = arg max
p
V (p,S).

As shown in the appendix, the first-order necessary condition for the choice of the optimal
reset price can be expressed as:

0 = Et
∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτ

�
pRt,τ
−ε − εpRt,τ

−ε−1
�
pRt,τ −

wτ
Aτ

��
,

where pRt,τ ≡ PR
t /Pτ = pRt /

∏τ
s=t+1(1 + πs), is the relative price at date τ of a firm that last

updated its price at date t. This condition is interesting. First, the term in square brackets
times Yτ is the marginal change in profit from a change in pRt,τ . In a flexible price model,
this term would equal zero period by period. But, because prices are sticky, firms aim at
hitting this condition “on average” which means weighting profits in future periods by the
probability θτ−t that price will remain in effect that far in the future (and discounting future
marginal profit contributions by the owners’ marginal rate of intertemporal substitution).
Secondly, firms are more forward looking when prices are stickier. This result is intuitive.
In a flexible price setting, firms simply solve static optimization problems that result in
equalizing marginal revenue and marginal costs period by period. With sticky prices, they
now need to consider how their current choice of price may affect future profits. For example,
firms will adjust prices today in response to information about marginal costs in the future.

Rearranging, we obtain

pRt Et
∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτ

�
Pτ
Pt

�ε
=

ε

ε− 1
Et

∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτ

�
Pτ
Pt

�1+ε wτ
Aτ
.

We can then express the condition for the optimal reset price as:

pRt =
pNt
pDt

(16.7)
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where:

pNt =
ε

ε− 1

wt
At
u′ (Ct)Yt + θβEt(1 + πt+1)1+εpNt+1

pDt = u′ (Ct)Yt + θβEt(1 + πt+1)εpDt+1.

Market clearing. There are three markets at each date: the labor market, the goods
market, and the bond market. Labor market clearing requires that the total labor supplied
by households equals the total labor used in production

Lt =

∫
`j,tdj.

As consumption is the only use for final goods, goods market clearing requires that production
equals total consumption

Yt = Ct. (16.8)

Finally, bond market clearing requires that the net demand for bonds is zero.

Aggregation. In the Calvo model, firms are given the opportunity to re-optimize their
prices with probability 1 − θ and it is assumed that the process for the arrival rate of this
opportunity is memoryless (ie. it follows a Poisson process). Hence, every period, firms are
split randomly into a group of firms that cannot adjust their prices and another group that
can. Let Jt be the set of firms that update their prices in period t. It follows then that the
price level can be expressed as:

P 1−ε
t =

∫
j

P 1−ε
j,t dj =

∫
j /∈Jt

P 1−ε
j,t dj︸ ︷︷ ︸

non-adjusters

+

∫
j∈Jt

P 1−ε
j,t dj︸ ︷︷ ︸

adjusters

where each of these two terms are given as:∫
j /∈Jt

P 1−ε
j,t dj = θP 1−ε

t−1∫
j∈Jt

P 1−ε
j,t dj = (1− θ)

(
PR
t

)1−ε
.

Here we have used the assumption that firms are chosen randomly to adjust their prices to
derive the expression for

∫
j /∈Jt P

1−ε
j,t dj. The expression for

∫
j∈Jt P

1−ε
j,t dj exploits the fact that

all firms that optimize their prices at the same date, choose the same price. It follows from
this that:

Pt =
�
θP 1−ε

t−1 + (1− θ)
(
PR
t

)1−ε�1/(1−ε)
. (16.9)

This expression makes it clear that the price level is sticky since it displays inertia. The
higher is the probability that the firm cannot adjust prices in any given period, θ, the larger
is the backward looking component of the price level. Yet, despite this, inflation is purely
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forward looking in this model. To see this, we can also exploit the above result to derive a
relationship between inflation and the relative reset price:

pRt =

[
P 1−ε
t −θP 1−ε

t−1

1−θ

]1/(1−ε)

Pt
=

�
1− θ(1 + πt)

ε−1

1− θ

�1/(1−ε)

which we can rearrange to give:

1 + πt =

�
1− (1− θ)

(
pRt
)1−ε

θ

�1/(ε−1)

. (16.10)

Since firms are purely forward looking when setting pRt , inflation is purely forward looking,
too. As a result, we do not need to keep any record of past prices (or inflation) when
determining the current (or future) inflation rates.

Since only a fraction of firms can adjust prices, there can be dispersion of prices across
firms. This price dispersion across intermediate input producers is a source of inefficiency
as the final goods producers will over-utilize those inputs that have low relative prices and
under-utilize those with high relative prices. To see this, integrate equation (16.3) across j∫

yj,tdj = At

∫
`j,tdj = AtLt,

where the second equality uses the labor market clearing condition. Now substitute (16.4)
for yj,t to arrive at

Yt =
At
Dt

Lt, (16.11)

where

Dt ≡
∫ �

Pj,t
Pt

�−ε
dj ≥ 1

is a measure of price dispersion. In particular, if Pj,t is common across all firms, as would
happen in this model if intermediate goods prices were flexible, then there is no price disper-
sion Pj,t = Pt for all j and Dt = 1. In this case it follows that Yt = AtLt. When there is price
dispersion, however, Dt will be greater than one, which reduces the effective productivity of
the economy. This loss of efficiency is due to the concave production function for final goods
and the misallocation of labor across intermediate varieties. By the logic that the updated
prices are randomly selected we have

Dt =

∫
j∈Jt

pRt
−ε
dj +

∫
j /∈Jt

�
Pj,t−1

Pt−1

Pt−1

Pt

�−ε
dj = (1− θ)pRt

−ε
+ θ(1 + πt)

εDt−1. (16.12)

State variables. There are two state variables of the aggregate economy: the current level
of TFP, At, and the degree of price dispersion Dt−1. These states evolve according to the
exogenous law of motion for At and equation (16.12), respectively.
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Equilibrium. An equilibrium of this economy involves stochastic processes for Ct, Lt, Yt,
wt, πt, it, At, Dt that satisfy (16.5), (16.6), (16.8), (16.10), (16.11), (16.12), the monetary
policy rule, and the exogenous law of motion for At; in addition, an equilibrium requires a
policy rule pR and a value function V that solve the price-setting problem.

Flexible-price equilibrium and output gap. In order to complete the specification of
the environment we need a monetary policy rule. An important benchmark for policy in this
context is the counterfactual outcome with fully flexible prices. We introduce that now as
common monetary policy rules make reference to this benchmark.

The flexible-price economy is a special case where θ = 0 so all prices are updated every
period. When an intermediate goods firm sets its price in period t, it knows it will for certain
be able to adjust its price again in t + 1 and the only consideration is maximizing profits
in period t. This static profit maximization problem results in setting a constant markup
µ ≡ ε/(ε− 1) over marginal cost as we saw in Chapter 6.7 So pRt = µwt/At and the markup
is positive as long as ε > 1 which we have imposed earlier. As all firms face the same profit
maximization problem when prices are flexible, they all choose to set the same price and the
definition of the price index reduces to P n

t = PR,n
t or pR,nt = 1 where we use the superscript

“n” to indicate variables in the flexible price, or “natural,” equilibrium. It then follows that
wnt /At = µ−1. Moreover, as all firms set the same price, there is no efficiency loss from price
dispersion. We can then solve the following system of equations to obtain the equilibrium

wnt = At/µ

Y n
t = Cn

t

Y n
t = AtL

n
t

Cn
t
−σwnt = (Lnt )ψ ,

where the second, third, and fourth equations are the aggregate resource constraint, the
aggregate production function, and the intratemporal labor supply condition. The solution
to this system is:

Y n
t = µ−1/(σ+ψ)A

(1+ψ)/(σ+ψ)
t . (16.13)

Let us also define the output gap as

xt ≡ log Yt − log Y n
t (16.14)

i.e. the log of level of output in the sticky-price equilibrium relative to the natural level.

Interest rate rules. An interest rate rule describes how monetary policy is set. These
can take several forms, but the simplest version is to impose a relationship between nominal
interest rates and other variables in the model. For example,

it = ī+ φπ(πt − π∗) + φxxt,

7You can verify this by solving maxp {(p− wt/At) p−εYt}.
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where π∗ is the inflation target and ī = β−1(1 + π∗) − 1 is the nominal interest rate that
would satisfy the Euler equation (16.5) in a steady state with constant inflation π∗. The
coefficients φπ and φx determine how strongly nominal interest rates react to deviations of
inflation from its target and to the output gap. Interest rate rules are often called Taylor
rules in light of Taylor’s (1993) finding that such a rule with φπ = 1.5 and φx = 0.5 provided
a good description of the monetary policy choices of the Federal Reserve between 1987 and
1992.8

Monetary policy shocks. Here we are building the baseline New Keynesian model. More
elaborate versions of this model are often used in central banks to analyze potential monetary
policy strategies. Researchers and policymakers are therefore often interested in questions
of the form “what would happen if we raise interest rates taking the economic conditions as
given?” To answer this question, we want to calculate the consequences of a shift in interest
rates that is not the result of a shift in the economic fundamentals that appear in the interest
rate rule. The solution is to add an exogenous shock to the interest rate rule.

The three-equation model. The model we have presented above is often called the
three-equation model because a first-order approximation of the model around a zero-
inflation steady state is summarized by the following three equations. First, we have a
log-linearized version of the consumption Euler equation

xt = Etxt+1 −
1

σ
(̂it − Etπt+1 − rnt ), (16.15)

where xt is the output gap and rnt = − log β + σ(1+ψ)
σ+ψ

(Ât − EtÂt+1) is the real natural rate

of interest.9 This equation represents the demand-side of the economy and is sometimes
called the IS curve in a reference to older IS-LM models. Notice that output at date t is
forward-looking (it depends on EtŶt+1) and is decreasing in the real interest rate where 1/σ
is the elasticity of intertemporal substitution.

Next, as we show in the appendix, we use the first-order condition of the firm’s price-
setting problem and other equilibrium conditions of the model to arrive at a New Keynesian
Phillips curve

πt = κxt + βEt [πt+1] , (16.16)

8The coefficients in Taylor’s specification correspond to annual rates of inflation and annualized interest
rates. Interest rates and inflation rates are measured in percentage points per unit of time while the output
gap is simply measured in percentage points. Therefore, if you change the length of a unit of time, you
need to adjust the coefficients accordingly. For example, in a quarterly model, the equivalent rule would be
φπ = 1.5 and φx = 0.125.

9To derive this equation, define ît = log(1 + it). Then take logs of both sides (16.5) noting that in a
first-order perturbation solution we assume the shocks are arbitrarily small so we can take logs inside the
expectation operator. Finally, we need the definition of the output gap from equations (16.13) and (16.14),
which when linearized give xt = Ŷt− 1+ψ

σ+ψ Ât. Using this to substitute for Ŷt yields the equation above. Note
that rnt is equal to the real interest rate that solves the linearized Euler equation when consumption takes
its natural level.
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where the composite parameter κ ≡ (1−θ)(1−βθ)(σ+ψ)
θ

is usually referred to as the slope of the
New Keynesian Phillips curve. Here we see that inflation is forward-looking and increasing
in the current output gap. The slope of the Phillips curve, κ, is larger if prices are more
flexible (lower θ) or if marginal cost is more sensitive to the level of production.

Lastly, we have an interest rate rule. For our simulations here we will assume

ît = φπ(πt − π∗) + φxxt + ωt, (16.17)

where ωt is an AR(1) monetary policy shock. In addition to these three core equations, we
also have exogenous processes for TFP and the monetary policy shock. The three-equation
representation of the model, (16.15)-(16.17), is often used as a small-scale model of the
economy to explore qualitative features of business cycles and monetary policy.

Determinacy. A key consideration for any monetary policy rule is whether it yields a
unique equilibrium. Suppose that, for some reason, inflation expectations are elevated despite
expectations of a zero output gap. Could that lead to high inflation today? It all depends on
the behavior of the nominal interest rate. If the nominal interest rate is unresponsive, high
inflation expectations translate to low real interest rates, which through the IS curve lead to a
positive output gap. The positive output gap then puts upward pressure on current inflation
through the Phillips curve. By this logic, some small expectation of higher inflation in the far
future could justify expectations of high inflation (and positive output gaps) all the way back
to the present. In the model, nothing pins down the expectations of inflation in the infinitely
far future so we indeed have multiple equilibria when nominal interest rates are unresponsive.
In order to prevent this outcome, the interest rate rule must respond sufficiently strongly so
that the real interest rate rises when inflation rises thereby stabilizing the economy. The
three-equation model has a unique equilibrium if and only if

(1− β)φx + κ(φπ − 1) > 0 (16.18)

(see the appendix for a derivation). Note that φπ > 1 is sufficient for this condition to hold
and necessary if φx = 0. This condition is known as the Taylor principle.

The role of nominal demand in determining output. As we mentioned in the in-
troduction to this chapter, when prices adjust imperfectly, changes in nominal variables can
have real effects. Traditionally, this point is often discussed in terms of the money supply—if
money is injected, a frictionless model would imply an immediate adjustment of the price
level with no effect on any real variables. This outcome is often called the classical dichotomy
between real and nominal sides of the economy. With nominal rigidities, this logic breaks
down as the increase in nominal demand from the increase in the money supply is not im-
mediately undone by an increase in the price level. Here we will make a similar argument in
terms of nominal interest rates. Suppose the government announces a lower path for nominal
interest rates going forward (e.g. an expansionary monetary policy shock). As we saw in
equation (16.5), the path of aggregate consumption (and therefore aggregate output) is fully
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determined by the path of real interest rates. Therefore, if the classical dichotomy were to
hold, it would have to be the case that path of expected inflation would immediately fall so
as to leave real interest rates unchanged. But if we solve equation (16.16) forward, we see
inflation at each date reflects expectations of current and future output gaps, which would be
zero under the classical dichotomy. In fact, the model predicts that with lower real interest
rates there will be a positive output gap and an increase in inflation that can reinforce the
decline in nominal interest rates absent a counter-veiling response of the monetary policy
rule.

16.4 Monetary policy strategies

The New Keynesian model has an active role for government. After all, a key equation in the
model is the monetary policy rule. We now describe what the role for policy is in the New
Keynesian model and how this is reflected in some real-world monetary policy strategies.

16.4.1 Policy objectives

The equilibrium of the New Keynesian model can be inefficient for two reasons (i) the total
level of production can deviate from the efficient level and (ii) labor can be misallocated
across intermediate inputs. To see this in more detail, consider the planner’s problem

max
Ct,Yt,Lt

C1−σ
t

1− σ −
L1+ψ
t

1 + ψ

subject to

Ct = Yt = AtLt.

This is a static problem because the planner only has to choose how to allocate labor each
period and in the aggregate there is no way to move resources across time. The constraint on
the planner uses the fact that when Lt units of labor are used to produce each intermediate
good, the quantity of final goods that can be produced is AtLt. The first-order condition of
this problem leads to

Y ∗t = A
(1+ψ)/(σ+ψ)
t , (16.19)

where a star denotes the first-best allocation.
To focus on the possibility of an inefficient level of aggregate production, suppose there

is no price dispersion so Yt = AtLt. Then using (16.19), (16.6), and Ct = Yt we obtain

Yt =

�
wt
At

�1/(σ+ψ)

Y ∗t .

In an efficient economy, the real wage would be equal to the marginal product of labor. The
equation above shows that if the wage deviates from this efficient level, output will deviate
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from the efficient level. When the wage is too low, households will supply too little labor
and too little will be produced. Comparing this to the natural level of output (16.13), we see
that in the flexible price economy, output is too low because wt/At = 1/µ < 1. So monopoly
power is one source of inefficiency. Notice that wt/At is real marginal cost and if firms set
prices equal to nominal marginal cost we would have Pt = (Ptwt)/A or wt/At = 1.

Nominal rigidities affect the markups that firms charge and therefore the degree of ineffi-
ciency in the economy. To see this, suppose there is a decrease in nominal marginal cost. As
some firms do not update their prices, their markups rise. In the aggregate, the increase in
average markups is reflected in a lower wt/At ratio and the economy is further from the effi-
cient level of production. Over time, firms will update their prices and return their markups
to the desired level µ and wt/At will return to 1/µ.

Now consider the inefficiency due to price dispersion. Using the aggregate production
function Yt = AtLt/Dt, (16.19), (16.6), and Ct = Yt we obtain

Yt = D
−ψ/(σ+ψ)
t

�
wt
At

�1/(σ+ψ)

Y ∗t .

This equation shows that there is an additional inefficiency, when Dt 6= 1. From the concavity
of the final goods production function, the efficient use of labor is to produce equal amounts of
all the intermediate inputs. The economy will deviate from this outcome if some intermediate
goods producers have lower prices than others (see eq. 16.11) . The reason one producer
may have a lower price than another is, for example, that one set its price more recently
than the other and, in the intervening time, market conditions changed leading to a change
in the optimal reset price. As the reset price fluctuates, so too will the inflation rate (see
eq. 16.10). One goal for monetary policy then is to stabilize the inflation rate because this
minimizes the efficiency loss from relative price dispersion.10

Define the welfare-relevant output gap as xwt ≡ log Yt − log Y ∗t . Using equations (16.13)
and (16.19) we see that

xwt = log Yt − log Y n
t + log Y n

t − log Y ∗t = xt −
1

σ + ψ
log µ.

The welfare-relevant output gap differs from the output gap because the natural level of
output is distorted by monopoly power.

In the literature that followed Phillips’ original contribution, Phillips (1958), it was per-
ceived that there was a stable relationship between (wage) inflation and resource utilization
(as measured by unemployment) which therefore presented a trade-off to policymakers. This
notion was challenged by Friedman (1968) and Phelps (1967) who posited that the long-run
Phillips curve is vertical (at the natural rate of unemployment) as real wages, which should
be independent of inflation in the long-run, determine employment. If monetary policy at-
tempts to persistently raise the level of output above the natural level, the results will be

10The Calvo model of nominal rigidities can generate large efficiency losses from price dispersion because
a firm can be stuck with a very old price that is far out of alignment with the current price level. Models
of menu costs in which firms can choose to change their prices subject to a cost tend to generate less price
dispersion because firms with very misaligned prices will choose to change their prices.
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high inflation and no actual increase in output. For these reasons, a common view is that
monetary policy should focus on stabilizing the economy around the flexible-price level of
activity even though this may not be the first best. One way of formalizing this view is to
give the policymakers another policy tool that can address long-run inefficiencies while leav-
ing monetary policy responsible for responding to aggregate shocks. In the New Keynesian
model, a simple extension of the model is to suppose there is lump-sum tax on households
that finances a constant production subsidy for intermediate goods producers. In particular,
suppose that intermediate goods producers are given a subsidy τ l = 1/ε ∈ (0, 1) so that their
effective cost of labor is (1 − τ l)wt/At. The production subsidy induces them to produce
more and, in the steady-state, the subsidy undoes the distortion from monopoly power.

In summary, in the rest of this chapter we will take the goals for policy to be to (i) bring
the aggregate level of production to the natural level and to (ii) minimize the efficiency
loss from price dispersion by stabilizing inflation. Locally around a zero-inflation steady
state, the welfare of the representative household in the basic New Keynesian model can be
expressed as11

U ≈ −E0

∞∑
t=0

βt
[
π2
t +

κ

ε
x2
t

]
. (16.20)

Welfare decreases with inflation or deflation because it results in price dispersion. Welfare
also decreases with a positive or negative output gap because the level of production differs
from the optimal level.

16.4.2 The divine coincidence

In the baseline New Keynesian model, it is possible to have zero inflation and zero output
gaps at all times. The New Keynesian Phillips curve, (16.16), is the key to this argument.
From that equation we can see that if there is no output gap at any date, then there will be
no inflation today or in any future period. This aspect of the model—that there is no trade
off between output gap and inflation stabilization—is known as the divine coincidence.

The standard interpretation of the divine coincidence is that the model is somewhat too
simple and abstracts from the features of the economy that lead to a meaningful trade-off
between inflation stabilization and output stabilization. What might those features be? To
break the divine coincidence we need a time-varying wedge between the flexible-price level of
output and the efficient level of output. Productivity shocks themselves do not create such
a wedge because they affect both the flexible-price level of output as well as the efficient
level of output in equal proportions. We say the wedge needs to be time-varying because a
constant distortion requires a permanent change in the level of activity and is therefore not
an issue for which monetary policy is well suited.

An extension of the model, which is often discussed due to its simplicity, involves shocks
to the elasticity of substitution between varieties of intermediate goods. The resulting time-
varying market power affects Y n

t but does not change Y ∗t leading to a time-varying gap

11Here we use a second order approximation around a steady state in which the the monopoly distortion
has been corrected through the labor subsidy τ l = 1/ε. See Woodford (2003b).
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between the socially efficient level of production and the flexible-price level. In the linearized
version of the model, these shocks appear as a “cost-push” shock—an exogenous term that
is appended to the Phillips curve

πt = κxt + βEt [πt+1] + ηt (16.21)

(see Steinsson, 2003, for a derivation). With this added term, it is no longer possible to
stabilize inflation and output perfectly because a policy of setting xt = 0 at all dates no
longer leads to πt = 0. The divine coincidence also breaks if the flexible-price economy does
not respond to shocks in the efficient way; for example because there are frictions in the
determination of wages (see Blanchard and Gaĺı, 2007).

16.4.3 Inflation targets and price level targets

Around the world, most central banks follow a version of a monetary policy strategy called
flexible inflation targeting. This strategy can be summarized as minimizing deviations
of inflation from a target level while also minimizing deviations of output from its natural
level. These goals can be formalized in the objective function

E0

∞∑
t=0

βt
[
(πt − π∗)2 + λx2

t

]
, (16.22)

where π∗ is the inflation target and λ is a parameter that determines the relative weight
placed on the two goals. The policymaker then seeks to minimize this loss function, which
closely resembles eq. (16.20).

When inflation is unpredictable, it is risky to agree to a long-term nominal contract
because the real values stipulated by the contract are unpredictable. This rationale would
argue that it is more valuable for monetary policy to minimize the uncertainty over the price
level than to target an inflation rate. Under price-level targeting, the central bank seeks to
return the price level to a specific path. For example, consider the interest rate rule

it = ī+ φP (Pt − P ∗t ) + φxxt

where P ∗t is the price-level target, which could be the price level in some base year scaled by
a constant annual inflation rate. This rule dictates that the central bank raises interest rates
whenever the price level is above target, which would, all else equal, put downward pressure
on inflation and move the economy back toward the target. In addition to providing more
certainty about the price level, price-level targeting is appealing because it makes clear that
future policy will undo unwanted changes in the price level—something that is also useful
under inflation targeting as we will see next.

16.4.4 Expectations, commitment, and time consistency

In the New Keynesian model, the private sector is forward looking: current inflation depends
on expectations of future inflation and current demand depends on expectations of future
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real interest rates. Therefore, expectations of what monetary policymakers will do in the
future affect the macroeconomic outcomes today. If the private sector expects interest rates
to be high in the future ceteris paribus, output and inflation will be lower today.

Figure 16.1: Response of output and inflation to a transitory cost push shock
under commitment and discretionary policies.

Notes: These paths are simulated using the parameters β = 0.99, κ = 0.2, ε = 3.

Suppose a central bank pursues the inflation targeting objective (16.22) and the economy
is hit by a cost-push shock at date 0. That is, we consider the Phillips curve (16.21) with
ηt > 0 for just one period and zero thereafter. Now consider two possible monetary policy
responses. In the first, the central bank raises interest rates at date 0 and then returns
them to their long-run level. We will call this the “discretionary” policy for reasons that
will become clear. In the second case, the central bank raises interest rates by less, but only
gradually normalizes them. We will call this the commitment policy. Figure 16.1 plots the
two cases. Under the discretionary policy, inflation rises at date 0 and then returns to zero.
The linearized version of the model with the discretionary policy has no endogenous state
variables so once the cost-push shock dissipates, the economy immediately returns to steady
state.12 The Phillips curve at date 0 is

π0 = κx0 + η0,

where we have used π1 = 0 as the economy returns to steady state in the next period. In
this case, the policymaker can only use x0 to lean against the cost-push shock. As we see in
the figure, output is reduced so as to dampen the inflationary effects of the shock.

Under the commitment policy, inflation is positive at date 0 and then negative for several
future periods. The Phillips curve at date 0 is

π0 = κx0 + βπ1 + η0,

12In the non-linear model, the degree of price dispersion is an endogenous state variable.
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where now π1 appears. Under this policy, the central bank reduces π1 in order to reduce π0

with less impact on x0. As we see in the figure, there is less inflation at date 0 but also a
smaller decline in output at date 0. In order to reduce π1, the central bank keeps interest
rates persistently higher than normal so that output and inflation are persistently lower.

While the outcomes from the commitment policy are better than those from the discre-
tionary policy at date 0, they are worse at future dates. Under the discretionary policy,
there are no deviations in output or inflation at any date t ≥ 1 while, under the commitment
policy, output and inflation are too low relative to the targets. This brings us to a time-
consistency problem. At date 0, the central bank would like to announce the commitment
policy, but it would like to switch to the discretionary policy at date 1. If the private sector
anticipates this switch in policy, then the benefits of the commitment policy at date 0 are
unattainable because the central bank cannot convince the private sector that π1 will be
negative. The central bank can only achieve the better outcomes if it is able to commit at
date 0 to have tight monetary policy at future dates even though it will not want to do that
when those future dates arrive.

Finally, under the discretionary policy, the price-level jumps at date 0 and then remains
constant thereafter. Under the commitment policy, the price level rises, but then falls sub-
sequently as inflation is negative for several periods. In fact, if you accumulate the inflation
rates in the figure, you find that the long-run price level is unaffected. This result demon-
strates that long-run price stability is useful for a central bank even if it is pursuing an
inflation targeting framework because it serves to stabilize inflation expectations and there-
fore helps stabilize inflation rates.

16.5 Aggregate evidence of nominal rigidity

We now review the aggregate evidence on price rigidity and the response of real variables
to nominal shocks in the form of changes in the nominal interest rate targeted by monetary
policy. As we will see, the baseline model is qualitatively consistent with this evidence—in
contrast to a flexible-price model—but also has shortcomings.

16.5.1 The macroeconomic effects of monetary policy shocks

One of the most studied issues in macroeconomics is the dynamic effects of monetary policy
shocks, which lead to exogenous changes in nominal interest rates. This topic attracts so
much interest because it speaks to the relevance of the nominal rigidities that underlie the
Keynesian perspective. In most models with flexible prices, nominal variables including
nominal interest rates have no bearing on real outcomes (e.g. see equation (16.13)). Thus,
the impact of changes in nominal interest rates on real variables provides information about
the importance of nominal rigidities. Moreover, monetary policy plays a central role in
modern macroeconomic policy and understanding the consequences of a change in interest
rates is a crucial ingredient to real-world policy decisions.
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The main challenge with assessing the effects of a change in interest rates is that mon-
etary policy changes in response to developments in the economy. If we simply look at the
correlations between variables, we will tend to find that higher nominal interest rates are
associated with higher levels of inflation, but this may simply reflect endogeneity of mon-
etary policy decisions (because central banks tend to increase interest rates when inflation
rises). We are instead interested in the causal effect of interest rates on the economy. That
is, we ask what would happen if interest rates increased for reasons unrelated to state of the
economy? To answer this question, we need to empirically identify monetary policy shocks
as opposed to systematic movements in interest rates in response to economic conditions.

Researchers typically identify monetary policy shocks using information that allows them
to estimate the systematic or predictable component of interest rates. Removing this system-
atic component from the actual change in interest rates yields a residual that is interpreted
as a monetary policy shock. One strand of literature, which was pioneered by Kuttner (2001)
and Gürkaynak, Sack, and Swanson (2005), is premised on (a) the fact that monetary policy
decisions are announced at particular times known to researchers and (b) in a narrow time
window around the announcement, changes in interest rates will be dominated by monetary
policy as opposed to other economic news. Using financial data, we can make a forecast of the
monetary policy decision just minutes before it is announced. This forecast reflects market
expectations of how monetary policy will be conducted given current economic conditions—
i.e. it is the market’s view of the systematic policy response. If the announced decision
differs from the forecast, it is due to a deviation of monetary policy from it’s usual practice
(as judged by financial markets).

Another strand of literature, starting with Romer and Romer (2004), uses central bank
forecasts of inflation and other variables to estimate the endogenous component of policy.
The motivation for this approach is that central banks often set policy based on their as-
sessment of the economic outlook as reflected in economic forecasts. For example, if the
forecast for inflation is elevated or unemployment is expected to be low, policymakers will
raise interest rates. By regressing interest rate changes on the central bank forecasts, this
approach estimates the systematic component of policy and the residuals from this regres-
sion can be interpreted as movements in interest rates that are not due to changes in the
economic outlook.

Figure 16.2 plots impulse responses for output, inflation, and nominal interest rates
following a monetary policy shock identified using the Romer and Romer method.13 The
left panel of the figure shows that contractionary monetary policy shocks lead to persistently
higher nominal interest rates. The center panel of the figure shows that aggregate output
declines. The right panel shows that inflation declines so real interest rates rise more than
nominal interest rates.14 So we find that a nominal shock affects real variables.

13We use the implementation of this method by Wieland and Yang (2016) and regress the outcome of
interest on the estimated monetary policy shocks and the lags of macroeconomic variables.

14The increase in inflation at very short horizons is known as the “price puzzle” and is a fairly common
feature of empirical estimates of the effects of monetary policy shocks. It likely reflects reverse causation
from inflation to interest rates that is not removed by the identification strategy. In some specifications,
adding further control variables eliminates the price puzzle (see Sims, 1992).
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Figure 16.2: Empirical and simulated responses to a monetary policy shock.

Notes: The shaded areas around the empirical estimates are 90% confidence bands.

The basic New Keynesian model presented above is qualitatively consistent with the
patterns revealed by the empirical estimates: higher nominal interest rates generate increases
in real interest rates and reductions in aggregate demand and therefore a decline in output.
With lower output, there is lower resource utilization leading to lower marginal costs and
a decline in inflation. The timing of the responses, however, is quite different. Figure 16.2
shows model-simulated responses of interest rates, output, and inflation to a monetary policy
shock (for now, just focus on the basic model and we will return to the sticky-wage model
below). We chose the magnitude of the simulated shock and the monetary policy rule to
roughly match the path of nominal interest rates that we estimated. In addition, we chose
the other parameters of the model to roughly match the magnitudes of the responses of
output and inflation.15 As shown in the figure, the model-generated responses of output
and inflation immediately fall in response to the monetary shock and then gradually return
to steady state whereas the empirical responses feature delayed responses of output and
inflation.

16.5.2 Price rigidity in the aggregate

At the start of this chapter we discussed evidence on the frequency of price changes in micro
data. But does this micro-level rigidity translate to rigidity in the aggregate?

One way to answer this question is to rely on a general equilibrium model as discussed
above and ask which values of structural parameters allow one best to “match” the data?
One might, for example, study the estimated impulse response functions in Figure 16.2 and
estimate the slope of the Phillips curve by comparing the magnitude of the inflation response

15Here we use equations (16.15) and (16.16) and a policy rule ît = γît−1 + (1 − γ) (φππt + φxxt) + ωt
and an AR(1) specification for ωt to mimic the estimated path of interest rates. We use parameter values
γ = 0.65, φπ = 1.5, φx = 0.125, σ = 5, ψ = 1, θ = 1− 1

8 , β = 0.99, and an autocorrelation of 0.5 for ωt.
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to the magnitude of the output response. One implementation of this idea was carried out by
Christiano, Eichenbaum, and Evans (2005). These authors construct a rich New Keynesian
model and fit its structural parameters to match the impulse response functions following a
monetary policy shock. Their model includes many extensions of the basic New Keynesian
framework some of which we describe in the next section. Overall, they find that the data
indicate a value of θ that is consistent with an average contract length of 2.5 quarters which is
in the range of values suggested by the literature on the frequency of price changes discussed
earlier. Yet, at the same time, they also find that rigidities in wage setting are crucial to
explain the dynamics of inflation following a monetary policy shock.

An alternative approach is to estimate the New Keynesian Phillips curve directly in
isolation from other parts of the model. Here, the question is how strongly changes in the
output gap (or marginal costs of production) translate to changes in prices. Consider the
Phillips curve

πt = κxt + βEt [πt+1] + ηt

where we have included the shock ηt as we would in general not expect the Phillips curve
to hold exactly as an empirical relationship. Our interest is in estimating κ = (1 − θ)(1 −
θβ)(σ + ψ)/θ as this speaks to the strength of nominal rigidities.

The direct estimation of the Phillips curve requires one to address several challenges.
Any measure of the output gap is bound to be associated with measurement error which
induces an attenuation bias in our estimate of κ if we were simply to apply ordinary least
squares. However, if we have an instrumental variable that is correlated with the true
output gap and uncorrelated with the measurement error we can sidestep this source of bias.
Inflation expectations are not directly observable either. To measure inflation expectations,
the typical practice is to use statistical techniques to construct a forecast of πt+1 on the
basis of information that is available at date t. Finally, the presence of the cost-push shock
complicates matters. Suppose there is an inflationary cost push shock, ηt > 0, and that the
central bank responds to this by restraining demand and inducing a negative output gap. In
this scenario, there is reverse causation from inflation to the output gap.

The literature has adopted a variety of methods to overcome these challenges and it
remains an active area of research. Gaĺı and Gertler (1999) is representative of the approach
that has been followed by many papers in the literature. This approach rewrites the Phillips
curve as

πt = κxt + βπt+1 + ηt − β (πt+1 − Et [πt+1])︸ ︷︷ ︸
≡ζt

,

where we have replaced expected inflation with the realization of πt+1 and included the
expectational error πt+1 − Et[πt+1] in the error term, which we now denote ζt. If we assume
Et−1[ηt] = 0, any lagged variable known at t − 1 that predicts xt or πt+1 can be a valid
instrument.16 This (strong) assumption allows us to use realized future inflation in place of

16Let zt−1 be the instrument. The orthogonality condition requires that this instrument be uncorrelated
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expected inflation thereby obviating the need for measurement of inflation expectations and
also prevents reverse causation as the lagged instruments are not correlated with ηt.

To measure the output gap, Gaĺı and Gertler make use of the micro-foundations of the
New Keynesian model, which say it is real marginal cost that is relevant in price setting.
They start by positing a Cobb-Douglas aggregate production function:

Yt = AtK
αK
t LαLt

where Kt is the input of capital and αK and αL are the output elasticities with respect to
the two factor inputs. Assuming that the labor input is flexible while the capital stock is
predetermined in period t, cost minimization (together with firms being price takers in the
input markets) implies that real marginal costs are given as:

mct =
wt

∂Yt/∂Lt
=
sLt
αL

where sLt = (wtLt)/Yt is the labor share of income and wt is the real wage. Thus, up to
a first-order approximation, the log of real marginal costs are given as the log of the labor
share.

Gaĺı and Gertler estimate the Phillips curve using the generalized method of moments
applied to quarterly U.S. data from 1960 to 1997. Their estimates imply an estimate of
the frequency of price adjustment, 1 − θ, in the range of 0.085-0.171 per quarter, which
indicates much longer average price contract length than the estimates from disaggregated
prices discussed earlier.

The New Keynesian Phillips curve implies inflation is purely forward-looking. Before the
development of the New Keynesian model, typical specifications of the Phillips curve instead
included lagged inflation rather than inflation expectations. This so-called “accelerationist”
Phillips curve implies a high degree of inflation persistence. Forward- and backward-looking
Phillips curves have very different implications for how inflation can be controlled. In the
forward-looking case, a credible central bank can immediately reduce inflation by committing
to a low long-run inflation rate and zero output gaps. In the latter case, inflation can only be
reduced by imposing negative output gaps on the economy. To explore the issue of inflation
persistence, Gaĺı and Gertler also considered a “hybrid” New Keynesian Phillips curve in
which they assume that a certain fraction of price setters are purely backward looking and
simply set prices by updating the past average reset price (of forward-looking firms) with the
past inflation rate. In this extension, they estimate the fraction of firms that are backward
looking as opposed to forward looking. Their estimates place much more weight on forward-
looking behavior than on backward-looking behavior.

with ζt, which we can verify as follows

cov(zt−1, ζt) = E [zt−1ζt] = E [zt−1 {ηt − β (πt+1 − Et [πt+1])}] = E [zt−1ηt]+βE [zt−1 (πt+1 − Et [πt+1])] = 0,

where E [zt−1ηt] = E [zt−1Et−1 [ηt]] by the law of iterated expectations and Et−1 [ηt] = 0 by assumption.
Similarly E [zt−1 (πt+1 − Et [πt+1])] = E [zt−1 (Et [πt+1]− Et [πt+1])] = 0 by the law of iterated expectations.
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The work of Gaĺı and Gertler (1999) has been influential because it establishes a link be-
tween inflation and marginal costs as consistent with the price setting condition embedded
in the New Keynesian model. However, there remains considerable uncertainty surround-
ing the Phillips curve parameters as changes in the data series, the sample period, or the
econometric specification can result in considerable changes in the parameter estimates, see
(see Mavroeidis, Plagborg-Møller, and Stock, 2014). One issue of note is that the correla-
tion between the labor share and inflation appears to have weakened over time. In Figure
16.3 we show the dynamic correlations between the labor share and leads and lags of the
inflation rate for U.S. quarterly data, 1960:1-2019:4. We compute cross correlations for both
the whole sample and for an early sample (ending in 1997) and a late sample (starting in
1998). Consistent with the results of Gaĺı and Gertler (1999),17 there is a significant positive
relationship between the labor share and inflation in the early sample period. It is this
correlation that the estimates of the Phillips curve pick up. In the last part of the sample,
however, the sign of the contemporaneous correlation is negative.
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Figure 16.3: Dynamic Correlations

Notes: The figure shows the dynamic correlation function between the labor share and lags
and leads of the inflation rate. The data have been HP-filtered.

One possible explanation for the falling correlation of inflation and measures of marginal
cost is that a smaller share of the variation in inflation now comes from changes in marginal
costs (i.e. movements along the Phillips curve) as opposed to other factors (i.e. shifts of the
Phillips curve). In this case, estimating κ by concentrating on the economy’s response to

17Gaĺı and Gertler (1999) measure inflation on the basis of the GDP deflator while we use the PCE deflator.
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structural shocks that move the economy along the Phillips curve, for example as pursued
by Christiano et al. (2005), may be a preferable approach.18

16.6 Sticky wages and other extensions

The analysis in this chapter has focused on a simple version of the New Keynesian model
with sticky prices. This model is useful for illustrating qualitative implications of nominal
rigidities but is not a compelling quantitative explanation of the business cycle as we have
seen in Figure 16.2. We now describe some of the main extensions of the New Keynesian
framework that allow for a richer description of aggregate dynamics. We will pay particular
attention to frictions in wage setting as these are a key source of nominal rigidity in addition
to price stickiness.

16.6.1 Sticky Wages

The New Keynesian model that we have examined so far includes nominal rigidities in goods
prices. This focus on the goods market contrasts with the traditional Keynesian literature
that, motivated by the high levels of unemployment observed during the Great Depression,
focused on sticky nominal wages.19 The lack of instantaneous adjustment of nominal wages
is consistent with the empirical fact that the distribution of wage changes observed in micro
data tend to have a spike at zero, see e.g. Kahn (1997). Sticky wages result in periods when
labor is under-utilized thereby providing an explanation for labor market “slack” in the sense
that there are workers, although willing to work and actively searching for a job, who appear
unable to find a job at the going wage. Sticky wages also hold some theoretical appeal as
the basic sticky-price New Keynesian makes counterfactual predictions for the cyclicality of
firm profits.20

The Taylor model of overlapping contracts has considerable empirical and intuitive appeal
for many parts of the labor market as many wages are adjusted at an annual frequency (see
Grigsby et al., 2021). However, as we have argued earlier, the Calvo model offers much
analytical convenience. As mentioned above, there may be asymmetries in nominal wage
flexibility in terms of the wage change distribution being asymmetric with few downwards
movements in wages (of continuing employee-employer relationships). Here, to keep the
analysis simple, we will maintain the symmetric modeling of wage stickiness. Wage stickiness
may also be an insurance mechanism that can arise in the absence of nominal rigidities. Firms
may, for example, be prepared to offer workers insurance against variations in wages because
they are better able and willing to absorb profit fluctuations than workers are at handling

18Christiano et al. specify an entire general equilibrium model. An alternative approach is to estimate the
Phillips curve in isolation from the rest of the model using the information contained in impulse response
functions following identified shocks. See Barnichon and Mesters (2020) and Gaĺı and Gambetti (2020).

19A classic reference is Keynes (1936).
20The sticky-price model predicts that firm profits decline following a positive demand shock. The resulting

negative wealth effect on labor supply is actually central to the increase in labor supply with balanced-growth
preferences, see Broer, Hansen, Krusell, and Öberg (2020).
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income variations. Such considerations will typically lead to sticky real wages rather than
sticky nominal wages and therefore falls somewhat outside the aims of this chapter.

In the sticky-price model we introduced monopolistic competition in the goods market in
order to reconcile the assumption of output being demand determined (in the short run) with
firms’ willingness to supply goods at a possible predetermined price. A similar assumption
is required when modeling sticky wages. The standard avenue taken in the literature is that
households rent their labor supply to a continuum of labor unions that differentiate labor
and rent it to firms setting a nominal wage that is above the cost that they have acquired it
for. Households may therefore sometimes be unable to work the number of hours they would
have chosen to in the absence of labor unions and nominal rigidities. However, households
are assumed to be the ultimate owners of labor unions and are therefore compensated for
this by profits received from these institutions.

In this setup, if, for the sake of discussion, we entertain the idea that wages are sticky
and adjusted as in the Calvo model while prices are flexible, the model would be almost
identical. In the sticky-price model, the marginal cost of production is the wage (adjusted
for productivity) and the wage equals the marginal rate of substitution between consumption
and leisure because the household is on its labor supply curve (eq. 16.6). In this setup there is
a markup between the marginal cost and the price and due to nominal rigidities this markup
can vary in response to shocks. We will now sketch out a sticky-wage model in which prices
are equal to marginal costs (production is competitive) but there are frictions in the labor
market that introduce a wedge between wages and the marginal rate of substitution between
consumption and leisure. This approach to modeling sticky-wages has its roots in Blanchard
(1987) and was developed in more detail by Erceg, Henderson, and Levin (2000).

The union sets its wage subject to Calvo-style nominal rigidities and stands ready to
supply any amount of labor that is demanded at that wage. A competitive final goods
producer combines these varieties of labor to produce a final good selling its output at
marginal cost. Let Wt be the nominal wage-index that reflects the cost of a bundle of labor
that allows the final goods producer to produce one more unit of goods. Since goods are
sold at marginal cost, we have Pt = Wt in all periods. It then follows that price inflation
will be identical to wage inflation. This model yields the exact same Phillips curve as the
sticky-price model. Where the model will differ is its implications for real wages, which are
now constant as wt = Wt/Pt = 1. In Section 16.4.1, we argued that the distance between
the equilibrium level of output and the efficient level depends on the ratio wt/At. Such a
condition no longer holds. Instead, the relevant issue is how the marginal rate of substitution
compares to productivity. In the sticky-wage model, households need not be on their labor
supply curves and there can be times when they would like to work more, but wages are high
and labor demand is therefore “too low,” in the sense of being below its efficient (flexible
wage) level.

A model with both sticky wages and sticky prices is, however, somewhat different from
the models with only one nominal rigidity. We describe this model in detail in Appendix
16.A.3. As we show there, inflation is now explained by three equations that replace the
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Phillips curve

πt = βEt [πt+1] + ξp
�
ŵt − Ât

�
(16.23)

πwt = βEt
[
πwt+1

]
− ξw

�
ŵt − Ât

�
+ κwxt (16.24)

ŵt = ŵt−1 + πwt − πt. (16.25)

Eq. (16.23) is the price Phillips curve. It is similar to the standard New Keynesian Phillips
curve but now depends on the real wage wt rather than the output gap. Goods price setters
choose their prices taking account of current and future marginal costs, which in this model is
just the real wage relative to productivity.21 Eq. (16.24) is the wage Phillips curve where πwt
is wage inflation (i.e. the growth rate of nominal wages). Wage setters will increase nominal
wages if the marginal rate of substitution is high relative to real wages. Therefore eq. (16.24)
is increasing in the output gap (the marginal rate of substitution rises as households work
and consume more) and is decreasing in the real wage.22 This equation is forward looking
for the same reason that the price Phillips curve is. Wage setters know their wage could
remain fixed for a number of periods so the look ahead to future market conditions. Finally,
eq. (16.25) is the log of the identity wt = Wt

Pt
= Wt−1

Pt−1

Wt

Wt−1

Pt−1

Pt
. This equation relates the

change in the real wage between any two periods to the difference between nominal wage
inflation and nominal price inflation.

Figure 16.2 shows results of simulating the model with both sticky wages and sticky
prices. There are two things worth noting here. First, we parameterize this model with
double the frequency of price and wage adjustments as in the basic model. In the sticky-
wage model, prices and wages update once per year on average while in our calibration of
the sticky-price model they updated every two years on average. When nominal rigidities
layer on top of each other, the pass through from resource utilization to inflation becomes
more gradual. Even when they are able to update their prices, intermediate goods firms only
raise their prices to the extent their marginal costs rise and the change in their marginal
costs is muted by the wage rigidities. Second, note that inflation is more persistent with the
two rigidities. Wage inflation initially falls by more than price inflation leading real wages
to fall. Thereafter, the low real wages exert a downward force on price inflation and the real
wage only returns to its steady state value gradually.

16.6.2 Other extensions of the basic New Keynesian model

We showed above that the basic New Keynesian model is qualitatively consistent with em-
pirical estimates of the impact of monetary policy shocks. However, as also made clear,
quantitatively, the model does not manage to match the data. The same is the case for
other structural shocks often studied in macroeconomics such as total factor productivity

21If the model included decreasing returns in production or factors of production other than labor, there
could also be an output gap term in eq. (16.23) in addition to the wage term.

22Eq. (16.24) is also increasing in productivity because there is a wealth effect on labor supply that raises
the marginal rate of substitution between leisure and consumption.
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shocks, shocks to investment efficiency, fiscal shocks, uncertainty shocks, etc. Clearly this
basic model fails to capture some important features of business cycle fluctuations. For that
reason, much work in the area has considered so-called “medium-scale” models that extend
the above framework with the hope of improving the model’s quantitative performance. Here
we will discuss a few of these extensions and the underlying reason for their introduction
into this line of work.

Consumption dynamics: A main feature of many empirical estimates of the macroeco-
nomic impact of aggregate shocks is gradual adjustment over time. We see this above in
Figure 16.2 in the hump-shaped response of output to the identified monetary policy shock,
but such dynamics are standard findings in the literature also in response to other shocks.
There are many ways in which macroeconomists have attempted to model such dynamics.

Under the permanent-income hypothesis, consumption is determined by permanent in-
come and the path of interest rates. It is impossible then to explain a gradual change
in consumption without a very particular path for interest rates. To generate a gradual
consumption response, some authors replace the preferences in equation (16.1) with a spec-
ification such as

E0

∞∑
t=0

βt
�

(Ct − γCt−1)1−σ

1− σ − L1+ψ
t

1 + ψ

�
, (16.26)

where γ ∈ [0, 1) and Ct−1 refers to last period’s consumption. These preferences are inter-
preted as reflecting consumption habits. To see why, note that the term involving consump-
tion can be rewritten as

Ct − γCt−1 = (1− γ)Ct + γ(Ct − Ct−1)

i.e. as a weighted average of the level and the change in consumption. Thus, in habit
formation models, households are concerned about smoothing both the level and the growth
rate of consumption. When γ is large, households effectively worry about smooth growth
rates of consumption and in this case the level of consumption will tend to adjust partially
to shocks over time. 23

An alternative way of generating richer dynamics for aggregate consumption is to aban-
don the complete markets assumptions underlying the permanent income hypothesis. When
households face uninsurable idiosyncratic risks and borrowing constraints, their consump-
tion choices will tend to reflect current labor market conditions. For example, borrowing-
constrained agents will spend strongly out of current income so aggregate consumption will
respond more strongly to aggregate disposable income. Similarly, an increase in the risk
households face, say an increase in the risk of unemployment, will lead them to cut back
on consumption for precautionary reasons. These issues are explored in the literature on
heterogeneous-agent New Keynesian models.

23This specification is usually referred to as an an internal habit model because the household understands
that increasing Ct will affect its utility next period. Another approach treats the habit term as referring to
past aggregate consumption (taken as given). That approach is called an “external habit” or “catching up
with Joneses.”
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Capital, investment, and adjustment costs: The model discussed so far has only one
factor input: labor. Quantitative models typically also include capital accumulation both
because capital is important as a savings vehicle and also because investment demand is an
important part of aggregate demand. Typically, one assumes a Cobb-Douglas technology:

yj,t = Atk
α
j,t`

1−α
j,t . (16.27)

Let’s assume that capital is owned by households and rented out to firms at the (real) rental
rate rkt . Now assume that capital accumulates over time according to a standard neoclassical
specification:

Kt+1 = (1− δ)Kt + It,

Unfortunately, this model implies that investment demand becomes extremely sensitive to
variations in monetary policy. To see this, note that firms will continuously adjust their
capital demand so as to equate the marginal product of capital with the cost of capital
rkt + δ. In steady state, investment satisfies It = δKt and with a small δ, the flow of
investment is small relative to the capital stock. Small percentage changes in the desired
capital stock then translate to large percentage changes in investment. The model as written
would then imply that small changes in interest rates lead to large changes in investment
and equilibrium output.

To limit such high investment volatility, it is common in medium-scale models to include
sources of adjustment costs. A common specification is:

Kt+1 = (1− δ)Kt + ξ

�
It
Kt

�
Kt

where the function ξ(xt/kt) is assumed to be increasing but concave and captures adjustment
costs.24 Notice here that, because of concavity, it is costly to vary the investment rate. This
specification is therefore able to generate gradual adjustments in the flow of investment and
hump-shaped aggregate dynamics.

Empirically, the slope of the Phillips curve is low relative to what we would expect based
on the rigidity of prices as measured in micro-data as we discussed in Section 16.5.2. This
tension is exacerbated in the New Keynesian model with capital accumulation. In the short-
run, the capital stock is predetermined and the only way to produce more in the aggregate
is to use more labor. If we use the production function (16.27), the elasticity of output with
respect to labor is 1−α, which means we need to use 1/(1−α) > 1 units of labor in order to
produce one more unit of output. Thus, relative to the specification in (16.3), marginal costs
are more sensitive to the quantity produced and the Phillips curve becomes steeper. One
way to address this concern is to allow for variable capacity utilization whereby the effective
capital services are not predetermined giving the economy an additional opportunity to
adjust production beyond changes in labor effort.

24Typically one assumes ξ > 0, ξ′ > 0, ξ′′ < 0, and that ξ(δ) = δ so that Tobin’s Q equals 1 in the
deterministic steady state.
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Chapter 17

Credit market frictions
Vincenzo Quadrini
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The study of the role of financial market frictions for the dynamics of the macro-economy
has a long tradition that started well before the 2008 financial crisis. Bernanke and Gertler
(1989) and Kiyotaki and Moore (1997) are two well-known studies that incorporate financial
frictions in general equilibrium models and became the standard references for this literature.
However, before the 2008 financial crisis, the mainstream approach to the study of the
macro-economy abstracted from financial frictions. This was, in part, motivated by the
view that, although markets are clearly incomplete, the importance of financial frictions for
the dynamics of the macro-economy is somewhat negligible. Based on this view, it became
preferable to use models with complete markets because they allow for simpler analytical
characterization. These models featured many frictions such as sticky prices, sticky wages,
adjustment costs in investment, variable capital utilization, matching frictions in the labor
market, but not financial frictions.

The view that financial frictions were somewhat negligible for understanding the macro-
economy is surprising considering that one of the largest recessions in modern times—the
1929 Great Depression—was associated with extensive financial issues such as a deep bank-
ing crisis. As discussed in the first chapter of this book, the Great Depression was very
important for the subsequent research in macroeconomics. However, some prominent schol-
ars did emphasize the centrality of financial markets for understanding the macroeconomic
dynamics of the Great Depression (see, for example, Calomiris (1993) and Bernanke (2024)),
but the role of financial frictions remained limited in many macroeconomic studies. An ex-
ample is Kehoe, Prescott, et al. (2002), a book collecting contributions from distinguished
macroeconomists on the topic of the Great Depression. None of the book chapters explored
the role played by financial frictions for understanding the macroeconomic implications of
the Great Depression.

The 2008 financial crisis also known as the Great Recession, represents a turning point.
The crisis made clear that macroeconomic models constructed on the assumption of friction-
less financial markets were missing important elements for understanding the dynamics of
the economy. These models needed to be extended to have a more prominent role played by
the financial sector and the goal of this chapter is to illustrate one way to do that.

Given the introductory nature of the chapter, we start with the most standard model
used in macroeconomics, the neoclassical growth model. The neoclassical growth model
has been characterized in previous chapters but under the assumption of complete markets.
Here we relax this assumption and introduce a special form of financial frictions. Although
the extension with incomplete markets introduces only a special form of financial frictions,
some of the basic properties illustrated in this chapter are quite general and shared by other
models used in the literature. Before describing the specific modeling, however, it would be
helpful to provide an empirical motivation for why the joint analysis of financial and real
markets deserves attention for understanding the dynamics of the macro-economy.
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17.1 Financial and real markets

Why should macroeconomists pay attention to the joint dynamics of financial and real mar-
kets? Besides the anecdotal observation that financial markets could have played some role
in specific episodes of booms and busts around the world, a more systematic observation
is that credit flows are highly pro-cyclical. The pro-cyclicality is evident not only at the
business cycle frequency but also, and perhaps more importantly, over the medium term.

The top panel of Figure 17.1 shows that changes in US credit market liabilities move
closely with the US cycle. In particular, debt growth drops significantly during recessions.
There are exceptions. For example, credit in the household sector did not contract in the
2001 recession, contrary to business debt. The drop in credit was especially large during the
2008 crisis. The procyclicality of corporate debt has also been shown in many studies using
micro data from publicly traded firms.1

Figure 17.1: Panel A: Change in the volume of US credit market instruments in the house-
holds and business sector as a percentage of GDP. Panel B: Index of credit tightening in
commercial and industrial loans and in credit cards.

Notes: Panel A data is from the Flow of Funds of the Federal Reserve Board. Panel B data is from the
Senior Loan Officer Opinion Survey on Bank Lending Practices from the Federal Reserve Board.

1See Covas and denHaan (2011) and Begenau and Salomao (2019).
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We can also see the cyclical properties of financial markets from more direct indicators
of credit tightening based on survey data. The bottom section of Figure 17.1 plots, for
the United States, the net percentage of senior bank officers reporting tightening of credit
standards for commercial and industrial loans, and for credit cards. A higher credit standard
index indicates that it is more difficult to get a loan from a bank. The figure shows that US
banks tighten their credit standards during recessions.

Other indicators of credit tightening such as credit spreads—the interest rate differential
on corporate bonds issued by companies with weak credit rating over the interest paid by
government bonds—convey a similar message. As shown in the top panel of Figure 17.2,
interest rate spreads tend to increase right before a recession. This suggests a deterioration
of the credit capacity of certain businesses, making more difficult for them to borrow.2

Figure 17.2: Panel A: Interest rate differential between US corporate bonds issued by
companies with a Baa credit rating and the yield on 10-year Treasury notes. Panel B:
Change in the volume of credit market instruments in the US private sector (households and
businesses) as a percentage of GDP and US unemployment rate as a percentage of the labor
force.

Notes: Panel A data is from the Federal Reserve Board. Panel B data is from the Flow of Funds of the
Federal Reserve Board and the U.S. Bureau of Labor Statistics.

2See also Gilchrist, Yankov, and Zakrajsek (2009).
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The bottom panel of Figure 17.2 plots the flow of new debt in the US private sector and
the US unemployment rate. The graph illustrates the strong negative co-movement between
the growth of debt and unemployment. This is another illustration of the strong linkage
between real and financial sectors.

Why is the co-movement in real and financial variables relevant? In a world in which
markets are complete, which is the case in the standard neoclassical model, the financial
structure of households and firms would not necessarily follow a pro-cyclical pattern. For
example, since in a recession there are more unemployed workers, the household sector
could borrow more to fund the consumption of unemployed workers. This could lead to a
counter-cyclical flows of new debt. The fact that credit flows are pro-cyclical and the index
of tightening standards is counter-cyclical suggests that the complete-market paradigm has
limitations in capturing the joint dynamics of real and financial variables. This is especially
true for the index of credit tightening: if markets were complete, there is no reason for
lenders to change their ‘credit standards’ over the business cycle.

However, the fact that there is a strong co-movement between financial and real flows—as
shown in Figure 17.1 and the bottom panel of Figure 17.2—does not tell us anything about
possible causal links: does lower credit growth cause recessions or do recessions cause lower
credit growth? Conceptually, we could have three possible scenarios:

1. Real activity causes movements in financial flows. It is possible that the contraction
in consumption and investment expenditures, as well as employment, is the direct
response to changes in real factors such as productivity. In this case, borrowers cut
their debt simply because they need fewer funds to conduct economic transactions and
to finance their expenditures. If this were the only linkage between real and financial
flows, the explicit modeling of the financial sector would be of limited relevance for
understanding movements in real economic activity. The neoclassical model is built on
this assumption.

2. Propagation. A second possibility is that non-financial factors, such as changes in
productivity, are the initial driving forces for movements in economic activity. However,
financial factors affect how these initial changes propagate to the real sector of the
economy. For example, as investment and employment both fall in response to a
decline in productivity, the credit capacity of borrowers also deteriorates. This could
happen, for instance, if the fall in investment generates a fall in the market value of
assets that are used as collateral. The deterioration in accessible credit forces borrowers
to reduce investment and hiring more than they would have in absence of the credit
contraction. Thus, financial frictions could amplify the macroeconomic impact of non-
financial shocks.

Although in this example financial frictions amplify the shock, they could also dampen
it. For example, an improvement in technology stimulates investment. The presence
of financial frictions, however, could limit the investment growth because the credit
required to finance the desired investment boom could be unobtainable. In general,
whether financial frictions act as amplification or dampening mechanisms, it is plausible
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to think that they impact, somewhat, the propagation of non-financial shocks. The
question, then, is whether their impact is quantitatively important.

3. Financial shocks. A third possibility is that the initial disruption or shock arises directly
in the financial sector. After hitting the financial sector, the shock propagates to the
real side of the economy. For example, a disruption in financial markets could make
it more difficult to transfer funds from lenders to borrowers causing a contraction in
consumption and investment spending and leading to a decline in employment. This
type of disruption is now commonly referred to as ‘credit’ or ‘financial’ shock. In
reduced form, a financial shock could be modeled as a change in the parameter that
determines the severity of the financial frictions in the model.

Prior to the 2008 financial crisis, a large majority of studies in the macro-finance literature
focused on the second possibility, that is, on the role of financial frictions for the ‘propagation’
of non-financial shocks.3 The main idea was that financial frictions could make the real
impact of a shock bigger (amplification) or smaller (dampening). However, financial frictions
are not the initial ‘cause’ of macroeconomic expansions and contractions: something else has
to happen first in the nonfinancial sector. The analysis of financial shocks as a ‘source’ of
macroeconomic fluctuations has received more attention after the 2008 financial crisis.

This chapter will present some parsimonious ways to formalize financial frictions and
show how they affect the propagation of non-financial shocks and of financial shocks to the
rest of the economy. The chapter will not discuss at length the first possibility because,
as observed above, if this is the most relevant linkage between real and financial flows, the
explicit modeling of the financial sector will be of limited relevance for understanding the
dynamics of the real economy.

17.2 Modeling financial frictions

Financial frictions arise when certain trades in financial assets or claims are not available.
In the context of an Arrow-Debreu model, they emerge when trades in certain contingencies
cannot take place. This limits the agents’ ability to shift spending across time or states of
nature. The absence of trading markets becomes relevant only if agents are heterogeneous
in some dimension that induces a reason to trade. Thus, all models with relevant financial
frictions share two features:

1. Missing markets: Markets for the trade of certain claims are absent.

2. Heterogeneity: Agents are heterogeneous in some important dimension.

These two characteristics are necessary for financial frictions to be relevant but are not
sufficient. The absence of some markets could be irrelevant if, in equilibrium, agents would

3This was the case for Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) and the related
literature.
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choose not to trade in these markets anyway. Thus, market incompleteness and heterogeneity
must interact for financial frictions to affect the economy. The literature has considered
various forms of market incompleteness and heterogeneity.

17.2.1 Missing markets

To demonstrate the role of missing markets, it is useful to start with a counter-example known
as the Modigliani and Miller (1958) principle. The principle states that, with complete
markets, the sources of funding (for example debt versus equity) do not matter for real
decisions. For example, whether an agent funds investment with debt or equity does not
affect how much the agent invests—the agent is indifferent between the various sources of
funding. But when we talk about financial frictions, we deal with environments where agents
are not indifferent between the various sources of funding. Thus, if we want to consider these
types of environments, we need to depart from the frictionless setting.

Modigliani-Miller principle. To illustrate the Modigliani-Miller principle, we use a ver-
sion of the complete market model studied in Chapter 7. A firm purchases capital k at time
0, at price 1 (one unit of capital at time 0 is worth 1 unit of time-0 consumption goods).
Then in period 1, the state i (shock) is realized, after which the firm hires labor `i at price
piwi. Here pi is the Arrow-Debreu price (consumption goods paid in period 0 for the delivery
of one consumption good in period 1) and wi is the price of one unit of labor in terms of
consumption goods paid in period 1. Thus, piwi is the wage in terms of consumption goods
in period 0. The firm produces F (zi, k, `i) at date 1 and each unit of output is worth pi units
of consumption goods in period 0. Finally, the firm sells the undepreciated capital (1− δ)k,
each unit worth pi units of period-0 consumption.

The firm solves the problem

max
k,{`i}i

§
− k +

∑
i

pi

[
F (zi, k, `i)− `iwi + (1− δ)k

]ª
. (17.1)

This problem does not specify how the firm finances the purchase of capital k in period 0.
So let’s assume that the firm has two choices: debt, denoted by b, or equity, denoted by e. In
the first case the firm will borrow while in the second the firm sells shares to future dividend
payments. Given these two sources of funding, we have that k = b+ e.

Denote by R the risk-free gross interest rate paid on the debt. Then, the value of
dividends in terms of period-0 consumption paid by the firm in period 1 at state i are
di = pi[F (zi, k, `i) − `iwi + (1 − δ)k − Rb]. Since the firm maximizes the value for the
providers of equity, the shareholders, the optimization problem is now

max
k,{`i}i

§
− (k − b) +

∑
i

pi

[
F (zi, k, `i)− `iwi + (1− δ)k −Rb

]ª
. (17.2)

The firm’s owners pay e = k− b at time 0, and then in period 1 they receive the profits after
the repayment of the debt inclusive of the interests, Rb.
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As we have seen in Chapter 7, in a complete markets equilibrium, prices satisfy
∑

i piR =
1. This implies that problem the variable b cancels out in Problem 17.2 and we get back to
the previous Problem 17.1 which does not specify the sources of funding. Thus, the choice
of the financial structure—b versus e—is indeterminate.

The argument is very general and applies to any type of financial instruments. For
example, we can consider short-term vs. long-term debt. The only requirement is that the
various instruments are priced competitively, which is the case in an Arrow-Debreu economy.
The argument could also apply with incomplete markets, if the various financial instruments
are priced in the same way firms discount future dividends. In this chapter, however, we will
consider environments in which this is not the case.

Modelling missing markets. The approaches used in the literature to formalize missing
markets and possibly leading to the violation of the irrelevance principle of Modigliani and
Miller, can be divided in two categories: ‘exogenous’ and ‘endogenous’.

1. Exogenous market incompleteness. In this category we include models that impose,
by assumption, that certain claims or assets cannot be traded. A common assumption
is that agents can save or borrow with non-contingent bonds. However, they cannot
purchase or issue bonds with payoffs that are contingent on information that will be
revealed in the future. In general, the goal of these studies is not to explain why certain
assets cannot be traded but to understand the consequence of the missing markets.

These studies start from the observation that in the real world a large volume of
financing transactions is in the form of borrowing and lending with fixed repayment
(standard debt contracts). Of course, there are also financial contracts with payouts
contingent on future events. However, the volume of these contracts is smaller than
the theory would predict. The modeling assumption that borrowing can be done
only with non-contingent debt is a pragmatic approximation to the complexity of the
actual economy. Another common assumption is that there is a limit to the debt that
an individual agent can take (an exogenous borrowing constraint). The limit is not
necessarily fixed and could depend on the characteristics of the borrower. However,
there is no attempt to motivate with explicit micro-foundations why borrowing is
limited.

2. Endogenous market incompleteness. Models with endogenous market incompleteness
assume that the set of feasible contracts is restricted by incentive considerations. Mar-
kets are missing because parties are not willing to engage in certain trades as a result
of agency frictions, which typically take one of two forms:

(a) Information asymmetry. In many instances, borrowers have more information
than lenders. For example, if repayment is contingent on the performance of
the business and that performance depends on ’unobservable’ effort from the
borrower, the borrower has an incentive to choose lower effort. Since effort is
observed only by the borrower, shirking cannot be detected. This creates a moral
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hazard problem. In some contexts, information asymmetry gives rise to adverse
selection: since the riskiness of borrowers cannot be detected by lenders, those
applying for loans tend to be riskier borrowers. Adverse selection is thought to
be an important issue also in insurance markets.

(b) Limited enforcement. Lenders may have the same information as borrowers and
they can observe whether borrowers deviate from the agreed action (for exam-
ple the amount that should be repaid upon the realization of a specific event).
However, lenders are unable to force borrowers to fulfill their obligations. If the
amount repaid is lower than initially agreed, there is nothing that lenders can do
to enforce the agreed repayment.

Although models with limited enforcement are typically easier to characterize analyt-
ically than models with information asymmetries, they share a common property: the
higher is the net worth of borrowers, the higher are the (incentive-compatible) funds
that can be raised externally. This is also a property of many models with ‘exoge-
nous’ market incompleteness. Therefore, for a variety of questions often addressed in
macroeconomics, whether market incompleteness is exogenous or endogenous does not
make a big difference. However, there are questions for which it does matter. Also, an
advantage of models where market incompleteness is endogenous, is that they are less
vulnerable to the Lucas critique, that is, the fact that certain parameters may not be
invariant to policy changes. A simple example is a policy that increases the penalty
for defaulting on the debt. Because of the higher penalty, creditors anticipate that
borrowers have less incentive to renege on the debt obligations and, as a result, they
are willing to lend more. This, effectively, relaxes the borrowing constraint, something
that would not be captured in a model where the borrowing constraint is exogenous.
Bernanke and Gertler (1989) and Kiyotaki and Moore (1997) are examples of endoge-
nous borrowing constraints: the first based on information asymmetry and the second
on limited enforcement.

17.2.2 Heterogeneity

There are different approaches used in the literature to incorporate heterogeneity. In some
models, agents are ex-ante identical but they become heterogeneous ex-post as a result of
uninsurable idiosyncratic shocks, as in the Bewley-Huggett-Aiyagari economies already stud-
ied in Chapter 9. Because incomplete markets generate a complex degree of heterogeneity
in this model, many applications using Bewley-Huggett-Aiyagari economies abstract from
aggregate uncertainty with few exceptions.4 Instead, the majority of studies that investigate
the importance of financial frictions in the presence of aggregate shocks have used alternative
modeling approaches where heterogeneity is less complex.

4One of the first exception is Krusell and Smith (1998a). Others include Cooley, Marimon, and Quadrini
(2004), Guerrieri and Lorenzoni (2010), Khan and Thomas (2011) and Arellano, Bai, and Kehoe (2019).
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A popular approach is the assumption that there are only two types of agents that are
ex-ante and permanently different in preferences and/or technology. In equilibrium, one type
of agents borrows while the other lends. In some cases, there is heterogeneity also within
the same type of agents. However, the aggregate behavior of each type can be characterized
as if there is a representative agent. This is because the model allows for linear aggregation
of all agents belonging to the same type (but not between different types).5.

In many models, financial frictions are important because they limit the reallocation of
resources from agents that are less productive to agents that are more productive. There
is an incentive for those who will be more productive, to save in order to overcome future
borrowing constraints. Over time, these agents may accumulate enough wealth so that they
are no longer depend on external funding. To maintain the significance of financial frictions
in the long run, further assumptions are needed. The box provides a non-exhaustive list of
assumptions made by various studies in the literature.

Assumptions that prevent self financing

Finite life span. Some models assume that borrowers are finitely lived. Examples include
models with overlapping generations where newborn agents have no initial wealth. Over
time, they accumulate wealth and become unconstrained. However, since there are
agents that are newly born in every period, at any point in time there are always some
agents that face binding financial constraints. A similar mechanism arises in models
with an industry dynamic structure where exiting firms are replaced by new entrant
firms.

Different discounting. Another popular approach is to assume that agents are infinitely
lived but some of them discount the future more than other agents. More impatient
agents end up being the borrowers while patient agents lend. For impatient agents, the
cost of external financing—the interest rate—is lower than their inter-temporal discount
rate. Therefore, they do not save enough to reach a point at which the borrowing
constraint is no longer binding in long-run. This implies that in every period some
agents are always constrained.

Tax benefits. A similar outcome can be obtained with tax benefits of debt. For example,
the tax deductibility of interest payments from corporate earnings generates a preference
for debt over equity (higher leverage). In this case the two types of agents are, typically,
households (who do not get a tax benefit from debt) and firms (who benefit from the
debt shield). This assumption is especially popular in structural finance with various
applications to macroeconomics.

Convenience yield. An assumption that is becoming more popular in the macro-finance
literature is that debt issued by certain agents provides liquidity services to other agents.
Sometimes this is referred to as a ‘convenience yield.’ This may be because this type

5Carlstrom and Fuerst (1995) and Bernanke, Gertler, and Gilchrist (1999) are examples of this approach.

478



of debt is safe and can be easily liquidated and accepted as collateral in emergencies,
unlike other types of debt. Another way to interpret this idea is that this particular type
of debt provides utility flows. Because of these utility flows, agents are willing to hold
it even if the interest rate is lower than the inter-temporal discount rate. Although the
most common application of the convenience yield is for bonds issued by governments,
it can be extended to other types of debt.

Wage bargaining. A further assumption considered in the literature is that external
financing (debt or outside equity) is preferred to inside financing (entrepreneurial equity)
because it affects the bargaining position of firms in the negotiation of wages and/or
executive compensation. If the compensation of workers and/or managers is determined
through some form of bargaining (perhaps through labor unions in the case of workers),
highly levered firms would be able to negotiate lower wages because the debt reduces
the bargaining surplus. This mechanism introduces an incentive for firms to take on
more debt and can leave them financially constrained.

This section has outlined the most popular approaches used in the literature to formalize
financial frictions. Of course, it is not possible to illustrate all of them in detail in a single
chapter. We will then focus on a particular formalization. However, the most salient prop-
erties that will be outlined in the next sections are similar to those characterized in models
that adopt a different formalization of financial frictions.

17.3 Adding financial frictions to the neoclassical model

The starting point is the neoclassical growth model studied in previous chapters. In that
model, markets are complete and there is only one representative agent. Here we maintain
the assumption that there is a representative household that has the same characteristics as
in the standard model. However, we place some more structure on the operation of firms.
More specifically, we assume that capital accumulation (investment) is chosen by firms, not
households. This implies that firms solve a dynamic problem because the investment made
today increases profits in the future.

Households continue to be the owners of the firms, which operate to serve the interests
of households. However, we will think of the firms as distinct from the households and
they represent a second type of agent. Thus, we introduce heterogeneity by distinguishing
households from firms. Based on assumptions that we will introduce gradually in the model,
we will see that, in equilibrium, firms borrow from households and households lend to firms.

The objective of firms is to maximize the current value of dividends. The assumption
that households are the owners of firms, which operate in the interest of households, implies
the discount factor used by firms is the same discount factor used by households to discount
future payments. As they use the same discount factor, firms make the same production and
investment decisions that would be made directly by households.

For a household, a unit increase in consumption at time t > 0 has a utility value of
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uc(Ct, Lt), where the subscript in the utility function denotes the derivative with respect to
the variable indicated in the subscript. Thus, uc(Ct, Lt) is the marginal utility of consumption
at time t. The discounted value at time zero of that utility is βtuc(Ct, Lt). We now ask the
following question: What should be the increase in consumption at time zero that gives the
same flow of utility as one unit increase in consumption at time t?

Denote by ∆ the marginal increase in consumption at time zero. The extra utility received
at time zero from this increase is ∆·uc(C0, L0), that is, the increase in consumption multiplied
by the marginal utility of consumption at time zero. The increase in consumption ∆ that
provides the same utility as the unitary increase in consumption at time t is determined by
solving the condition ∆ · uc(C0, L0) = βtuc(Ct, Lt). Rearranging we obtain

∆ =
βtuc(Ct, Lt)

uc(C0, L0)
.

Thus, a unit of consumption at time t is equivalent to βtuc(Ct, Lt)/uc(C0, L0) units of
consumption at time zero. The term βtuc(Ct, Lt)/uc(C0, L0) is known in the literature
as the ‘stochastic discount factor.’ Because the stochastic discount factor captures how
households—the owners of firms—evaluate future payments in the current period, firms use
this factor to discount dividends that will be paid in the future.

For notational convenience we denote the stochastic discount factor using the variable
mt = βtuc(Ct, Lt)/uc(C0, L0), a notation often used in the field of finance. The firm’s objec-
tive function, then, can be expressed as

E
∞∑
t=0

mtdt,

where dt are the dividends paid by the firm at time t. The objective of the firm is to maximize
the expected discounted value of dividends using mt to discount dividends paid in the future.

The next step is to place some structure on the financing decisions of firms. Since capital
is accumulated by firms, they need to finance investment. We allow for two forms of financing:
equity and non-contingent debt. Equity refers to the households’ claims to the dividends of
the firm. Non-contingent debt is the amount borrowed from households. If the firm borrows
bt+1/Rt at time t, it promises to repay bt+1 units at time t+ 1. The variable Rt is the gross
interest rate (one plus the interest rate), while its inverse, 1/Rt, is the price of the debt. The
interest rate is determined in general equilibrium to clear the credit market.

So far, even though we added more structure to the neoclassical growth model by as-
suming that capital is accumulated by firms and funded with debt and equity, this is in-
consequential for the equilibrium allocation. Proposition 17.1 introduced below establishes
that, in the absence of additional assumptions, the equilibrium debt chosen by firms is inde-
terminate and the real allocation is the same as in the standard neoclassical growth model.
This is an example of the Modigliani-Miller’s irrelevance principle. To make the financial
decision relevant, we need to introduce some frictions which we do with a set of assumptions.
Assumptions (17.3.1)-(17.3.3) differentiate the model with financial frictions presented here
from the standard neoclassical growth model.
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The first assumption is that debt financing is cheaper than equity financing.

Assumption 17.3.1 The cost of debt for firms is lower than the cost of equity.

One way in which we can make this assumption operational is with a tax benefit of debt.
Even if the gross interest rate paid by the firm is Rt, it receives an indirect tax benefit
due to the tax deductability of interest payments from corporate profits. The tax benefit is
equivalent to a subsidy τ > 0 so that the effective gross interest rate paid by the firm is

R̃t = Rt/(1 + τ).

This assumption has been used by several studies in structural corporate finance (see, for
example, Hennessy and Whited (2007)) and macro-finance (see, for example, Jermann and
Quadrini (2012)). However, this is not the only way to generate a cheaper cost of borrowing
for the firm. Another approach is the assumption that the debt has a convenience yield for
households. This can be implemented by assuming that the firm’s debt enters the utility of
households. Thanks to the flow of utility, households are willing to hold the debt even if the
interest rate is lower than the inter-temporal discount rate 1/β − 1.

As we will show below, Assumption 17.3.1 implies that firms prefer debt over equity: they
raise debt and pay out dividends. Thus, the tax benefit breaks the indifference property of
the financial decisions of firms and introduces a pecking order in the source of funds. This
also implies that firms would like to issue an infinite amount of debt. To prevent excessive
borrowing, then, it is customary to impose a borrowing limit. We follow the same approach
here.

Assumption 17.3.2 Given the price of capital, pt, the debt issued by the firm is subject to
the borrowing constraint,

bt+1

R̃t

≤ ξptkt+1.

According to the constraint, the debt cannot be larger than a fraction ξ of the value of
capital. Capital acts as collateral and effectively limits the amount of debt that firms can
issue since only a fraction ξ of the value of capital can be funded with debt. The remaining
fraction, 1 − ξ, must be funded with equity, that is, funds that are owned directly by the
firm and, indirectly, by households. Collateralized credit is a very common practice in bank
lending. Although we do not attempt to justify the borrowing constraint with some deeper
theory, it can be derived from limited enforcement assumptions.6

The price of capital pt plays an important role since its fluctuations affect the firm’s
access to credit. In our model, however, pt is always one since it is always possible to convert

6For example, if in the eventuality of default the lender will only be able to confiscate a fraction ξ of
capital, the recovered value will be ξptkt+1. Knowing this, the borrower could default whenever the debt
exceeds this value. But then the lender will not be willing to lend more than this value.
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one unit of capital into a unit of consumption. In many studies, however, it is assumed that
the conversion of capital to consumption goods or vice versa, is not one-to-one. This is the
case if there are adjustment costs: if we want to increase the stock of capital by one unit,
we need to give up more than one unit of consumption. Furthermore, as we add more and
more capital, the needed units of consumption increase. This is the idea of convex capital
adjustment costs. In this case the price of capital pt is given by the marginal cost, which
increases with investment. For example, convex adjustment costs are present in the financial
accelerator model of Bernanke et al. (1999). When the adjustment cost is prohibitively high,
the stock of capital is constant and we have, effectively, an economy with a non-reproducible
asset similar to land. This is the assumption made in Kiyotaki and Moore (1997). In both
papers, the endogenous change in the price of capital plays an important role because it
affects the agent’s ability to borrow.

To keep the analysis of this chapter simple, we do not attempt to introduce capital
adjustment costs to make the price of capital move endogenously. Instead, we will make a
very extreme simplification: we assume that the price of capital pt is exogenous and depends
only on aggregate shocks. Of course, this is a very extreme simplification since prices are
endogenous objects and they are determined in equilibrium. The simplification, however,
allows us to derive intuitive analytical expressions.

The lower cost of debt, paired with a binding borrowing constraint (Assumptions 17.3.1
and 17.3.2), already introduce a wedge that distorts real allocations. However, this particular
wedge plays a relatively limited role in affecting the response of the economy to aggregate
shocks. To understand why, suppose that the economy experiences an increase in productiv-
ity or TFP. Also, suppose that the higher TFP is expected to persist for several periods in
the future, so that firms have an incentive to increase investment. Assumption 17.3.1 implies
that the most attractive source of funding for investment is debt since it is cheaper than
equity. However, because of the borrowing constraint, only part of the increase in invest-
ment can be funded with debt. The other part needs to be funded with equity. In practice,
equity financing involves paying lower dividends. Dividends could be negative, which in the
model is equivalent to new equity issuance (new shares sold to households). Since there is
no cost to adjusting dividends, the firm can always obtain the extra funds by issuing equity.
Therefore, the borrowing constraint imposes a limit only on one source of funds (debt) and it
does not restrict the other source of funding (equity). By having unlimited access to equity,
even if more costly, the firm is able to fund the desired level of investment. The firm retains
sufficient financial flexibility that its response to shocks is only marginally affected by the
frictions set by the borrowing limit. For the financial frictions to have a more substantial
role, we also need to limit the ability to use other sources of funding. In the model we need
to restrict access to equity financing.

One way to limit the use of equity financing is to impose that the firm cannot pay negative
dividends. The firm can re-invest the current profits by paying zero dividends but it cannot
issue new equity (sell new shares). This approach has been used in many models proposed
in the macro and corporate finance literatures. Here we take a more general approach and
make the following assumption.

482



Assumption 17.3.3 Firms have a target φ for the payment of dividends and incur the
following cost if they deviate from the target

κ(dt − φ)2.

The convexity assumption could be justified by several considerations. When dividends
become negative, it means that the firm raises external equity by issuing new shares. Hansen
and Torregrosa (1992) and Altinkilic and Hansen (2000) have shown that underwriting fees
display increasing marginal cost in the size of the offering. We can also think of the ad-
justment cost as capturing the preferences of managers for dividend smoothing as shown by
Lintner (1956) and confirmed by subsequent studies. This could be the reflection of agency
conflicts which induce managers to keep dividend payment stable, something that we do
not model explicitly. Instead, we recognize that in reality firms implement dividend policies
that are smoother than their corporate earnings and we capture that in reduced form by
assuming a quadratic cost when deviating from the dividend target φ.

17.3.1 Optimality conditions for firms

We now have all the elements to characterize the problems solved by firms and households.
The firm’s optimization problem can be written recursively as

Ω(S; k, b) = max
d,l,k′,b′

§
d+ Em′Ω(S ′; k′, b′)

ª
(17.3)

subject to:

F (z, k, l)− wl +
b′

R̃
= b+ p

[
k′ − (1− δ)k

]
+ ϕ(d),

ξpk′ ≥ b′

R̃
,

where we have used the function ϕ(d) = d + κ(d − φ)2 to denote the dividend payment to
households (shareholders) plus the cost of deviating from the targeted dividend. To pay d to
shareholders, the firm uses ϕ(d) units of resources. The function Ω(S; k, b) is the expected
discounted value of dividends. The firm’s value depends on the aggregate state, S, and
on the individual states given by the beginning-of-period stock of capital, k, and the debt
inherited from the previous period, b. The value of the firm is given by the current dividend,
d, plus the expected next period value of the firm, Em′Ω(S ′; k′, b′). The discount factor m′

is not affected by the firm’s policy. This is because the firm is atomistic and its impact on
aggregate variables is negligible. The aggregation of the policies chosen by all firms, however,
do affect m′.

The problem is subject to two constraints. The first is the budget constraint. On the
left-hand side we have the sources of funds: the firm’s operational profits, F (z, k, l)−wl, and
the funds raised with the new issuance of debt, b′/R̃. On the right-hand side we have the
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uses of funds: the repayment of the outstanding debt, b, capital investment, p[k′− (1− δ)k],
and the resources needed to pay dividends, ϕ(d).

The second constraint to the firm’s problem is the borrowing limit. This imposes an
upper bound to the capital that can be funded with debt: The left-hand side is the collateral
value of capital, while the right-hand side represents the funds raised with new debt.

To characterize the optimal policies of the firm, we derive the first order conditions with
respect to dividends, d; labor, l; new stock of capital, k′; and new debt, b′. The conditions
lead to7

Fl(z, k, l) = w, (17.4)

Em′
�
ϕd(d)

ϕd(d′)

� [
(1− δ)p′ + Fk(z

′, k′, l′)
]

= (1− µξ)p, (17.5)

Em′
�
ϕd(d)

ϕd(d′)

�
R̃ = 1− µ, (17.6)

where µ is the Lagrange multiplier associated with the borrowing constraint and the subscript
on a function denotes the derivative with respect to the particular variable.

The optimality condition for labor, equation (17.4), equalizes the marginal product of
labor to the wage rate. This is the same condition as in the standard neoclassical growth
model. Therefore, financial frictions do not distort directly the optimal hiring of labor. This
is not the case, however, for capital investment.

The optimality condition for investment, equation (17.5), equalizes the effective cost of
buying an extra unit of capital (the right-hand side term) to its expected discounted gross
return (the term on the left-hand side). If the borrowing constraint is binding, implying
that the multiplier µ is positive, the effective cost of an additional unit of capital is lower
than its price. The effective cost is lower because the extra unit of capital allows the firm
to borrow more since capital can be used as a collateral. Provided that the cost of debt is
lower than the cost of equity—Assumption 17.3.1—this is a benefit for the firm and reduces
the effective cost of capital. Notice that the benefit increases with the parameter ξ because
a higher ξ allows a unit of capital to be leveraged with more debt. In the literature, the
collateral benefit of capital is often referred to as ‘collateral premium.’ Agents are willing to
hold collateralizable capital even if its direct return is lower than other assets because of the
collateral benefit.

To gain some intuition about the conditions under which the borrowing constraint binds,
we use equation (17.6). This condition tells us that, keeping everything else constant, a
lower cost of debt, R̃, is associated with a higher value of the multiplier, µ. A lower cost
of debt makes borrowing more attractive and, therefore, the value of relaxing the borrowing
constraint is higher. So, in general, the borrowing constraint is more likely to bind when
the effective cost of borrowing, R̃, is lower than the inverse of the expected discount factor
m′. The reason we use the term ‘likely’ is because the effective discount factor for the
firm, m′ϕd(d)/ϕd(d

′), depends also on ϕd(d)/ϕd(d
′). This captures the dividend smoothing

7See Appendix 17.A for the derivation.

484



motive of the firm, similar to consumption smoothing for households which is captured by
the stochastic discount factor m′ = βuc(C

′, L′)/uc(C,L).

17.3.2 Optimality conditions for households

Households maximize their expected lifetime utility by choosing consumption, c; labor sup-
ply, `; purchase of bonds from firms, b′; and firms’ shares, a′. The households’ optimization
problem can be written recursively as

V (S; a, b) = max
c,`,a′,b′

§
u(c, `) + βEV (S ′; a′, b′)

ª
(17.7)

subject to:

(d+ q)a+ b+ w` = c+ qa′ +
b′

R
+ T.

We denote with q is the price of one share which pays the dividend d. R is the gross interest
rate and the household lends b′/R today and gets repaid b′ in the next period. Notice that
R > R̃ since R̃ = R/(1 + τ) and τ is positive. The variable T denotes lump-sum taxes paid
by the household to cover the interest subsidies to firms. More specifically, this variable is
equal to T = B′/R̃−B′/R, that is, the difference between what firms receive by borrowing,
B′/R̃ minus what households pay, B′/R. The difference must be covered by taxes. We have
used capital letters for the debt to distinguish the debt chosen by an individual households,
b′, from the average value chosen by all households, B′.

From problem (17.7) we derive the first order conditions. Denoting the Lagrange multi-
plier associated with the budget constraint by γ, the first order conditions lead to8

uc(c, `)w = −u`(c, `), (17.8)

1

R
= E

�
βuc(c

′, `′)

uc(c, `)

�
, (17.9)

q = E
��
βuc(c

′, `′)

uc(c, `)

�
(d′ + q′)

�
. (17.10)

The first equation is the standard optimality condition for the household’s supply of labor:
it equalizes the utility value of the wage rate earned with one unit of labor (the left-hand side)
to the corresponding dis-utility from working an extra unit of time (the right-hand side).
The second condition is the optimality condition for bond holdings, which in equilibrium
determines the price of the bond (i.e. the interest rate). Finally, the third condition is the
optimality condition for share purchases, which in equilibrium determines the price of an
equity share. From the last two conditions we can see that the household discounts next
period payments by βuc(c

′, `′)/uc(c, `) as we assumed above.

8See Appendix 17.A.2 for a derivation.
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17.4 Characterization in a two-period version of the

model

To gain intuition, it is helpful to consider a simplified version of the model with only two
periods where time runs from date 0 to date 1. We specify the utility and production
functions as

u(Ct, Lt) = ln(Ct − Lνt ),
F (zt, Kt, Lt) = ztK

α
t L

1−α
t .

An additional simplification is to abstract from uncertainty. Therefore, in period 0, agents
can predict what will happen in period 1. Because time ends after period 1, we impose the
terminal conditions K2 = 0 and B2 = 0. This says that all resources will be consumed and
the debt must be fully repaid in period 1. We then solve the model backward: we first solve
for the equilibrium allocation in period 1 and then we solve for the allocation in period 0.
For the rest of this section we indicate variables in period 0 without a subscript and variables
in period 1 with a prime superscript.

Terminal period, t = 1. Given the state variables in the terminal period—z′, K ′ and
B′—we find the supply of labor by solving the equilibrium condition (17.19). Using the
specified functional forms for utility and production, the condition becomes

(1− α)z′
�
K ′

L′

�α
= νL′

ν−1
.

Solving for labor we obtain

L′ =

�
1− α
ν

� 1
α+ν−1

z′
1

α+ν−1K ′
α

α+ν−1 .

Thus, labor increases in TFP, z′, and capital, K ′, as they both raise the productivity of
labor. Plugging L′ into the production function we obtain

Y ′ =

�
1− α
ν

� 1−α
α+ν−1

z′
ν

α+ν−1K ′
να

α+ν−1 ,

which also increases in z′ and K ′. In the terminal period all resources are consumed. There-
fore, consumption is equal to production, Y ′, plus non-depreciated capital, (1− δ)K ′,

C ′ = (1− δ)K ′ +
�

1− α
ν

� 1−α
α+ν−1

z′
ν

α+ν−1K ′
να

α+ν−1 .

Finally, the argument of the utility function can be expressed as a function of z′ and K ′,
that is,

C ′ − L′ν = g(z′, K ′).

486



The function g(z′, K ′) is increasing in z′ and K ′, at least in the relevant range, as we can
verify by replacing C ′ and L′ with the expressions derived above. This is intuitive because
a more productive economy, either because of a higher value of z′ or K ′, will produce more
and allows for higher consumption net of the dis-utility from working. Notice that we are
making a simplifying assumption: in the terminal period the firm does not incur any cost in
the payment of dividends if they deviate from φ.

Initial period, t = 0. The economy starts the initial period 0 with states z, K and B.
Firms choose the input of labor, L, the new stock of capital, K ′, and the new debt, B′.
Households choose the supply of labor and their holdings of bonds. These decisions are
determined by the same first order conditions derived from the infinite horizon model.

The input of labor and output are given by the same expressions derived for period 1,
that is,

L =

�
1− α
ν

� 1
α+ν−1

z
1

α+ν−1K
α

α+ν−1 ,

and

Y =

�
1− α
ν

� 1−α
α+ν−1

z
ν

α+ν−1K
να

α+ν−1 .

We focus on the equilibrium in which the borrowing constraint is binding. This would be
the case if the initial debt B is sufficiently large. Then, solving for the equilibrium in period
0 entails finding the values of K ′, B′, C, D, R and µ. Having six unknowns, we need six
conditions.

The first is the optimal condition for the accumulation of capital, equation (17.20). Using
the functional forms specified for the two-period model, the condition can be written as

(1− µξ)p = β

�
C − Lν
g(z′, K ′)

� [
1− δ + Fk(z

′, K ′, L′)
] [

1 + 2κ
(
D − φ

)]
, (17.11)

with the marginal product of capital given by

Fk(z
′, K ′, L′) = α

�
1− α
ν

� 1−α
α+ν−1

z′
ν

α+ν−1K ′
να

α+ν−1
−1
.

Since we assumed that the borrowing constraint is binding and µ > 0, we can use the
borrowing constraint as the second condition,

(1 + τ)B′

R
= ξpK ′. (17.12)

The budget constraint for the firm provides the third condition

αF (z,K, L) +
(1 + τ)B′

R
= B + p

[
K ′ − (1− δ)K

]
+D + κ

(
D − φ

)2

. (17.13)
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Next we can use the households’ budget constraint,

D +B + (1− α)F (z,K, L) = C +
B′

R
+ T, (17.14)

where taxes T are equal to τB′/R.
The fifth and sixth conditions are given by the first order conditions for the issuance of

new debt by firms and the purchase of the debt by households,

(1− µ)(1 + τ)

R
= β

�
C − Lν
g(z′, K ′)

� [
1 + 2κ

(
D − φ

)]
, (17.15)

1

R
= β

�
C − Lν
g(z′, K ′)

�
. (17.16)

Equations (17.11) through (17.16) allow us to solve for K ′, B′, C, D, R and µ under the
assumption that the borrowing constraint is binding. This is the equilibrium where financial
frictions are more relevant. However, if the borrowing constraint is not binding, to solve for
the equilibrium we simply replace the borrowing constraint with µ = 0. This would be the
case if B is very small or even negative.

In the next subsections we will use the six conditions (17.11)-(17.16) to characterize the
responses of the economy to shocks and to show how the responses are affected by financial
frictions.

17.4.1 Financial frictions and propagation of shocks

We start considering a persistent, positive productivity shock, that is an increase in z and
z′. The implications are summarized in the following property.

Property 17.4.1 The response of investment to the productivity shock is positive. Current
and future output will also increase. However, the responses of investment and output will
be smaller if the borrowing constraint is binding.

The fact that the macroeconomic responses could be smaller when the borrowing limit
is binding implies that financial frictions could dampen the macroeconomic response to
productivity shocks rather than amplifying it. This may be surprising but it will become
clear once we walk through the equilibrium conditions.

A higher productivity in the next period increases the incentive to invest so that firms
would like to increase K ′. This can be seen in equation (17.11): keeping everything else
constant, an increase in z′ raises the marginal productivity of capital Fk(z

′, K ′, L′). To re-
establish equality, K ′ must rise. Of course, other variables will also change, so that the overall
change is more complex. But what we describe here captures the main channel shaping the
response to a productivity shock.

The increase in capital needs to be financed in some way by firms. When the firm
chooses a higher value ofK ′, the right-hand side of the budget constraint—equation (17.13)—
increases. Thus, something on the left-hand side has to increase or something on the right-
hand side has to decrease.
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The increase in current productivity raises profits, the term αF (z,K, L). This provides
some extra funds that can be used to finance investment. Also, a higher value of K ′ allows
the firm to raise more debt as shown in equation (17.12). This increases (1 + τ)B′/R on the
left-hand side of the budget constraint. However, provided that ξ < 1, which is typically the
case, the increase in borrowing and the extra profits will not be sufficient to fund the desired
increase in capital. Therefore, in order for the firm to fund the higher investment, it has to
reduce dividends, D.

Now consider the implications from paying lower dividends. Looking at equation (17.11),
a lower value of D reduces the last term and discourages capital investment. The intuition
is that, reducing dividends has a cost for the firm. If paying lower dividends is necessary
to fund investment, the effective cost of investing will be higher and, as a result, the firm
invests less than in absence of this cost.

How should we interpret this in the real world? Due to financial frictions, large invest-
ments need to be funded at least in part with equity. But equity is more expensive than
other sources of funds, and it becomes more expensive the higher the amount of equity that
needs to be raised. This implies that the need to fund investment with equity increases the
cost of capital for the firm and discourages investment.

We have shown that, with financial frictions, the response of investment and output
could be smaller than in absence of frictions. If that is the case, then financial frictions
would dampen the macroeconomic response to shocks rather than amplifying it. The next
question is whether there are other mechanisms, besides what we have described here, that
could amplify the response of the economy.

17.4.2 The price of capital

An important branch of the macro-finance literature, including the seminal contributions
of Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), makes the price of capital
endogenous so that p also changes in response to the shock. This is important because the
ability to borrow depends on the market value of capital through the borrowing constraint,

(1 + τ)B′

R
≤ ξpK ′.

We could think that the price of capital p increases when the economy experiences a
boom, especially if persistent, because an economic expansion is typically associated with a
higher demand for capital. An increase in the price of capital raises the net worth of firms
because the capital they own is now more valuable. Furthermore, since part of the capital
is funded with debt, the value of net worth increases proportionally more than the increase
in the price of capital. Higher net worth, then, provides firms with more down payment to
fund the acquisition of capital for the next period. We summarize the impact of a change in
the price of capital in the following property.

Property 17.4.2 If the borrowing constraint is binding and the firm starts with positive
debt B > 0, a positive price change (higher p) has a positive impact on capital accumulation.
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This increases next period production directly, through a higher input of capital, and indirectly
through lower employment.

To illustrate this idea, consider the net worth of the firm at the beginning of the period.
This is the value of capital minus the debt, that is, pK − B. Provided that B > 0, a 1
percent increase in p generates an increase in net worth that is bigger than 1 percent.

Let’s consider now the firm’s budget constraint (17.13) and use equation (17.12) to elim-
inate the new value of debt. We can then re-arrange the budget constraint as

K ′ =

�
1

1− ξ

��
(1− δ)K +

αF (z,K, L)−B −D − κ
(
D − φ

)2

p

�
.

The term αF (z,K, L) − B − D − κ
(
D − φ

)2

represents the profits net of outstanding

liability and dividend payments. Typically, this term is negative because the debt (which is
a stock) is bigger than profits (which is a flow). Therefore, an increase in p raises the second
term in bracket and results in a higher value of K ′. The first term in parentheses on the
right-hand side acts as a multiplier, and depends positively on ξ, the fraction of capital that
can be used as collateral. Intuitively, a larger ξ allows firms to be more leveraged and, as a
result, a change in the price of capital has a larger impact on the firm’s net worth. Higher
net worth allows the firm to fund more capital.

In summary, an increase in the price of capital generates a proportionally higher increase
in the net worth of leveraged firms. The increase in net worth relaxes the borrowing con-
straint and allows for more investment. This is the central amplification mechanism that
operates in Bernanke and Gertler (1989) and Kiyotaki and Moore (1997), as well as in many
other models proposed in the macro-finance literature. The basic mechanism illustrated here
is also present in the financial accelerator model of Bernanke et al. (1999) and Brunnermeier
and Sannikov (2014).

17.4.3 Financial shocks

As described in the previous subsection, the amplification of real shocks could be induced
by the impact of the shock on the price of capital. This increases the net worth of borrowers
which in turn relaxes the borrowing constraint. In some cases, however, changes in the
tightness of the borrowing constraint could be driven by forces that originate directly in the
financial sector. This would be captured in our model by a change in the parameter of the
borrowing constraint ξ.

There are many mechanisms or channels that could be captured, in reduced form, by a
change in ξ. Financial innovations such as securitization could enhance the collateral use
of certain assets. This allows borrowers to fund a larger share of investment with debt. It
could be balance-sheet difficulties experienced by banks that force them to change the credit
standards for the approval of loan applications. Figure 17.2 has shown that bank credit
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standards are very cyclical in the data. Based on these considerations, some studies in the
macro-finance literature assumed that ξ follows a stochastic process and referred to changes
in ξ as ‘financial shocks’ (Jermann and Quadrini (2012)). The goal of this subsection is to
understand the macroeconomic implications of these shocks in the context of the simplified
two-period model. We summarize the implications as follows.

Property 17.4.3 If the borrowing constraint is binding, a negative financial shock (lower ξ)
has a negative impact on capital accumulation. This reduces next period production directly,
through a lower input of capital, and indirectly through lower employment.

If the borrowing constraint (17.12) is binding, and keeping other things unchanged, a drop
in ξ causes a drop in B′. Looking now at the budget constraint of the firm, equation (17.13),
we see that the drop in B′ reduces the left-hand side of the budget constraint and, therefore,
the right-hand side must also fall. This can be done either by paying fewer dividends D, or
by cutting investment, that is, choosing a lower value of K ′.

Consider first what happens if the firm reduces dividends. From the first order condition
that characterizes the optimal borrowing of firms, condition (17.15), we can see that the
multiplier µ is likely to increase. Intuitively, since the borrowing constraint is tighter when
ξ is lower, the value of relaxing the constraint increases. Remember that the Lagrange
multiplier µ represents the value of relaxing the borrowing constraint.

We now turn our attention to the equilibrium condition for investment. A lower payment
of dividends D reduces the right-hand side of equation (17.11). The intuition is that, when
the firm needs to fund investment by lowering dividends, which is costly, the marginal product
of capital must rise. This can be accomplished by reducing K ′. We also notice, however, that
the left-hand side of condition (17.11) also changes as µ increases (as we observed above)
and ξ decreases (which is the shock). Keeping ξ unchanged, the decline in the left-hand side
induced by the lower value of µ is smaller than the decline in the right-hand side induced
by a lower D. This is because µ is multiplied by ξ, which is typically smaller than 1. At the
same time, the value of ξ is now smaller which, for a given µ, increases the left-hand side of
condition (17.11). The intuition here is that capital is not only an input of production but
it is also a collateral. Using capital as a collateral is valuable because it allows the firm to
borrow at a smaller cost than the cost of equity. Therefore, when the borrowing constraint
becomes tighter (higher µ), the fraction of capital ξ that can be used as a collateral becomes
more valuable, reducing the effective cost of capital. This, however, is counterbalanced by
the fact that ξ is now lower.

To summarize, a reduction in the value of ξ has two effects. It reduces the right-hand
side of condition (17.11) and it has an ambiguous effect on the left-hand side of (17.11).
However, even if the left-hand side drops in value, the drop is smaller than in the right-hand
side. Then, in order to re-establish the equality between the left and right sides of equation
(17.11), the marginal product of capital Fk(z

′, K ′, L′) must rise, which requires a lower value
of K ′. This shows that a decline in ξ (negative financial shock) has a negative impact on
investment.

As far as current employment is concerned, we observe that ξ does not affect current em-
ployment (see above derivation of L). However, it impacts indirectly next period employment
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by affecting capital accumulation. From the expression that defines L′ derived above, we can
see that labor increases in K ′ and, therefore, lower investment affects adversely employment
in the next period.

The effects described here require that the borrowing constraint is binding or at least
occasionally binding. This brings us back to the relevance of Assumptions 17.3.1 and 17.3.2:
financial frictions create an investment wedge (that is, it distorts investment) and a negative
financial shock makes that wedge bigger.

17.4.4 Asymmetric responses

An interesting feature of the model with financial shocks is the potential asymmetry with
which the economy responds to positive and negative financial shocks. Suppose that we
start from an equilibrium in which the borrowing constraint (17.12) is not binding. This
could arise, for example, if the initial capital K is high or the initial debt B is low. Starting
from this equilibrium, the economy is hit by a positive credit shock, that is, an increase in
ξ. Since firms were not constrained before the shock, the fact that now they can take more
debt does not affect their borrowing: if they were not borrowing up to the limit before, that
is, they were optimally borrowing less than what was available to them, there is no reason
to change that level of borrowing now that the borrowing capacity has increased. This also
means that the shock has not consequences for the economy.

Property 17.4.4 If the borrowing constraint is not initially binding, then an increase in ξ
has not effect on investment, output and employment (current and future).

Now consider a negative financial shock, that is, a decline in the value of ξ. Provided
that the decline in ξ is sufficiently large, the firm will no longer be able to borrow the
same debt. In other words, condition (17.12) will no longer be satisfied if the firm chooses
the same policies in absence of the change in ξ. The change in policies then will have the
effects described in the previous subsection, leading to a contraction in investment and a
macroeconomic contraction in the next period. This is more likely to arise if the initial
capital K is low and the initial debt B is high.

Property 17.4.5 If the borrowing constraint is not initially binding, then a sufficiently large
decrease in ξ reduces investment, future output and future employment.

The asymmetric features of financial shocks is one of the reasons they have been used
to understand the dynamics of financial booms and busts: while financial booms tend to
be gradual and long lasting, financial busts tend to be more sudden with sizable macroeco-
nomic implications. The asymmetry depends on the financial structure of the firm when the
shock hits. As argued above, the asymmetry is a direct consequences of binding borrowing
constraints which in turn depend on the initial capital K and debt B. But what determines
the initial capital and debt? What values are more relevant?

Unfortunately the two-period model is silent about the initial states K and B since they
are exogenous. It is in this respect that the infinite horizon model provides additional insights
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since K and B are endogenous. In particular, through simulation, we can derive the invariant
distributions of the states, including K and B. This informs us about the likelihood that
certain states emerge in equilibrium and allows us to determine whether binding constraints
are common or uncommon. It also informs us about the history that could lead the economy
to states where binding constraints become likely. We will show this numerically in the last
section of this chapter.

17.4.5 Financial frictions and the labor wedge

So far we have illustrated a particular mechanism through which financial frictions could
impact the macro-economy. That mechanism operates through the optimality condition for
investment. Financial frictions do not distort directly the optimality condition for labor. In
fact, condition (17.4) is exactly the same as in the standard neoclassical model. It affects
labor only indirectly through capital accumulation. An implication is that, while the am-
plification mechanism created by financial frictions could be important for the dynamics of
investment, it could be somewhat negligible for the dynamics of labor. Considering that
labor contributes significantly to the business cycle dynamics, this would make financial
frictions less interesting for understanding the business cycle.

This point can be made more precise starting from the standard Cobb-Douglas production
function that, in logarithmic form, can be written as

lnYt = ln zt + α lnKt + (1− α) lnLt.

After calibrating the capital income share α, we can use data on GDP, capital and labor
to measure Yt, Kt, and Lt. We can then construct a measure of productivity using the
above equation, that is, ln zt = lnYt − α lnKt − (1 − α) lnLt. This is the Solow residual
approach used to construct measures of total factor productivity (TFP). We can calculate
the contribution of TFP, capital and labor to GDP fluctuations. Setting α = 0.36, and using
annual data from 1950 to 2019 for the US economy, we find that cyclical movements in labor
contribute about 60 percent to the standard deviation of GDP. The contribution of capital,
instead, is less than 10 percent. The remaining contribution can be attributed to cyclical
fluctuations in TFP.

There are two reasons why movements in the stock of capital have a small contribution
to output fluctuations. First, even if capital expenditures are very volatile, they are only a
small fraction of the stock of capital. This implies that the stock of capital does not move
much over the business cycle even if investment does. Second, movements in the stock of
capital are multiplied by the share α, which is smaller than 0.5. Movements in labor, instead,
are multiplied by 1−α which is bigger than 0.5. Therefore, if financial frictions play a more
relevant role for aggregate output fluctuations, they must have a more direct impact on
labor. One way to do that is with working capital.

Suppose that the payment of wages needs to be made before firms receive the revenues
from their sales. This is a feature of the production cycle where costs and revenues are not
perfectly synchronized. Because of this, firms need to carry liquid funds from the previous
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period or borrow additional funds to pay for the wages. Carrying liquid funds from the
previous period or borrowing in the current period have similar implications. However, the
latter is more convenient in terms of notation. We thus assume that firms borrow at the
beginning of the period to make advanced payments of wages. This type of borrowing is in
addition to the intertemporal debt already introduced in the model. Since the debt raised
to pay wages is repaid within the period, there are no interest payments.

With the working capital extension we have two types of borrowing: the intra-period
debt, which is equal to the wage bill, wl, and the inter-temporal debt b′/R. The total debt,
sum of the two types of borrowing, is subject to the same limit as before, that is,

wl +
b′

R
≤ ξpk′. (17.17)

The problem solved by the firm is still given by (17.3) but with the borrowing constraint
taking the form specified in (17.17). The optimality conditions for capital and intertemporal
borrowing are (17.5) and (17.6), which are the same as before. The first order condition for
labor, however, changes to

Fl(z, k, l) = (1 + µ)w. (17.18)

This shows that the marginal product of labor is equalized to the wage rate only if the
multiplier µ is zero, that is, if the borrowing constraint is not binding. However, if the
borrowing constraint is binding, the input of labor will be distorted, and the distortion
increases in the tightness of the borrowing constraint, captured by the multiplier µ.

This introduces an interesting mechanism through which financial frictions could have
important implications for aggregate economic activity: tighter financial conditions will be
reflected in higher values of the multiplier µ which, for a given wage rate, reduce the demand
for labor.

Productivity and financial shocks affect the macro-economy in a similar way as described
earlier, but now they impact the demand for labor directly. We show this again with the
two period model where, for simplicity, we assume that wages are paid in advance only in
period 0. Thus, the working capital constraint does not apply in the terminal period 1. This
also implies that the equilibrium in period 1, given the states z′, K ′ and B′, is equivalent to
the one characterized earlier. We state the main property as follows.

Property 17.4.6 Given productivity z and capital K, employment declines with the tight-
ness of the borrowing constraint, captured by the multiplier µ.

In period 0, equilibrium labor is found by solving condition (17.19), adjusted for the
presence of working capital. Using the specific functional forms for utility and production,
the condition is

(1− α)zKαL−α = (1 + µ)νLν−1.

Solving for labor we obtain

L =

�
1− α

(1 + µ)ν

� 1
α+ν−1

z
1

α+ν−1K
α

α+ν−1 .
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Labor continues to increase in productivity, z, and capital, K. In addition, it now depends
negatively on the multiplier µ. This is because, as the borrowing constraint becomes tighter
and the value of µ increases, firms demand less labor and, in equilibrium, employment is
lower.

We could repeat the same analysis conducted earlier with the two-period model and
obtain similar results. The most important addition is that a decline in the price of capital p
and/or a decline in ξ generates a macroeconomic contraction also in period 0 since it affects
directly the demand for labor. This is in addition the to impact on investment and on next
period production as described earlier.

We conclude this subsection by pointing out that the need for working capital does not
derive only from the advanced payment of wages. It could also derive from the advance
payment of intermediate inputs. The production function typically used in the standard
neoclassical growth model abstracts from the need of intermediate inputs. Instead, it fo-
cuses on the reduced form where final goods are produced only with the inputs of capital
and labor. In reality, though, any type of production requires intermediate goods that are
produced by other firms and may need financing. With a more complex production process,
tighter financial conditions may cause a macroeconomic contraction by distorting the input
of intermediate goods.

17.5 General model and the neoclassical growth model

The equilibrium in the infinite horizon model can be characterized by combining the first
order conditions of households and firms together with market clearing. Replacing the wage
rate in equation (17.8) using equation (17.4) we obtain

Fl(z,K, L) = −u`(C,L)

uc(C,L)
. (17.19)

The marginal product of labor is always equalized to the marginal rate of substitution be-
tween consumption and leisure, which is the same condition for the standard neoclassical
growth model.

Equation (17.5) is the optimality condition for the accumulation of capital. We can
rewrite it as

(1− µξ)p = E
�
β
uc(C

′, L′)

uc(C,L)

��
ϕd(D)

ϕd(D′)

� [
(1− δ)p′ + Fk(z

′, K ′, L′)
]
. (17.20)

Compared to the standard neoclassical growth model, we observe two important differ-
ences. First, the effective cost of capital (the left-hand side) is not the price p but (1− µξ)p
reflecting the collateral value of capital discussed above.

The second difference with the standard neoclassical growth model is that the return from
capital received in the next period (marginal product plus resale value) is discounted at a
different rate. The effective discount factor used by firms includes the term ϕd(D)/ϕd(D

′),
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which is absent in the standard model. Obviously, this term will disappear if we relax As-
sumption 17.3.3 and there is no cost in the payment of dividends. If we also relax Assumption
17.3.2, then µ = 0 and the equilibrium condition for capital would be exactly identical to
the standard neoclassical growth model.9

We now turn to the equilibrium in the bond market (the debt issued by firms and pur-
chased by households). Using R̃ = R/(1 + τ), equation (17.6) can be rewritten as

(1− µ)(1 + τ)

R
= E

�
β
uc(C

′, L′)

uc(C,L)

��
ϕd(D)

ϕd(D′)

�
, (17.21)

while the first order condition for the households’ choice of bonds, equation (17.6), is

1

R
= E

�
β
uc(C

′, L′)

uc(C,L)

�
. (17.22)

If we relax Assumption 17.3.3 by imposing κ = 0 (no cost in deviating from the dividend
target), conditions (17.21) and (17.22) imply (1 − µ)(1 + τ) = 1. Therefore, a sufficient
condition to have a binding borrowing constraint (so that µ > 0) is that τ > 0. This is
Assumption 17.3.1. However, if κ > 0, which implies ϕ(D) 6= D, the borrowing constraint
may not be always binding. For example, if in expectation ϕd(D)/ϕd(D

′) is sufficiently
bigger than 1, then condition (17.21) cannot be satisfied with µ > 0. This could arise if the
firm would like to pay more dividends now relatively to those paid in the next period.

Another contingency in which this may arise is when, in expectation, the term uc(C
′, L′)/uc(C,L)

is higher. For example, when future households’ consumption is lower than current consump-
tion. The property that the borrowing constraint could be occasionally binding has been
explored in the financial crises literature: a crisis could be a contingency in which the bor-
rowing constraint becomes binding. We will come back to this point in the next section
when we conduct a numerical analysis.

To summarize, we have shown that Assumptions 17.3.1, 17.3.2, 17.3.3 introduce some
wedges in the equilibrium condition for the accumulation of capital that distort allocations.
In absence of these three assumptions we would revert to the standard neoclassical model
as stated formally in the following proposition.

Proposition 17.1 If τ = 0 and κ = 0, the equilibrium debt chosen by firms is indeterminate
and the real allocation is the same as in the standard neoclassical growth model.

Proof. The proof is obtained by comparing the equilibrium first order conditions after
setting τ = 0 and κ = 0. We have already shown that with τ = 0 and κ = 0, the multiplier
associated with the borrowing constraint is µ = 0. Conditions (17.20) and (17.21) then

9For consistency, however, we cannot relax Assumption 17.3.2 while keeping Assumption 17.3.1. Other-
wise the firm would borrow an infinite amount of debt. Thus, the relaxation of Assumption 17.3.2 is done
jointly with the relaxation of Assumption 17.3.1.
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become

p = βE
�
uc(C

′, L′)

uc(C,L)

� [
(1− δ)p′ + Fk(z

′, K ′, L′)
]
,

1

R
= βE

�
uc(C

′, L′)

uc(C,L)

�
.

These two conditions, together with condition (17.19), characterize the equilibrium. Since
they are exactly the same conditions as in the neoclassical model, the equilibrium allocation
is the same.

If τ = 0, the cost of debt for the firm, R̃, is equal to the interest rate, R. If κ = 0,
there is no cost in deviating from the targeted dividend φ. This is equivalent to eliminating
Assumptions 17.3.1 and 17.3.3. In equilibrium, then, firms are indifferent between funding
investment with debt or equity. This is true even if there is a borrowing limit as assumed in
Proposition 17.3.2. This is another example of the Modigliani-Miller principle we discussed
in Section 17.2.1.

More intuition for Modigliani-Miller principle

Consider a change in financial structure where the firm raises ∆ units of funds with debt
and uses the funds to pay dividends. By doing so the firm increases its liabilities and
reduces its equity. In the next period, then, the firm reduces the payment of dividends
to repay the debt inclusive of interests, ∆R. By doing so the firm increases dividend
now by ∆ and reduces the next period dividends by ∆R. In present value, the next
period dividends are worth Em′∆R. Therefore, the gain from changing the financial
structure is ∆(1 − Em′R). When τ = κ = 0, the first order condition (17.6) simplifies
to Em′R = 1. This implies that the gain from changing the sources of funding is zero.

The proposition also says that the equilibrium allocation remains the same as in the stan-
dard neoclassical model even if investment decisions are made by firms instead of households.
Intuitively, this is because firms use the same discount factor as households and, therefore,
they make the same decisions as those made by households.

17.6 Numerical analysis

We now use the infinite-horizon model with working capital to show some of the properties
numerically. While a two-period model is useful to gain intuition, it necessarily takes the
initial states as given. As we observed in the analysis of the two-period model, whether
the equilibrium features binding or non-binding borrowing constraints depends on the initial
states. So, the two-period model does not offer much guidance about whether the borrowing
constraint binds or the severity of financial frictions more generally.
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17.6.1 Calibration

Let’s first specify the households’ utility, which we assume to take the form

u(c, `) = cν(1− `)1−ν .

We calibrate the model at a quarterly frequency and we impose that the price of capital
is constant and equal to 1 (p = 1). As observed above, many components of the model
are similar to the RBC model. Therefore, for the parameters that are common to the two
models, we use the values typically used in the RBC literature. These parameters include the
discount factor β = 0.983, the weight of consumption in the utility function ν = 0.412, the
share of capital in the production function α = 0.36, and the process for productivity z. It is
customary to assume that TFP follows a first order Markov process. We do the same here but
we assume that the shock takes only three values (a finite-state Markov chain). We calibrate
these values together with the transition probability matrix to match the correlation and
standard deviation of the empirical series of Solow residuals, as done in the RBC literature.
The mean value of z is not important as it acts as a normalization factor.

At this point, we have chosen the values of the standard parameters and we are left
with the non-standard parameters. They include the parameters that determines the firm’s
benefit of debt over equity, τ ; the cost of dividend deviations, κ; and those determining the
stochastic process for the variable ξ (financial shock). These are parameters that are absent
in the RBC model and, therefore, their calibration requires a more detailed description.

We start with τ , the tax benefit of debt for the firm. Since corporations can deduct
interest payments when determining corporate tax liabilities, the effective cost of debt is
reduced by the corporate tax rate. Assuming a marginal corporate tax rate of 28.1%, we set
τ = 0.281.

Let’s try now to understand which variables are more likely to be affected by the remain-
ing parameters, starting with the stochastic process for ξ. As for productivity, we assume
that ξ follows a three-state Markov process. The mean value of ξ has a direct effect on the
average debt chosen by the firm. Therefore, one empirical moment we can use as a calibration
target is the average leverage observed in the data (the ratio of debt B over physical capital
K). A second moment we can use is the persistence of debt in the data (autocorrelation)
since in the model the persistence of debt will be related to the persistence in ξ. Finally, we
can use the volatility of debt in the data (standard deviation) as the third targeted moment:
a more volatile ξ will generate a more persistent debt in the model. Thus, the empirical
measures of mean, autocorrelation and standard deviation of debt will be the three moments
we can use to calibrate the parameters that determine the stochastic process for ξ.

The last parameter we need to calibrate is κ. Higher is the value of κ and lower is the
volatility of dividends. Based on this, we can use the empirical volatility of dividends as a
calibration target. Since dividends in the model capture not only dividends but more gener-
ally payout to shareholders, we can use the volatility of equity payout defined as dividends
plus share repurchases minus new equity issuance. The full set of parameters with their
calibrated values are reported in Table 17.1.
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Table 17.1: Parameter values.

Parameters Description Values

β Discount factor 0.983

ν Utility parameter 0.412

α Capital share in production 0.360

τ Benefit of debt 0.281

κ Dividends’ cost 0.500

p Price of capital 1.000

z Productivity and transition probabilities

�
0.183

0.185

0.187

�
,


0.900 0.075 0.025

0.050 0.900 0.050

0.025 0.075 0.900



ξ Debt limit and transition probabilities

�
0.450

0.500

0.550

�
,


0.900 0.075 0.025

0.050 0.900 0.050

0.025 0.075 0.900



17.6.2 Numerical solution of the model

The model is solved numerically using a global method. We first discretize the state space
for K and B/K on a two-dimensional grid and iterate on the optimality conditions using
the projection method. The discretization of B/K rather than B is convenient because,
given the borrowing limit B/R̃ ≤ ξK, the admissible values of B change with K while
the admissible values of B/K are independent of K. The detailed computational steps are
described in the online appendix. The online appendix also provides the codes to replicate
the results shown here.

17.6.3 Simulation exercise

Now that we have assigned all parameter values, we are ready to perform the numerical anal-
ysis. The analysis is based on the following thought experiment. Suppose that the economy
experiences a long sequence of productivity and financial shocks z = 0.185 and ξ = 0.500.
These are the middle values of the three possible realizations and correspond to the mean
of the two shocks. Even if the long sequence of shocks have the same values, agents do not
anticipate them. Thus, in every period, they predict the next period realizations using the
conditional probabilities. After the long sequence of shock realizations, the economy con-
verges to an equilibrium that remains constant until different realizations of the two shocks
are drawn. Starting from this equilibrium, we assume that the realization of productivity
switches from z = 0.185 to z = 0.187—the highest possible realization of productivity—and
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stays there for several periods. The draw of the financial shock, instead, remains at ξ = 0.500
over the whole simulation. The engineered switch in z is meant to capture a productivity
boom and the goal of the exercise is to explore how the various endogenous variables respond
to the productivity boom.

To compare the productivity boom to a productivity decline, we repeat the simulation
just described but with the productivity that z switches to z = 0.183—the lowest value—
and stays there for some periods. Also in this case the draw of the financial shock remains
ξ = 0.500 over the whole simulation. The simulation captures a productivity downturn. The
dynamics of debt and output around the two productivity switches are plotted in Figure
17.3.

Figure 17.3: Response of debt, output, and borrowing constraint multiplier to a persistent
productivity shock.

The switch in productivity arises at quarter zero. We can see that the productivity
expansion and contraction lead to the opposite but symmetric dynamics of debt and output.
Panel (c) at the bottom of the graph plots the Lagrange multiplier µ, which takes a positive
value when the borrowing limit is binding. As can be seen, µ is always positive meaning
that the borrowing constraint is always binding over the whole simulation.

Are the responses of financial variables consistent with the empirical facts outlined by
Figures 17.1 and 17.2? The responses of debt and output are both positive, implying positive
co-movement as in the data. However, we observe that the response of debt is relatively small
compared to the response of output while the data show the opposite pattern. What about
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interest rate spreads? In the model we do not have interest rate spreads because there is
not default. However, to the extent that the interest rate spreads capture the tightness of
financial constraints, we can compare the dynamics of the multiplier µ to the spreads in the
data. As shown in Figure 17.2, spreads are highly counter-cyclical, which is also the case
for the responses of µ to productivity shocks. A similar observation can be made regarding
loan standards which can be interpreted as indicators of financial tightness. In the model,
financial tightness is captured by the multiplier µ. Both loan standards in the data and µ in
the model are counter-cyclical. Our simulation assumes that the price of capital p is fixed.
However, if the price of capital increases in a productivity boom, it could relax the borrowing
constraint and lead to a much lower value of µ. Conceptually this is possible but for this to
be important quantitatively, the movements in p must be sizable. It turns out that this is
challenging to achieve in models that maintain the basic structure of the RBC framework.

We now turn our attention to financial shocks. We conduct a similar quantitative exercise
but with changes in the financial variable ξ. We assume that the economy experiences a draw
of a long sequence of productivity and financial shocks z = 0.185 and ξ = 0.500. At some
point, however, the realization of the financial variable increases from ξ = 0.500 to ξ = 0.550,
and stays at the higher level for some periods. The draw of productivity, instead, remains at
its mean value ξ = 0.185. This corresponds to a credit boom. We then repeat the simulation
but this time assuming that the financial variable switches to the lower value ξ = 0.450, while
productivity remains constant throughout the simulation. The dynamics of debt, output and
multiplier are shown in Figure 17.4.

Even though the switch in the financial shock is symmetric (the increase in ξ in the
credit expansion is equal to the decrease in ξ in the credit contraction), the responses of
debt and output are asymmetric. A positive financial shock leads to a gradual increase in
debt and to a relatively persistent but mild increase in output. On the contrary, a negative
financial shock leads to a sharp decline in debt and to a very large contraction in output. The
contraction, however, is not very persistent. Panel (c) at the bottom of the figure shows that
the borrowing constraint becomes non-binding after the credit expansion, as the multiplier
becomes zero.

What is the intuition for the dynamics shown in Figure 17.4? Once ξ reaches the highest
value ξ = 0.550, there is always the possibility of reversal which would force firms to re-adjust
their debt if they borrow up to the limit. But this will be very costly because it requires
the firm to either reduce dividends (which is costly because of ϕ(·)) or to reduce labor and
investment. This creates a precautionary motive that induces firms to borrow less than the
limit, even if debt is cheaper than equity.

When the financial shock is negative, the firm is forced to cut borrowing. In order to
do so, the firm needs to cut labor and investment (so that less financing is needed) or pay
lower dividends (so that the reduction in debt can be compensated by an increase in equity).
Both choices are inefficient and the firm chooses the optimal combination that minimizes the
inefficiencies.

The qualitative properties of the dynamics induced by financial shocks shown in Figure
17.4 is consistent with the stylized facts outlined in the empirical literature. Reinhart and
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Figure 17.4: Response of debt, output, and borrowing constraint multiplier to a persistent
financial shock.

Rogoff (2009) and Schularick and Taylor (2012), for example, have shown that many episodes
of credit booms are not associated with much faster growth in real economic activity. How-
ever, when the credit boom experiences a sudden stop, the reversal is often characterized by
sharp macroeconomic contractions.

The dynamics displayed by the model are also consistent with the empirical dynamics
shown in Figures 17.1 and 17.2. In addition to having pro-cyclical debt, we also have that
financial tightness (interest rates spreads and loan standards in the data, and multiplier µ
in the model) is counter-cyclical.
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Chapter 18

Frictional labor markets
Toshihiko Mukoyama and Ayşegül Şahin1

1We would like to thank Jifan Wang and Jinxin Wu for their excellent research assistance.
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18.1 Introduction

Early real business cycle models have assumed a frictionless labor market. In a frictionless
labor market, all firms can find workers, and all workers can find jobs with the equilibrium
wage that equates labor demand and labor supply. The change in aggregate employment
reflects shifts in either the labor demand curve or the labor supply curve.

These models ignore unemployment, that is, the phenomenon that some workers who
want to work and look for jobs cannot find jobs. The unemployment rate, defined as the
fraction of unemployed workers in the labor force, is an important indicator of the business
cycle. The unemployment rate tends to increase when the macroeconomy is in a recession.
The elevated unemployment rate is often regarded as one of the most important social
costs of recessions. Various government policies, such as unemployment insurance and job
training, have been implemented to reduce unemployment and address issues arising from
unemployment. To analyze these policies, we need to develop a formal theoretical framework
where unemployment arises endogenously.

This chapter introduces labor market frictions in macroeconomic models to analyze un-
employment. There are many theories of unemployment in macroeconomics. One simple
theory is that there are frictions in wage adjustment. If the wages are too high compared to
the level that clears the market, the quantity supplied can exceed the quantity demanded in
the labor market. The excess supply of labor can be interpreted as unemployment. Wages
can be too high, for example, because of institutional reasons such as minimum wages or
unions, or there can be economic reasons. The theory of efficiency wages, for example, pos-
tulates that employers want to keep the wage high so that they can induce the workers to
exert a high level of effort at work.

In this section, we focus on unemployment arising from search frictions. In the models
with search frictions, it takes time, effort, and resources for workers and firms to match with
each other. The model describes the element of reality that it takes time for a worker to
find a job that is sufficiently good for them, and it takes time for a firm to find a worker
they think can perform the task that the job requires. In principle, these frictions can
exist in many markets (e.g., it may take time to find the kind of chocolate one wants to
buy). Even so, we can easily imagine that this type of friction is particularly severe in the
labor market because workers and jobs are heterogeneous in many dimensions. Some search
models explicitly deal with the matching of heterogeneous workers and jobs. Some models
treat the matching process as a “black box” and use reduced-form functions to formulate it.
An example of such a model is the Diamond-Mortensen-Pissarides (DMP) model, described
in Section 18.4 below. As we will see, the DMP model has the advantage of being able to
fit some of the salient features of the labor market.

18.2 Some labor market facts

Figure 18.1 plots the unemployment rate in the postwar U.S. economy, computed from
the Current Population Survey (CPS). In the statistics provided below, the entire U.S.
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civilian noninstitutional population (16 years old and above) is divided into employment
(E), unemployment (U), and not in the labor force (N). The unemployment rate is defined
as U/(E + U). In the figure, shaded periods indicate recessions defined by the National
Bureau of Economic Research.2 Unemployment rate describes the ratio of workers who
cannot find a job (although they are searching for a job or on temporary layoff) to the
entire labor force. The figure clearly indicates that the unemployment rate increases during
recessions. There is no apparent long-run trend in the unemployment rate. Whereas the
unemployment rate trended up in the 1970s, it has trended down since then, except for the
stark increases in the Great Recession and the COVID-19 pandemic.
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Figure 18.1: Unemployment rate in the United States.

Source: CPS.

Figure 18.2 plots the unemployment rate and the vacancy rate (V represents vacancy) in
the United States from December 2000 to May 2022. The unemployment rate is identical to
Figure 18.1, and the vacancy rate is computed from the Job Openings and Labor Turnover
Survey (JOLTS) and the CPS.3 Here, we simply point out that vacancy and unemployment
coexist in the labor market, indicating that there are trivial amounts of friction in the labor
market. We will come back to this figure later on.

2See https://www.nber.org/research/business-cycle-dating.
3JOLTS defines the job opening rate as V/(E + V ). We transform it to V/(E + U), which is a more

relevant object for the theoretical framework below, using the information on the unemployment rate in the
CPS.
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Figure 18.2: Unemployment rate and vacancy rate in the United States.

Source: JOLTS and CPS.

18.3 A simple model of unemployment

As a starting point, consider a simple model of unemployment. The model can be simply
described by Figure 18.3. Workers are either employed (E) or unemployed (U). We normalize
the total labor force to 1, and therefore

et + ut = 1,

where et is employment at period t and ut is unemployment at period t. We ignore the
movements in and out of the labor force. Because the labor force is 1, ut is the labor force
at period t. We assume unemployed workers transit into employment with probability λ and
employed workers move into unemployment with probability σ. The probability λ is often
called the job finding probability and the probability σ is called the separation probability.

Let the unemployment rate at period t be ut. Then

ut+1 = (1− λ)ut + σ(1− ut) (18.1)

holds, where the first term on the right-hand side is the unemployed workers at period
t who remain unemployed, and the second term is employed workers who lose their jobs
between period t and t+ 1. In the steady state where the unemployment rate is constant at
ut+1 = ut = ū,

ū = (1− λ)ū+ σ(1− ū)
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Figure 18.3: The simple model of unemployment.

holds, and therefore

ū =
σ

λ+ σ
. (18.2)

The steady-state unemployment rate is decreasing in the job-finding probability λ and in-
creasing in the separation probability σ. Note the steady state, characterized by the expres-
sion (18.2), is unique. Moreover, using (18.1) for period t and t− 1, we obtain

ut+1 − ut = (1− λ− σ)(ut − ut−1),

and because |1−λ−σ| ∈ (0, 1), the sequence of the unemployment rate is a Cauchy sequence,
and thus it converges to the steady-state value. Similarly

ut+1 − ū = (1− λ− σ)(ut − ū)

holds, and we can see that |1− λ− σ| determines the speed of convergence. If, for example,
monthly λ = 0.45 and σ = 0.034 (the numbers we use later in the quantitative analysis),
1−λ−σ is almost half, and ut converges to the steady-state value very quickly. In this case,
ū can be computed as about 7.0%, and if the economy starts from an unemployment rate of
15%, after six months, the unemployment rate goes down to 7.2%.

The job-finding rate λ is also closely linked to the average (or expected) duration of
unemployment. As the probability that the unemployment duration is one period is λ, the
probability that it is two periods is (1 − λ)λ, the probability that it is three periods is
(1− λ)2λ, and so on, the average duration of unemployment D can be computed as:

D = λ · 1 + (1− λ)λ · 2 + (1− λ)2λ · 3 + · · ·
= λ{[1 + (1− λ) + (1− λ)2 + · · · ] + [(1− λ) + (1− λ)2 + · · · ] + [(1− λ)2 + · · · ] + · · · }

= λ

�
1

λ
+ (1− λ)

1

λ
+ (1− λ)2 1

λ
+ · · ·

�
=

1

λ
.

Thus the average duration of unemployment is inversely related to λ. Note that D can also
be derived from a recursive formulation. Let the expected duration of unemployment from
the viewpoint of time t as Dt. Then

Dt = λ · 1 + (1− λ)(1 +Dt+1),
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because if the worker finds a job next period (with probability λ), the duration is 1, and if
she doesn’t, it is one period plus the expected duration from the next period. Here, there
is no difference in the expected duration forward at period t and period t + 1, and thus
Dt = Dt+1 = D, and we can solve D = 1/λ.

18.4 The Diamond-Mortensen-Pissarides (DMP) model

This section is introduces a model called the search and matching model or the Diamond-
Mortensen-Pissarides (DMP) model. The model in this section is a discrete-time version of
Pissarides (1985).4 It is called the “search and matching model” because workers and firms
have to engage in search activity (in this model, only firms engage in an active search effort,
but both the workers and the firms have to wait until they find the counterpart), and the
probability of a successful search is governed by a function called the matching function.

The DMP model features an active search by firms in the form of vacancy postings.
Vacancy posting is a form of investment: pay the cost now and receive payoffs later. Firms
and workers share the surplus (the difference between market production and home pro-
duction), and the firm can receive a positive profit. In that sense, we also depart from the
competitive labor market. Because the firms are the only party that engage in active search
activities, this model is focusing on the demand side of the labor market. As we will see,
this assumption is consistent with the behavior of vacancies in the labor market.

18.4.1 Matching function and the labor market dynamics

We assume that workers are either employed or unemployed. The total population is nor-
malized to 1. The basic structure of the model is similar to Section 18.3, and we can view
the model of this section as endogenizing λ of the simple model there.

Firms that look for workers post vacancies to search. The number of vacancies is
endogenous—the vacancy posting behavior of firms responds to the costs and benefits of
hiring workers. Vacancy posting is a (risky) investment for firms: it is costly to post a
vacancy, but if firms successfully hire workers, they can enjoy the profit arising from produc-
tion in the future. Unemployed workers search for firms to work for. The matching process
between firms (vacancies) and unemployed workers is summarized by the matching function:

Mt+1 = M(ut, vt),

whereMt+1 is the number of matches created at the beginning of period t+1. The function
M(·, ·) is increasing in both terms and exhibits constant returns to scale. It also satisfies
M(ut, vt) ≤ ut and M(ut, vt) ≤ vt. This function is a “black box” that summarizes the
complex process of firms’ recruiting activities. In particular, workers and firms are heteroge-
neous, and it is not an easy task for a firm to find a suitable person for its position. Different
firms do not coordinate their recruiting efforts, and they may go after the same person even

4The textbook Pissarides (2000) explores various versions of the DMP model in continuous time.
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when there are other people available. The interpretation of the matching function can
vary across different models, but in the basic DMP model, the “black box” is interpreted as
incorporating all difficulties firms face when recruiting workers.

We assume that the search is random, that is, all vacancies have the same chance of
finding workers, and all workers have the same chance of meeting the vacancies. Thus the
probability of a worker meeting a firm is

M(ut, vt)

ut
= M

�
1,
vt
ut

�
= M(1, θt),

where θt is defined as θt ≡ vt/ut and often referred to as the labor market tightness. Let us
denote

λw(θt) ≡M(1, θt). (18.3)

This λw(θt) corresponds to λ in Section 18.3. Note that λw(·) is increasing in θt from our
assumptions about the matching function. The probability of a vacancy meeting a worker is

M(ut, vt)

vt
= M

�
ut
vt
, 1

�
= M

�
1

θt
, 1

�
.

Let us define

λf (θt) ≡M

�
1

θt
, 1

�
.

Note that
λw(θt) = θtλf (θt)

holds.
It turns out that, when z > b, all firms and workers accept all matches once they meet.

Thus λw(θt) represents the job-finding probability of an unemployed worker. It also rep-
resents the probability that a worker transitions from unemployment to employment, and
unlike in Section 18.3, it depends on the labor market tightness. In this section (similarly
to Section 18.3), we assume that matches resolve with probability σ ∈ (0, 1).

From the above assumption, the dynamics of unemployment is governed by

ut+1 = (1− λw(θt))ut + σ(1− ut). (18.4)

The first term on the right-hand side is the unemployed workers at period t who stay un-
employed at period t+ 1. The second term is the employed workers (note that et = 1− ut)
who separate from the job between t and t+ 1.

When the vacancy is constant at v, it is straightforward to show that there exists a unique
steady state value of ut (call it ū). To see this, set ut+1 = ut = ū in (18.4) and obtain

ū =
σ

λw(v/ū) + σ
. (18.5)

This equation can be rewritten as, using (18.3),

M(v, ū) + σū = σ. (18.6)
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Because the right-hand side is constant and the left-hand side is increasing in ū, the solution
to ū in (18.5) is unique. Further note that (18.6) describes a negative relationship between
v and ū when σ is kept constant.

Now let us go back to Figure 18.2. Figure 18.4 connects the data points of Figure 18.2. It
is clear that there is a negative relationship between the unemployment rate and the vacancy
rate. This regularity is often called the Beveridge curve. The Beveridge curve relationship
is consistent with the equation (18.6), and therefore provides support for this component of
the DMP model. For this reason, equation (18.6) is often referred to as the Beveridge curve
relationship. Moreover, the strong procyclical movement of vacancy indicates that the firm’s
recruiting activities (i.e., the labor demand movements) play an important role in driving
the cyclical movement of the unemployment rate.
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May 2022

Figure 18.4: Beveridge curve in the United States.

Sources: JOLTS and CPS.

18.4.2 Market equilibrium with an endogenous vacancy creation

Let us consider how the vacancy level vt is determined. Here, we assume the production
is conducted by a match between one firm (vacancy) and one worker. We abstract from
capital stock for the time being and assume that the match between a firm and a worker
can produce zt units of goods. We further assume that, as in the standard real business
cycle (RBC) model, there is an aggregate shock to productivity. Therefore, zt can vary
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stochastically over time. As in the RBC models, we assume that zt follows a first-order
Markov process.

It turns out that we can formulate the model recursively and the relevant state variable
in the general equilibrium is only z. Assume that the firm discounts the future profit with
the discount factor β ∈ (0, 1). The Bellman equation for a firm that has already matched
with a worker is

J(z) = z − w(z) + βE[(1− σ)J(z′) + σV (z′)], (18.7)

where J(z) is the value of a matched firm. The flow value z − w(z) is profit, where w(z) is
the wage paid to the worker when the aggregate productivity is z. The parameter β ∈ (0, 1)
is the discount factor of the firm (which will be identical to the worker’s discount factor),
and E[·] indicates the expected value (conditional on the current period information). The
prime (′) indicates the next period variable. V (z) represents the value of a vacancy.

The Bellman equation for a vacant firm is

V (z) = −κ+ βE[λf (θ)J(z′) + (1− λf (θ))V (z′)], (18.8)

where κ > 0 is the cost of posting a vacancy. We also assume that anyone can set up a
vacancy and enter the market (“free entry”). Thus, in equilibrium, the value of vacancy is
driven down to zero:

V (z) = 0. (18.9)

(18.8) and (18.9) imply
κ

λf (θ)
= βE[J(z′)]. (18.10)

Intuitively, the cost of vacancy κ has to be equal to the expected value of the future filled
job βE[J(z′)] times the probability of finding a worker λf (θ).

To determine the equilibrium wage, we first have to consider the worker side. We assume
that a worker is infinitely-lived, consumes what she receives every period, and has linear
utility function with discount factor β (i.e., the same discount factor as the firm’s):5

E0

[
∞∑
t=0

βtct

]
.

The Bellman equation for an employed worker is

W (z) = w(z) + βE[(1− σ)W (z′) + σU(z′)], (18.11)

5Because the firms in this economy can earn a profit (in particular, the aggregate profit is positive in the
steady-state of the economy), there is a question of who receives the profit (i.e., the ownership of the firms).
Here, we implicitly assume that the firms are owned by someone outside the economy who has the same
discount factor as the worker. Alternatively, we can assume that the firm is owned by workers. As we will see
later in this section, because only the difference of income between the employed worker and the unemployed
worker matters for the equilibrium dynamics of unemployment, the same results go through if we assume
that the workers’ initial ownership of the firms (i.e., the stock holdings) is equal across workers. This result
follows because, with linear utility, there are no reasons for the workers to trade stocks. In Section 18.8, we
assume a closed economy and make the stock holding explicit.
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where W (z) is the value of an employed worker and U(z) is the value of an unemployed
worker. We assume that an unemployed worker receives a constant amount of goods b < zt
(which has to hold for all possible values of zt). b can be interpreted as home production or
unemployment insurance payment. The Bellman equation for an unemployed worker is

U(z) = b+ βE[λw(θ)W (z′) + (1− λw(θ))U(z′)]. (18.12)

Once a firm and a worker match, they are in a bilateral monopoly situation: the only
possible seller (of the labor service) for the firm is the worker it matched with, and the only
possible buyer for the worker is the firm she matched with. In such a situation, we cannot use
the marginal principle to determine the wage because there is no competition. The match
generates a surplus. In the current period, the match jointly generates z—if they separate,
the worker can create b, and the firm can end up creating nothing. Therefore, it is jointly
beneficial for the firm and the worker to be together because of the assumption z > b. Unless
they are separated, this flow surplus z − b is generated in the future as well. We assume
that the firm and the worker split the surplus following the Generalized Nash Bargaining
rule. The Nash Bargaining rule splits the surplus so that the Nash Product, which is the
product of surpluses of each party (in our case, the firm and the worker), is maximized. The
Generalized Nash Bargaining rule uses the weighted product instead, where the “weight” is
represented as the exponent to each of the surpluses.

In our formulation, the Generalized Nash Bargaining solution solves

max
w

(W̃ (w, z)− U(z))γ(J̃(w, z)− V (z))1−γ,

where W̃ (w, z) is the value of an employed worker when the current wage is w. Note that
the Bellman equation (18.11) assumes that the wage is the equilibrium value under z, w(z).
Here, we are allowing w to be any value. Therefore W̃ (w(z), z) = W (z) holds. Similarly,
J̃(w, z) is the value of a job matched with a worker when the wage is w. Here, the worker’s
surplus is W̃ (w, z)−U(z), and the firm’s surplus is J̃(w, z)−V (z). The exponent γ ∈ (0, 1)
represents the “weight” of the worker’s surplus. It is often referred to as the “bargaining
power” of the worker. By taking the first-order condition, one can show that w solves

(1− γ)(W̃ (w, z)− U(z)) = γ(J̃(w, z)− V (z)). (18.13)

The detailed derivation of (18.13) is in Appendix 18.A.1.
The six equations (18.7), (18.8), (18.9), (18.11), (18.12), and (18.13) define the equilib-

rium. These can be rearranged to obtain a difference equation on θt:
6

κ

(1− γ)λf (θt)
= βE

�
zt+1 − b+

1− σ − γλw(θt+1)

1− γ
κ

λf (θt+1)

�
. (18.14)

When z is constant over time, the steady-state value of θt (denote it θ̄) solves

κ

(1− γ)λf (θ̄)
= β

�
z − b+

1− σ − γλw(θ̄)

1− γ
κ

λf (θ̄)

�
. (18.15)

6We can analyze the implications on equilibrium wages using the same set of equations. The analysis of
the wages is in Appendix 18.A.2.
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This equation (note that the right-hand side is decreasing in θ̄) determines θ̄ = v̄/ū, where v̄
is the steady-state value of vacancy. Often this condition is called the job creation condition.
The job creation condition, together with the Beveridge curve relationship (18.6) determine
v̄ and ū.

Figure 18.5: The determination of the steady state

Figure 18.5 describes the determination of v and u in the steady state. The BC curve
represents (18.6), which describes the steady-state relationship between u and v. The straight
lines JC1 and JC2 represent the relationship between u and v that correspond to different
values of θ. When JC1 represents the value of θ that satisfy (18.15), the steady-state values
of u and v are at SS1. When z goes down, from (18.15) we can see θ̄ also goes down. The
JC line shifts from JC1 to JC2. In the new steady-state (SS2), v is smaller and u is larger.

The transition dynamics is also easy to analyze. Consider an unanticipated one-time
permanent decline in z. Because the decline is permanent, the new job creation equation
holds with the new steady-state value of θ. In other words, the equation (18.15) holds with
the new value of θ̄. In Figure 18.6, the new value of θ̄ is represented by the new line JC2.
The jump to the new value of θ̄ is immediate. Using equation (18.14), it is possible to show
that θt would diverge away from the new steady state (and eventually violate the economy’s
feasibility) unless θt immediately jumps to the new steady-state value. Because u cannot
jump, v immediately drops so that v/u becomes the new value of θ̄. After that, the economy
gradually converges to the new steady state (SS2) along the JC2 line.

513



Figure 18.6: The transition dynamics of the DMP model.

18.4.3 Efficiency

Unemployment has been considered one of the most important macroeconomic problems.
Various policies are proposed and implemented to reduce unemployment. Before considering
policies, however, it is critical to know what kind of inefficiencies exist in the economy and
whether unemployment in the market equilibrium is too high or too low compared to the
social optimum.

One can think of the DMP model as describing the firm’s investment problem through
vacancy posting. We will show that there are two inefficiencies in making the investment
decision.7 First, because the firm is the only entity that makes the investment, the reward
has to be captured solely by the firm. In the DMP model, this is not the case. The surplus
from matching is divided by the firms and the workers by the Generalized Nash Bargaining.
This fact implies that the firm’s reward from investment is “taxed,” and the number of
vacancies is inefficiently low. Second, a firm’s decision imposes externalities on other firms
and workers. Here, because the only entities that are making decisions are firms, what
matters is the externality imposed on other firms. The externality imposed on the other
firms is the number of vacancies times the change in the matching probability for each of
the other firms, that is,

v × ∂

∂v

�
M(u, v)

v

�
= M2(u, v)− M(u, v)

v
. (18.16)

7The exposition below closely follows Fukui and Mukoyama (2024).
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The first term on the right-hand side, M2(u, v), is the number of matches created by the
marginal vacancy. The second term, M(u, v)/v, is the private perception of the likelihood of
a new match for a vacancy-posting firm. The difference is the externality. In other words,
the externality is the difference between the marginal increase in the number of matches
and the average number of matches per vacancy. Because the externality is negative, this
inefficiency leads to too many vacancies in the market equilibrium. The balance of the two
inefficiencies determines the overall effect.

There are similar inefficiencies in valuing the outcome of investment. The social value
of moving a worker from unemployment to employment can be different from the private
value. The social value takes the negative externality that an unemployed worker imposes on
other unemployed workers. Because of this externality, the market equilibrium overvalues
the opportunity cost of employment. At the same time, in the market equilibrium, only
the opportunity cost for the worker is taken into account, and thus the opportunity cost is
undervalued. The eventual outcome depends on the balance of these two inefficiencies.

To start the formal analysis, let us formulate the social planner’s problem when the social
planner is subject to the same labor market frictions as in the market equilibrium. This type
of problem is often called the problem that solves the “constrained efficient” solution. The
social planner maximizes the social welfare

E0

[
∞∑
t=0

βt(ztet + b(1− et)− κvt)
]
,

where E0[·] is the expected value at time 0. The first term is the production by matched
worker-firm, the second is the unemployed workers’ home production, and the third is the
vacancy-posting cost. Using vt = θtut = θt(1− et), let us write the social planner’s problem
as

max
θt,et+1

E0

[
∞∑
t=0

βt(ztet + b(1− et)− κθt(1− et))
]

subject to

et+1 = (1− σ)et + λw(θt)(1− et).
Let µt be the Lagrange multiplier of the constraint. Then, the Lagrangian is

L = E0

[
∞∑
t=0

βt(ztet + b(1− et)− κθt(1− et)) +
∞∑
t=0

µt((1− σ)et + λw(θt)(1− et)− et+1)

]
.

The first-order condition on θt is

βtκ(1− et) = µtλ
′
w(θt)(1− et)

and therefore

κ = λ′w(θt)βµ̂t (18.17)
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holds, where µ̂t is defined as

µ̂t ≡
µt
βt+1

. (18.18)

Because µt is the time-0 social value of increasing et+1 by one unit (taking expectations at
time t), µ̂t is the concurrent value of one unit of employment at time t+1 (taking expectations
at time t). The left-hand side of (18.17), κ, is the social cost of increasing θt by one unit.
By increasing θt by one unit, employment increases by λ′w(θt) units, so the right-hand side of
(18.17) is the social benefit of increasing θt from the viewpoint of the time when the vacancy
is created.

The first-order condition on et+1 is

µt = Et
[
βt+1(zt+1 − b+ κθt+1) + µt+1(1− σ − λw(θt+1))

]
.

Here, Et[·] is the expectation taken at period t. It can be rewritten as

µ̂t = Et [zt+1 − b+ κθt+1 + βµ̂t+1(1− σ − λw(θt+1))] . (18.19)

The two equations (18.17) and (18.19) characterize the socially optimal outcome, represented
by θt and µ̂t for t = 0, 1, .... The term βµ̂t+1λw(θt+1) corresponds to the opportunity cost
of employment: a worker has to forgo an opportunity of a possible new match. However,
having one more unemployed worker imposes an externality on other workers. The term
κθt+1 corrects for this externality.

Let us derive the market equilibrium equations that correspond to these two. First, define
the expected surplus of a match as

St ≡ Et[W (zt+1)− U(zt+1) + J(zt+1)− V (zt+1)],

where the expectation is taken at time t. From (18.10) and (18.13) (which implies (1−γ)St =
Et[J(zt+1)]), we obtain

κ = β(1− γ)λf (θt)St. (18.20)

From (18.7), (18.11), and (18.12) all for time t + 1 (and taking expectations at time t),
and using (18.9) and (18.13) (which implies Et+1[W (zt+2)− U(zt+2)] = γSt+1),

St = Et [zt+1 − b+ βSt+1(1− σ − γλw(θt+1))] . (18.21)

In the final term on the right-hand side, βSt+1λw(θt+1), is multiplied by γ because only
the opportunity cost of a match on the worker side is taken into account in the market
equilibrium.

To make a comparison between the social planner’s solution and the market equilibrium,
first, define the elasticity of the firm’s worker-finding probability as

η(θ) ≡ −
θλ′f (θ)

λf (θ)
.
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From λw(θ) = θλf (θ), one can derive

λ′w(θ) = λf (θ)(1− η(θ)).

This relationship enables us to rewrite the social planner’s first-order condition (18.17) as

κ = β(1− η(θt))λf (θt)µ̂t. (18.22)

This equation can be used to rewrite (18.19) as

µ̂t = Et [zt+1 − b+ βµ̂t+1(1− σ − η(θt+1)λw(θt+1))] . (18.23)

Comparing (18.20) against (18.22) and (18.21) against (18.23), one can see that the social
planner’s solution (θt, µ̂t) and the equilibrium outcome (θt, St) are equivalent if

η(θ) = γ (18.24)

for all θ. This condition is often called the Hosios condition (Hosios, 1990). For the firm’s
investment incentive, the market equilibrium “taxes” the vacancy-creation incentive to cor-
rect for the negative externality imposed on the other firms. The “tax rate” γ has to be
larger when η(θ) is larger because, when η(θ) is large, the change of the other firms’ matching
probability λf (θ) due to the firm’s vacancy posting is larger. One can also see that

η(θ)λf (θ) = −θλ′f (θ) = θ
d

dθ

�
M(1, θ)

θ

�
= M2(u, v)− M(u, v)

v
,

which implies that the term η(θ)λf (θ) is indeed the externality imposed to the other firms,
derived in (18.16).8 For the valuation of worker employment, the Hosios condition en-
sures that the externality that an unemployed worker imposes on other unemployed workers
corresponds to the under-valuation of the opportunity cost of employment in the market
equilibrium.

Suppose the Hosios condition (18.24) does not hold. For example, suppose that η(θ) > γ
for all θ. It can be shown that, in this case, the value of θ in the market equilibrium is
too large compared to the constrained-efficient outcome. In this situation, the equilibrium
unemployment rate is too low compared to the social optimum. A policy that reduces the
unemployment rate, therefore, can lower the social welfare in this situation. In contrast, if
η(θ) < γ, the equilibrium unemployment rate is too high. In this situation, there is room
for improving social welfare through social policies targeting lower unemployment.

18.5 Labor market facts, once again

The modern macroeconomic study of the labor market considers the gross flows behind the
movement of stocks, such as unemployment in Figure 18.1. In fact, the model we presented
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Figure 18.7: Flows among three states.

in Sections 18.3 and 18.4 are the analysis of gross flows between the state E (employment)
and the state U (unemployment).

In the data, there are three states of the labor market, E (employment), U (unemploy-
ment), and N (not in the labor force). Thus we can consider six flows across these states,
as we can see in Figure 18.7.
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Figure 18.8: Flow rates out of E.

Sources: CPS (Fallick and Fleischman, 2004).

8The first equation uses the definition of η(θ), and the second equation uses the definition of λf (θ). For
the third equation, the property M2(u, v) = M2(1, θ), which can be derived by differentiating both sides of
M(u, v) = uM(1, v/u) with respect to v, is used.
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Figure 18.9: Flow rates out of U .

Sources: CPS (Fallick and Fleischman, 2004).

Figures 18.8, 18.9, and 18.10 plot these flow rates, from Fallick and Fleischman (2004).9

For example, the E to U flow rate in Figure 18.8 plots the fraction of employed workers that
flow into U in the following month. One can see how the gross flows influence the movement
of stocks. For example, U increases in recessions because the inflows from E and N go up
and the outflows to E and N go down.

These stylized facts provide important information for building the models of unemploy-
ment. Here, we point out two simple observations. First, the flow rate from U to E is
strongly procyclical. This property is consistent with the DMP model in Section 18.4. Sec-
ond, the flow rate from E to U is strongly countercyclical. This fact implies the constant
separation rate in the DMP model above is not consistent with the data. We will come back
to this point in Section 18.7.

18.6 Unemployment volatility puzzle

We now examine the quantitative performance of the DMP model that we presented in
Section 18.4. Let us go back to the difference equation (18.14). We will quantitatively
evaluate the model (as in the analysis of the RBC models) by assigning functional forms and
parameter values to the model.

9The data is from https://www.federalreserve.gov/pubs/feds/2004/200434/200434abs.html. Sea-
sonal adjustment is made using X-13 ARIMA-SEATS from the U.S. Census Bureau.
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Figure 18.10: Flow rates out of N .

Sources: CPS (Fallick and Fleischman, 2004).

Assume that the matching function is specified as the Cobb-Douglas form:

M(u, v) = χuηv1−η, (18.25)

where η ∈ (0, 1). Then λw(θ) = χθ1−η and λf (θ) = χθ−η. Note that we are using the same
notation η as in Section 18.4.3. If we compute the (negative of) elasticity of λf (θ) with
respect to θ, it is exactly the constant value η in this Cobb-Douglas form.

In addition, specify the process of zt by

ẑt+1 = ρẑt + εt+1, (18.26)

where the hat (̂) describes the log-deviation: ẑt = ln(zt)− ln(z̄) (z̄ is the steady-state value
of z). The parameter ρ ∈ (0, 1) represents the persistence of the shock, and the i.i.d. shock
εt+1 ∼ N(0, σ2

ε). Here, ln(z̄) is normalized to zero.

18.6.1 Log-linearized solution

We will solve this model by log-linearizing the solution around the steady state. Log-
linearizing the equation (18.14) yields

Aθ̂t = E[z̄ẑt+1 + Bθ̂t+1], (18.27)
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where

A =
κθ̄ηη

(1− γ)βχ

and

B =
1− σ
1− γ

κθ̄ηη

χ
+

γκθ̄

1− γ .

Appendix 18.A.3 briefly describes the basic method of log-linearization. Further details can
be found, for example, in Uhlig (2001).

To solve the difference equation (18.27) using the method of undetermined coefficients,
first guess θ̂t = Cẑt, where C is the undetermined coefficient. Plugging this guess into (18.27)
and using E[zt+1] = ρzt, we obtain

C =
ρ

A− ρB .

Rearranging, we obtain the relationship between θ̂t and ẑt as

θ̂t = (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ)

�
+ κγθ̄

�−1

ẑt. (18.28)

Analytically, this result provides important insights into the model performance against the
data. In particular, (18.28) implies (for a given θ̄), a small κ, a small γ, a small η, a large
χ, a large ρ, a large β, and a small σ makes the response of θt larger.

18.6.2 Calibration

Now we set the relevant parameter values. Let one period in the model be one month, so
that we can capture the fast labor market dynamics in the U.S. economy. Here, we assume
the parameter values in Table 18.1.

The discount factor β is set at 0.947
1
12 = 0.996. The annual value of 0.947 is taken from

the standard real business cycle literature (Cooley and Prescott, 1995).
The parameters for the process for ẑ, ρ, and σε, are taken from Hagedorn and Manovskii

(2008) and adjusted to a monthly frequency. Here, σε is the standard deviation of εt+1 in
(18.26), assuming that εt+1 follows a normal distribution.

The values b = 0.4, η = 0.72, and γ = 0.72 follows Shimer (2005). Furthermore, following
Shimer (2005), the parameter value for κ is set so that the equation (18.15) is satisfied in
the steady state with θ̄ = 1. The values of χ and σ also follow Shimer (2005).10

18.6.3 Quantitative results

With the given parameter values and the equations (18.4) and (18.28), we can simulate the
model by randomly generating the series of ẑt following (18.26). Table 18.2 is the summary of

10These values are larger than the UE flow rates and the EU flow rates in Figures 18.8 and 18.9. This
discrepancy is because Shimer (2005) calculates the outflow from and the inflow into U (which include the
flows in and out of N), instead of UE and EU flow rates.
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Table 18.1: Parameter values

Calibrated Parameters Value

β 0.996

ρ 0.949

σε 0.0065

σ 0.034

χ 0.45

b 0.4

γ 0.72

η 0.72

the U.S. data that we will compare the model against. Here, z measures labor productivity.
All are originally from monthly data but averaged to quarterly data, and logged and HP-
filtered with the smoothing parameter of 1600. The table is taken from Hagedorn and
Manovskii (2008).

Table 18.3 is the statistics from the model-generated data. The model generates the
right correlations between variables, but the magnitude of the fluctuations in u, v, and θ is
too small compared to the data. This discrepancy is often referred to as the unemployment
volatility puzzle or the labor market volatility puzzle (or the “Shimer puzzle,” after Shimer
(2005)). The model’s inability to match the magnitude of labor market fluctuations triggered
an extensive body of research in early 2000s.

Intuitively, there are two reasons, corresponding to benefits and costs of hiring, for the
quantitatively small response. First, the benefit of hiring a worker is procyclical, but the
magnitude is not large. One reason is that the wage increases in booms, and it weakens the
response of profit to the productivity shock. Second, the cost of hiring a worker, κ/λf (θ)
moves together with θ. In booms, θ increases, and this increase in cost dampens the firm’s
response to a positive productivity shock.

18.6.4 Rigid wages

Many possible “solutions” are proposed for the unemployment volatility puzzle. Although
there is no clear consensus among researchers in terms of which proposed “solution” is the
most plausible one, here we highlight the role of rigid wages. As we explained above, the
response of wages to productivity shocks dampens the volatility of profits. Rigid wages would
make the benefit of creating a vacancy more volatile.
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Table 18.2: Summary statistics for quarterly U.S. data

u v v/u z

Standard Deviation 0.125 0.139 0.259 0.013

Quarterly Autocorrelation 0.870 0.904 0.896 0.765

u 1 −0.919 −0.977 −0.732

Correlation Matrix v — 1 0.982 0.460

v/u — — 1 0.967

z — — — 1

Table 18.3: Model statistics

u v v/u z

Standard Deviation 0.005 0.016 0.020 0.013

Quarterly Autocorrelation 0.826 0.700 0.764 0.765

u 1 −0.839 −0.904 −0.804

Correlation Matrix v — 1 0.991 0.972

v/u — — 1 0.961

z — — — 1
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Empirically, there have been many studies about wage rigidity, both nominal and real.11

Even without search frictions, rigid wages can generate unemployment by preventing the
labor market from clearing. Here, wage rigidity changes the incentive for the firms to demand
workers in booms and recessions.12

Instead of the Generalized Nash Bargaining, here we assume that wages are rigid at the
steady-state value w = w̄. Combining (18.7) with (18.10), we obtain

κ

λf (θt)
= βE

�
zt+1 − w̄ +

(1− σ)κ

λf (θt+1)

�
.

Log-linearizing,

θ̂t =

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ)

��−1

ẑt. (18.29)

With the same calibration, the model outcome can be computed as in Table 18.4. Un-
employment fluctuations are of the same magnitude as the data. Comparing (18.28) and
(18.29) reveals two factors that the wage rigidity can make the firm’s profit more volatile.
First, the latter is not multiplied by (1−γ), indicating that the additional gain in the surplus
is now not shared between the worker and the firm, and firm can receive all the additional
gain. Second, the term κγθ̄, which represents the improvement of the worker’s bargaining
position due to the rise in the future job finding probability, is absent when wages are rigid.

Therefore, one can see that a (real) wage rigidity can address the volatility puzzle. We
note, however, the sources and magnitude of the wage rigidity still remains an active area of
research.

Table 18.4: Model statistics with fixed wages

u v v/u z

Standard Deviation 0.115 0.329 0.425 0.013

Quarterly Autocorrelation 0.825 0.693 0.763 0.765

u 1 −0.791 −0.881 −0.784

Correlation Matrix v — 1 0.986 0.969

v/u — — 1 0.961

z — — — 1

11See, for example, McLaughlin (1994) and Elsby and Solon (2019).
12The role of wage rigidity in this context was first explored by Hall (2005) and Shimer (2005).
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18.7 Endogenous separation

The previous sections focused on the role of the fluctuations in job-finding probability. As
we saw in Section 18.5, both job finding and separation rates are both strongly cyclical.13

In particular, at the onset of recessions, the increase in the separation rate tends to cause
a sharp increase in the unemployment rate. In Figure 18.8, the EU flow rate increases
in recessions, and the magnitude of the increase depends on the severity of the recession,
suggesting that the separation rate changes endogenously with the business cycle. In this
section, we extend the basic model in Section 18.4 to allow for endogenous separation.

18.7.1 Formulation

Instead of facing an exogenous separation shock, the firm has to pay a cost for maintaining
the match, c(σ). Now σ is a choice variable for the firm, but the cost increases if the firm
wants to make the separation probability small, that is, c′(σ) < 0.

The matched firm’s Bellman equation is now

J(z) = max
σ

z − w(z)− c(σ) + βE [(1− σ)J(z′) + σV (z′)] .

The rest of the equilibrium conditions ((18.8), (18.9), (18.11), (18.12), and (18.13)) are the
same as in the Section 18.4. The optimal value of σ is now a function of z (denote it as
σ(z)). The unemployment dynamics is, therefore,

ut+1 = (1− λw(θt(zt)))ut + σ(zt)(1− ut).

The first-order condition for σ is, using (18.9),

−c′(σ) = βE[J(z′)].

From (18.10), this equation implies

− c′(σ) =
κ

λf (θ)
. (18.30)

The job creation condition can be derived in the same manner as in the exogenous separation
case:

κ

(1− γ)λf (θt)
= βE

�
zt+1 − b− c(σ(zt+1)) +

1− σ(zt+1)− γλw(θt+1)

1− γ
κ

λf (θt+1)

�
. (18.31)

The equation (18.31) determines the dynamics of θt. Here, σ(z) is determined in equilibrium
by (18.30) (because θ is a function of z, σ is also a function of z).

13Fujita and Ramey (2009) is an earlier work that emphasize the importance of the separation margin in
unemployment fluctuations.
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18.7.2 Log-linearized system

Once again, we work with a log-linearized system. First, let the maintenance cost function
be

c(σ) = φσ−ξ,

where φ > 0 and ξ > 0 are parameters. Assume that the matching function takes the form
(18.25). The derivation of the log-linearized system is similar to the exogenous separation
case and detailed in Appendix 18.A.4.

First, guess the log-linearized relationship between θt and zt as

θ̂t = Gẑt. (18.32)

Then (18.30) can be log-linearized to

σ̂(zt) = − η

ξ + 1
Gẑt. (18.33)

Thus the log-deviation of the cost is (using the shortened notation of c(z) = c(σ(z)))

ĉ(zt) =
ξη

ξ + 1
Gẑt. (18.34)

Using (18.33) and (18.34), (18.31) can be The coefficient G can be solved as

G =
Θ

Γ
,

where

Θ ≡ (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

�
+ κγθ̄

�−1

z̄

and

Γ ≡ 1 + (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

�
+ κγθ̄

�−1

c̄
ξη

ξ + 1

�
1− 1

1− γ

�
.

where σ̄ is the steady-state value of σ and c̄ = φσ̄−ξ is the steady-state value of the mainte-
nance cost.

18.7.3 Calibration and quantitative results

Parameters β, ρ, σε, χ, b, γ, and η are set at the same value as in the previous section. For
σ, we set the other parameters so that σ̄ = 0.034 matches the average separation rate in the
U.S. data.

The newly-introduced specification is the maintenance cost function, c(σ) = φσ−ξ. (18.32),
(18.33), and λw(θ) = χθ1−η implies the ratio of the standard deviations

std(λ̂w)

std(σ̂)
=

(1− η)(1 + ξ)

η
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Krusell, Mukoyama, Rogerson, and Şahin (2017, Table 8) indicates the ratio of the standard
deviations for the EU flow rate and the UE flow rate is close to 1. Thus, for η = 0.72, we
set ξ = 1.6.

As in Section 18.6.2, we set the steady-state value of θ as 1, and for a given κ, we can
determine the steady-state value of φ from σ̄ = 0.034. Thus c(σ̄) can be expressed in κ, and
as in Section 18.6.2, we can set the value of κ from the steady-state version of (18.31).

The result is in Table 18.5. The fluctuation of u is still quantitatively very small compared
to the data, although it is larger than the constant σ case, thanks to the movement in σ.

Table 18.5: Model statistics with endogenous σ

u v v/u z

Standard Deviation 0.010 0.011 0.021 0.013

Quarterly Autocorrelation 0.862 0.623 0.764 0.765

u 1 −0.893 −0.969 −0.909

Correlation Matrix v — 1 0.976 0.957

v/u — — 1 0.961

z — — — 1

18.7.4 Rigid wages

Once again, we examine the situation where wages are rigid. Following the same steps as
those in the Generalized Nash Bargaining case, it can be shown that

κ

λf (θt)
= βE

�
zt+1 − w̄ − c(zt+1) +

(1− σ(zt+1))κ

λf (θt+1)

�
characterizes the dynamics of θt. Log-linearizing this equation, we obtain

θ̂t =

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

��−1

ẑt.

It turns out that the obtained outcome is identical to (18.29). The terms with endogenous
c(zt) and σ(zt), which are new elements here, exactly cancel out. The log-linearized equations
for the dynamics of σ(zt) and c(zt), (18.33) and (18.34), are the same as in the Generalized
Nash Bargaining case.

The results are in Table 18.6. The model can replicate the large fluctuations in unem-
ployment. In fact, the fluctuations in u are larger than in the data, suggesting that even a
less extreme form of wage rigidity can generate substantial fluctuations in u in this case.
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Table 18.6: Model statistics with endogenous σ and fixed wages

u v v/u z

Standard Deviation 0.217 0.232 0.433 0.013

Quarterly Autocorrelation 0.852 0.609 0.763 0.765

u 1 −0.854 −0.960 −0.901

Correlation Matrix v — 1 0.966 0.948

v/u — — 1 0.961

z — — — 1

18.8 Labor market frictions and the neoclassical growth

model

As the final section of this chapter, we connect the DMP model to the main workhorse
model of this book: the neoclassical growth model.14 The important changes are (i) concave
utility with an explicit consumption-saving problem and (ii) the use of capital (in addition to
labor) in production. In addition, as discussed in the footnote 5 briefly, the earlier sections
implicitly assume that all firms are owned by someone outside the economy. In this section,
we consider a closed economy, and therefore the profit income from the firm ownership is
made explicit.

18.8.1 The baseline model with Generalized Nash Bargaining

Imagine that there are consumers on the unit square. The mass of consumers is one. The
consumers are indexed by (i, j), where i ∈ [0, 1] and j ∈ [0, 1]. The index i indicates the
family the consumer belongs to. The family i, therefore, has members (indexed by j) on
a unit interval. Families are identical to each other, and therefore, we will consider the
representative family. Within each family, the members insure each other. That is, although
some members are employed and others are unemployed, the income is pooled at the family
level, and each member consumes the same amount (here, we do not consider disutility from
work). Thus we have families that are homogeneous, and the family members are identical
within each family. Below we will consider the decision of the representative family. Because
the consumption of each family member is identical, the “family head” only needs to think
about the representative member of the family.

14The model in this section follows Krusell, Mukoyama, and Şahin (2010, Appendix O). The earlier papers
incorporating the search and matching framework into the neoclassical growth model include Merz (1995)
and Andolfatto (1996).
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Assume that each family member’s utility is (because we consider the representative
member of the representative family, we omit the indices i and j below)

E0

[
∞∑
t=0

U(ct)

]
,

where E0[·] is the expectation taken at time 0, ct is and U(·) is an increasing and concave
period utility function.

The budget constraint for the family is

ct + kt+1 = (1 + rt − δ)kt + (1− ut)wt + utb+ dt,

where kt is the capital stock holding, rt is the rental rate of capital, δ ∈ (0, 1] is the depreci-
ation rate of capital stock, ut is the unemployment rate, wt is the wage per worker, b is the
home production of unemployed workers, and dt is the dividend from the firm.

The labor market setting is the same as in Section 18.4. In this section, we assume that
production uses both capital and labor. Normalizing the labor input per match as 1, the
output per match is assumed to be ztk

α
t , where α ∈ (0, 1). We assume that the capital is

rented by firms from the families every period. Thus, the maximization problem for the
choice of capital input by the firm is

max
kf,t

zt(kf,t)
α − rtkf,t.

The optimal capital input satisfies

αzt(kf,t)
α−1 = rt.

In equilibrium, there is a mass (1 − ut) of matches, which equally divides the total capital
stock in the economy. Therefore, rt in the equilibrium is

r(zt, Kt, ut) = αzt

�
Kt

1− ut

�α−1

.

Below, let us call Xt ≡ (zt, Kt, ut) for the shorthand. The surplus per match (denoted by zt
in Section 18.4) is now

y(Xt) ≡ zt

�
Kt

1− ut

�α
− r(Xt)

�
Kt

1− ut

�
= (1− α)zt

�
Kt

1− ut

�α
.

Firms also solve the dynamic problem of vacancy posting, as in the standard DMP model.
Because the representative family’s utility function is not linear, the discount factor can be
different from β.

For the purpose of exposition, we divide the equilibrium of this model into two blocks:
the consumption-saving block and the labor market block. The consumption-saving problem
of the representative family can be written as the Bellman equation

V(k,X) = max
c,k′

U(c) + βE[V(k′, X ′)|z] (18.35)
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subject to
c+ k′ = (1 + r(X)− δ)k + (1− u)w(X) + ub+ d(X),

K ′ = Ω(X), (18.36)

and
u′ = (1− λw(θ(X)) + σ(1− u), (18.37)

where prime (′) represents the next period variable. The family takes the rental rate r(X),
the wage w(X), the dividend d(X), the law of motion for aggregate capital Ω(X), and
the labor-market tightness θ(X) as given (as functions of X). Later on, we will confirm
that w(X), d(X), Ω(X), and θ(X) are functions of X. From the solution to this Bellman
equation, we obtain the decision rules c(k,X) and k′(k,X). Because the families are identical,
the equilibrium aggregate consumption is C(X) = c(K,X) and the next period aggregate
capital is Ω(X) = k′(K,X). Note that (18.37) implies we can express u′ as a function of X,
u′(X).

From this information, we can express the state price (i.e., the price of an Arrow security)
of the next period state z′ when the current state is X as

Q(z′, X) = βf(z′|z)
U′(C(z′,Ω(X), u′(X)))

U′(C(X))
. (18.38)

Here, f(z′|z) is the probability density of state z′ given the current state z and u′(X) repre-
sents the right-hand side of (18.37). The derivation is in Appendix 18.A.5. In summary, once
we know the functions w(X), d(X), and θ(X), we can obtain the state price Q(z′, X), in
addition to other functions that include Ω(X). Below, we show that once we have Q(z′, X)
and Ω(X), we can obtain w(X), d(X), and θ(X) in the “labor market block” below. Then
these five functions (Q(z′, X),Ω(X), w(X), d(X), θ(X)) can be computed as a fixed point.

Thus suppose we know Q(z′, X) and consider the labor market. It works very similarly
to the basic DMP model. A firm with a worker has a value J(X), where

J(X) = y(X)− w(X) +

∫
Q(z′, X)[(1− σ)J(X ′) + σV (X ′)]dz′. (18.39)

Here, we discount the future value with Q(z′, X) because it represents the price of the next
period good (when the state is z′) in terms of the current good. The derivation of (18.39)
(and the other asset value equations) can be found in Appendix 18.A.6. The value of vacancy
is

V (X) = −κ+

∫
Q(z′, X)[λf (θ(X))J(X ′) + (1− λf (θ(X))V (X ′)]dz′.

Here, the transition equation (18.36) and (18.37) are given, and the functions w(X) and
θ(X) are a part of the unknowns in this block. The free-entry condition, V (X) = 0, implies

κ

λf (θ(X))
=

∫
Q(z′, X)J(X ′)dz′. (18.40)

This equation is analogous to (18.10) in the basic DMP model.
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On the worker side, from the family’s viewpoint, a worker brings in a stream of income
with a stochastically changing employment state. Thus, we can compute the value of having
a worker with specific status for a family using the standard asset pricing theory (the “Lucas
tree” model). The value of an employed worker is

W (X) = w(X) +

∫
Q(z′, X)[(1− σ)W (X ′) + σU(X ′)]dz′ (18.41)

and the value of an unemployed worker is

U(X) = b+

∫
Q(z′, X)[λw(θ(X))W (X ′) + (1− λw(θ(X)))U(X ′)]dz′. (18.42)

Because J(X)− V (X) and W (X)−U(X) are both linear in w, with the same procedure as
in Section 18.4, the Generalized Nash Bargaining implies

(1− γ)(W (X)− U(X)) = γ(J(X)− V (X)). (18.43)

The Generalized Nash Bargaining here implies that the wage is indeed a function of X.
From (18.39), (18.41), (18.42), and V (X) = 0,

W (X)−U(X)+J(X) = y(X)−b+
∫
Q(z′, X)[(1−σ−λw(θ(X)))(W (X ′)−U(X ′))+(1−σ)J(X ′)]dz′

Using (18.43),

J(X)

1− γ = y(X)− b+

∫
Q(z′, X)J(X ′)

1− σ − γλw(θ(X))

1− γ dz′. (18.44)

Moving one period forward, multiplying Q(z′, X) on both sides, integrating over z′, and
using (18.40) yields the job creation condition:

κ

(1− γ)λf (θ(X))
=

∫
Q(z′, X)

�
y(X ′)− b+

1− σ − γλw(θ(X ′))

1− γ
κ

λf (θ(X ′))

�
dz′. (18.45)

This condition confirms that the equilibrium θ can indeed be written as a function of X.
From (18.39), (18.40), and (18.44), the wage can be solved as

w(X) = γ(y(X)− b) + b+ γθ(X)κ. (18.46)

The dividend is all firms’ profit minus the vacancy cost. The number of filled jobs is (1−u),
and each job creates y(X)−w(X) units of profit. The vacancy cost is κv = κθ(X)u because
θ(X) = v/u. Thus

d(X) = (1− u)(y(X)− w(X))− κθ(X)u, (18.47)

and once again, we confirm that d(X) is a function of X.

531



As with the standard RBC models, there are several alternative methods to compute
the equilibrium. The first is, as in the previous sections, to log-linearize the equilibrium
conditions and solve for the coefficients.

The second method is to treat the equilibrium conditions as functional equations. For
example, one method that can be employed is to first make a guess on Q(z′, X), then use the
(18.45) to find the function θ(X) (one can use an iterative method—start from θ(X) on the
right-hand side to obtain θ(X) in the left-hand side, etc.). Then we can compute w(X) and
d(X) from (18.46) and (18.47). Using this information, the representative family’s problem
(18.35) can be solved using the standard techniques to solve the neoclassical growth models.
Finally, Q(z′, X) is updated with (18.38). We iterate this process until convergence. The
following simulation follows this latter method of computation.

The details of calibration and computation are in Appendix 18.A.7. Calibration is similar
to Section 18.6.2. The only difference from Table 18.1 is that, in this model, the steady-state
value of y(X) is not 1. Thus we adjust the value of b so that it is 0.4 times the steady-state
value of y(X). As in Section 18.6.2, κ is endogenously calibrated. The utility is assumed
to be a log function U(c) = ln(c). The production function parameter α = 0.4 as in the
standard RBC model (Cooley and Prescott, 1995). The value of δ in Cooley and Prescott
(1995) is 0.012 in quarterly frequency, and thus we set δ = 0.004.

Table 18.7: Model statistics with Generalized Nash Bargaining: labor market

u v v/u z

Standard Deviation 0.005 0.017 0.022 0.015

Quarterly Autocorrelation 0.819 0.688 0.755 0.763

u 1 −0.831 −0.899 0.089

Correlation Matrix v — 1 0.991 −0.071

v/u — — 1 −0.078

z — — — 1

Table 18.7 computes the labor market statistics as in the earlier sections. The results are
overall in line with Table 18.3. The only noticeable difference is that corr(z, u), corr(z, v),
and corr(z, v/u) are close to zero (and the signs are different). The reason is that, in this
section’s model, the production per worker y(X) is affected not only by z, but also by k and
u. In fact, the correlations of u, v, and v/u with the labor productivity y(X) are similar to
these with z in Table 18.3.

Table 18.8 computes the standard business cycle statistics that are typically computed
in the Real Business Cycle (RBC) literature. Similar to the labor market statistics, all vari-
ables are aggregated to quarterly frequency, logged, and HP-detrended (with the smoothing
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Table 18.8: Model statistics with Generalized Nash Bargaining: business cycles

Y C I L Y/L

Standard Deviation 0.014 0.003 0.059 0.0004 0.014

Correlation with Y 1 0.875 0.991 0.902 0.99992

parameter λ = 1, 600). The business cycle properties are overall similar to the standard
RBC model: all C, I, L, and Y/L (here, L is computed as 1 − u) are strongly procyclical,
I is more volatile than Y , and C is less volatile than Y . The only significant difference is
that L fluctuates much less than Y . In this model, this outcome reflects the unemployment
volatility puzzle in Section 18.6.

18.8.2 Rigid wages

Now consider the case with rigid wages. The consumer’s problem is the same as the Gen-
eralized Nash Bargaining case, except that the wage is rigid. Different from Section 18.6.4,
the output per worker y(X) moves not only with z, but also with k and u. Because the
movement of y(X) is relatively large, it turns out that the flow profit for the firm sometimes
becomes negative. To maintain a positive profit, this time we assume the wage to be

w̃(X) = max{w̄, y(X)}.

In our simulation, in the majority of the periods, the wage remains w̄.
The Bellman equation is

V(k,X) = max
c,k′

U(c) + βE[V(k′, X ′)|z] (18.48)

subject to
c+ k′ = (1 + r(X)− δ)k + (1− u)w̃(X) + ub+ d(X),

K ′ = Ω(X),

u′ = (1− λw(θ(X)) + σ(1− u),

The state price Q(z′, X) can, again, be computed as (18.38). The Bellman equation for the
matched job is

J(X) = y(X)− w̃(X) +

∫
Q(z′, X)[(1− σ)J(X ′) + σV (X ′)]dz′. (18.49)

The free-entry condition remains the same as (18.40), and thus (18.49) can be rewritten as

κ

λf (θ(X))
=

∫
Q(z′, X)

�
y(X ′)− w̃(X) +

(1− σ)κ

λf (θ(X ′))

�
dz′. (18.50)
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Similar to (18.47), the dividend is

d(X) = (1− u)(y(X)− w̃(X))− κθ(X)u, (18.51)

The computation is similar to the Generalized Nash Bargaining case, except that now w̃(X)
does not move as much. First make a guess on Q(z′, X). Second, we can solve for θ(X) from
(18.50). Third, d(X) can be computed from (18.51). Using these information, we can solve
(18.48) and update Q(z′, X). These steps are repeated until Q(z′, X) converges.

Table 18.9: Model statistics with rigid wages: labor market

u v v/u z

Standard Deviation 0.083 0.269 0.339 0.015

Quarterly Autocorrelation 0.818 0.671 0.744 0.763

u 1 −0.811 −0.886 0.094

Correlation Matrix v — 1 0.990 −0.076

v/u — — 1 −0.083

z — — — 1

The model calibration is the same as in Section 18.8.1. Table 18.9 describes the labor
market statistics for the rigid wage case. As in Section 18.6.4, the response of v (and therefore
u) to the productivity shock is magnified by the rigid wage. Similarly to Table 18.7, the
correlations of u, v, and v/u with z are weak. Once again, this result comes from the fact
that y(X) also moves with k and u. When we compute the correlation of these variables
with y(X), the pattern of correlations is similar to the results in the basic model.

Table 18.10: Model statistics with rigid wages: business cycles

Y C I L Y/L

Standard Deviation 0.017 0.003 0.060 0.007 0.011

Correlation with Y 1 0.792 0.989 0.898 0.964

Table 18.10 lists the business cycle statistics. The results are very similar to Table 18.8
in the previous section. The exception is that the standard deviation of L is one order of
magnitude larger, reflecting the larger variability of unemployment.
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18.9 Heterogeneity of jobs and the frictional job dis-

persion

So far, we have assumed that jobs are homogeneous, and workers always accept an offered
job. In this section, we introduce a model where job offers are heterogeneous. Some jobs pay
more than other jobs, and the kind of jobs offered to the worker is stochastic. It is assumed
that every period, an unemployed worker can receive only one job offer. After receiving the
offer, she decides whether to accept it. The model in this section is called the McCall search
model (McCall, 1970) or simply the search model. The search model focuses on the worker’s
decision, and the demand side is simplified. Because the worker’s decisions are operative
margin, the labor supply side plays an active role.

The heterogeneity of job offers gives rise to wage dispersion. The labor market friction
plays a crucial role; if there are no frictions, all workers will accept only the best (highest-
paying) job. Even with labor market frictions, it is not trivial to think of a setting where firms
actively offer different wage levels. A well-known example is called the Diamond paradox.
Diamond (1971) has shown that, if the jobs are homogeneous and the worker has to leave
the job to look for another job, all firms offer the workers’ reservation wages (the lowest
wage the worker would accept) even with a small search cost. It is easy to check that this
outcome constitutes a Nash equilibrium: workers do not look for another job if they know
all other firms are offering their reservation wage, and no firm would want to deviate. The
Nash equilibrium is unique because, with any other wage offer distribution, the firm that
offers the highest wage has an incentive to lower the wage slightly. In this section, instead
of considering firms’ wage setting behavior explicitly, we assume away the heterogeneity of
wage offers. This type of firm behavior can be justified by relaxing Diamond’s assumptions.
For example, one can assume that the jobs are heterogeneous or workers can search on the
job.

Formally, suppose that the worker is infinitely lived and the utility of the worker is linear:

E0

[
∞∑
t=0

βtct

]
.

An unemployed worker earns b > 0 every period. This income can be interpreted as home
production, unemployment insurance benefit, or the value of leisure. Each worker receives
one job offer every period. Job offers differ in terms of the wage w. It is stochastic with
distribution function F (w), which has a lower bound of 0 and upper bound wu. The Bellman
equation for an unemployed worker is therefore written as

U = b+ β

∫ wu

0

max{W (w), U}dF (w), (18.52)

where U is the value of unemployment and W (w) is the value of employment with wage w.
The expression (18.52) can be rewritten as

(1− β)U = b+ β

∫ wu

0

max{W (w)− U, 0}dF (w). (18.53)
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Every period, an employed worker faces the probability σ ∈ (0, 1) of losing her job.
Therefore, the Bellman equation for an employed worker is

W (w) = w + β[(1− σ)W (w) + σU ]. (18.54)

Equation (18.54) can be rewritten as

W (w) =
w + βσU

1− β(1− σ)
. (18.55)

From this expression, we can see that W (w) is increasing in w and W (0) = βσU/(1− β(1−
σ)) < U . We assume that wu is sufficiently large so that W (wu) > U . Therefore, there
exists a threshold w∗ where W (w∗) = U , W (w) > U for w > w∗, and W (w) < U for
w < w∗. In other words, the wage level w∗ is the worker’s reservation wage. The value of
w∗ characterizes the worker’s choice in this model.

Plugging the expression (18.55) into (18.53) and using that W (w) > U if and only if
w > w∗,

(1− β)U = b+
β

1− β(1− σ)

∫ wu

w∗
[w − (1− β)U ]dF (w). (18.56)

Considering the expression (18.55) for w = w∗ and noting W (w∗) = U , we obtain

(1− β)U = w∗.

Thus (18.56) can be rewritten as

w∗ = b+
β

1− β(1− σ)

∫ wu

w∗
[w − w∗]dF (w). (18.57)

This equation solves the reservation wage w∗.
What can we learn from this model? First, let us consider the frequency of job acceptance.

The worker only accepts the jobs that are better than w∗. Thus the job finding probability
λ is

λ = 1− F (w∗).

The job finding probability is decreasing in w∗: when the workers are choosier, they find
jobs less often.

We can also conduct various comparative statics to analyze how changes in parameters
affect the reservation wage w∗ (and therefore λ). Rewrite (18.57) as:

G(w∗, β, σ, b) = 0,

where

G(w∗, β, σ, b) ≡ w∗ − b− β

1− β(1− σ)

∫ wu

w∗
[w − w∗]dF (w).
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It is straightforward to show that ∂G/∂β < 0, ∂G/∂σ > 0, and ∂G/∂b < 0. For w∗, because
(using Leibnitz’s rule)

∂

∂w∗

∫ wu

w∗
[w − w∗]dF (w) = −[1− F (w∗)],

G(w∗, β, σ, b) > 0. From the implicit function theorem, w∗ is increasing in β and b and de-
creasing in σ. Intuitively, the worker becomes choosier (w∗ becomes larger) when β increases
because the future gain from a better job has a higher weight compared to the opportunity
loss from missing the immediate job. An increase in b makes the unemployment state more
attractive and induces workers to wait longer. A higher σ implies that even a good job won’t
last long, and thus it becomes less attractive to wait for a good job offer to arrive.

An interesting comparative-statics exercise with this class of model is to analyze the effect
of changes in the wage offer distribution. First, consider the change in the average wage. To
analyze the change in average, suppose that the wage offer is w+ ε instead of w above (with
the same distribution for w), and how the change in ε changes the reservation wage w∗ + ε
when evaluated at ε = 0. Now the G function is modified to

G(w∗, ε) ≡ w∗ + ε− b− β

1− β(1− σ)

∫ wu

w∗
[(w + ε)− (w∗ + ε)]dF (w).

∂

∂ε
G(w∗, ε) = 1

and (using Leibniz’s rule, evaluated at ε = 0)

∂

∂w∗
G(w∗, ε) = 1 +

β

1− β(1− σ)
[1− F (w∗)].

Thus
dw∗

dε
= − 1− β(1− σ)

1− β(1− σ) + β[1− F (w∗)]
.

The change in the reservation wage is, therefore,

d(w∗ + ε)

dε
=
dw∗

dε
+ 1 =

β[1− F (w∗)]

1− β(1− σ) + β[1− F (w∗)]
∈ (0, 1).

Thus the reservation wage goes up, but not one-to-one. When the average wage offer goes
up by one dollar, the reservation wage goes up by less than one dollar. This outcome
arises because b is kept constant. Because b is the same, the relative attractiveness of the
unemployment state (compared to working) goes down. This effect attenuates the effect of
the change in the wage offer distribution.

Next, consider the dispersion of the wage offer distribution. To analyze the effect of
dispersion, we first have to define the appropriate concept of the dispersion of wage offers in
this context. Here, we introduce the concept of the mean-preserving spread. For a random
variable x with the distribution function F (x), we can construct a random variable x̃ ≡ x+z
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where z has a distribution function Hx(z) and its mean is zero (
∫
zdHx(z) = 0). Then, the

mean of x + z is x, and let us call the new distribution function G(x̃). Then we refer to
G(·) as a mean-preserving spread of F (·). It can be shown (see Mas-Colell, Whinston, and
Green, 1995, p. 198) that G(·) being a mean-preserving spread of F (·) is equivalent to∫ x

0

G(t)dt ≥
∫ x

0

F (t)dt for all x. (18.58)

Now let us rewrite the equation (18.57) as15

w∗ = b+
β

1− β(1− σ)

�∫ wu

0

[w − w∗]dF (w)−
∫ w∗

0

[w − w∗]dF (w)

�
= b+

β

1− β(1− σ)

�
µw − w∗ −

∫ w∗

0

[w − w∗]dF (w)

�
,

(18.59)

where µw is the mean value of w. Integration by parts yields∫ w∗

0

[w − w∗]dF (w) = −
∫ w∗

0

F (w)dw

and thus (18.59) can be rewritten as

w∗ − b− β

1− β(1− σ)

�
µw − w∗ +

∫ w∗

0

F (w)dw

�
= 0. (18.60)

It is straightforward to show that the left-hand side is increasing in w∗. Suppose that the
distribution of w, F (w), becomes more dispersed in the sense of the mean-preserving spread.
The property (18.58) implies that the left-hand side of (18.60) goes down with this change
in the distribution, and thus w∗ has to go up. The reservation wage increases with the
dispersion of the wage offers. Intuitively, the worker becomes choosier with more dispersed
wage offers because the possibility of a good wage offer increases. With higher dispersion,
the possibility of a bad offer also increases, but the left tail of the distribution does not
matter because these offers are rejected in any case. In other words, the option value of
searching increases with the dispersion of the wage offer.

Now, consider the model implications for the realized wage dispersion. The equilibrium
wage dispersion in this model is often called the frictional wage dispersion because all workers
would work at w = wu if there are no search frictions (i.e., if all jobs are available to the
workers). Workers accept a job with w < wu because it is costly to wait for high-wage job
offers. To analyze the frictional wage dispersion, first define the mean (accepted) wage as

wM ≡
∫ wu
w∗

wdF (w)

1− F (w∗)
.

15This derivation follows Ljungqvist and Sargent (2012, pp. 166-167).
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Let us also define

ρ ≡ b

wM
,

that is, the ratio of the unemployed worker’s income to the mean wage. When b is interpreted
as the income from unemployment insurance, ρ corresponds to the replacement rate. Further,
as defined above, let λ ≡ 1 − F (w∗) be the job-finding probability, that is, the probability
that an unemployed worker transitions into employment.

Define the mean-min ratio of the (accepted) wages, Mm, as

Mm ≡ wM

w∗
.

Note that w∗ is the minimum value of the accepted wages. Then, using (18.57) and the
above definitions, we can derive

Mm =
1 + βλ/(1− β(1− σ))

ρ+ βλ/(1− β(1− σ))
.

A back-of-the-envelope calculation with (monthly) β = 0.996, σ = 0.034, λ = 0.45, and
nb = 0.4 yields Mm = 1.031. The mean wage is only 3.1% larger than the lowest wage in
this economy. In other words, search friction can explain only a tiny part of the observed wage
dispersion in this model. This result is often referred to as the frictional wage dispersion
puzzle in the literature. The reason is that, in the model with this parameterization, it
is not very costly to wait for a new job (the offer comes fairly frequently), whereas the
benefit of receiving a better wage offer is large. One situation where the frictional wage
dispersion is high is, therefore, when the cost of unemployment is high. A large cost of
unemployment makes unemployed workers accept low wage offers to avoid unemployment.
Another situation is when there are possibilities of on-the-job search. For example, if the
offered wage distributions are identical and the offer frequency is also the same between on-
and off-the-job search, the worker would accept any job with w > b when unemployed. In
this case, the worker does not have to give up the option value of search when accepting a
wage offer.
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20.1 Introduction

In most macroeconomic models (and earlier in this textbook), it is assumed that there exists
an aggregate production function

Y = F (K,L),

where Y is the aggregate output, K is the aggregate capital, and L is the aggregate labor.
This assumption is justified if the production functions for all firms are homogeneous. In
reality, firms are heterogeneous in many dimensions. There are large and small firms, young
and old firms, growing and contracting firms, and productive and unproductive firms.

Answering many macroeconomic questions requires explicitly taking firm heterogeneity
into account. For example, how should we encourage (or discourage) the entry of new firms?
How should we support growing firms? Should we worry about the growing prominence
of “mega-firms”? What are the causes and consequences of the decline in firm entry and
reallocation of resources across firms? Analysis based on the aggregate production function
cannot answer these questions. It may also be the case that some economic policies may
have different effects on the macroeconomy if firms have different degrees of heterogeneity.

In this chapter, we consider such questions. Looking at the data, we will see some in-
dications that the prominence of large firms in the U.S. economy has been rising in recent
years. The reallocation of resources through entry and exit of firms and expansion or con-
traction of firms seem to be slowing down in recent years (often referred to as the “decline
in business dynamism”). These phenomena have potentially important consequences in the
macroeconomic context. The rise of big firms may lead to an increase in their market power.
The market power in the product and the labor market could be linked to market distortions
and changes in labor share. The lack of reallocation of resources from unproductive firms to
productive firms may lead to lower aggregate productivity due to “misallocation” (resource
allocation that is suboptimal). Misallocation may also lead to a slower rate of innovation and
aggregate productivity growth. The dominance of large firms may also have implications for
other macroeconomic phenomena, such as business cycle fluctuations.

To answer these questions, we need to break out of the aggregate production function.
This chapter covers the basic facts, models, and methods of analyzing an economy with
heterogeneous firms.

20.2 A simple model

We start by considering a simple example where firm heterogeneity matters for macroeco-
nomic analysis.1 Suppose that there is a unit mass of firms. The firms produce a homo-
geneous good under perfect competition. The production function of firm i (where i is the
index of firms: i ∈ [0, 1]) is

yi = aiF (xi)
γ,

1A similar framework is used by Hopenhayn (2014a). Some of the results below overlap with his.
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where yi is the output of firm i and γ ∈ (0, 1). Firms are heterogeneous in their productivity;
ai is different across firms. xi is the input vector for firm i. Assume that F (xi) exhibits con-
stant returns to scale. Then, because γ < 1, the overall production of yi exhibits decreasing
returns to scale in inputs xi. The decreasing returns property is important. With constant
returns, the firm(s) with the largest ai takes over the entire production of the economy, and
the outcome is either (i) a monopoly or oligopoly of one or a few firms, which would contra-
dict the perfect-competition assumption; or (ii) only the most efficient firms with common
ai operate as price takers, which would return to the homogeneous-firms scenario. Let X be
the endowment vector of inputs in the economy.

Due to the constant-returns property of F (xi), we can solve the firm’s problem in two
steps: first, solve the cost-minimizing combination of inputs for one unit of F (x). Second,
decide the optimal scale of production. The first stage is common across firms:

min
x

px

subject to
F (x) = 1,

where p is the vector of input prices. Let the solution of this problem be x∗ and the minimized
unit cost be c ≡ px∗.

Let mi = F (xi) be the choice of the firm i’s combined inputs. The constant-returns
property implies that the optimal input choice is xi = mix

∗ and the cost of production is
cmi. The second stage optimization problem is

max
mi

aim
γ
i − cmi. (20.1)

The first-order condition to this problem is

aim
γ−1
i =

c

γ
. (20.2)

Therefore, yi = (c/γ)mi for all i. Adding up for all i,

Y =
c

γ
M (20.3)

holds, where

Y =

∫
yidi (20.4)

is the total output and

M =

∫
midi. (20.5)

Note that, in equilibrium, M =
∫
F (xi)di = F (X) has to hold. Let us define

A ≡
�∫

a
1

1−γ
i di

�1−γ
. (20.6)
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From (20.2),

A =
c

γ
M1−γ

holds. Combining with (20.3) and M = F (X),

Y = AF (X)γ. (20.7)

In this environment, this relationship can be viewed as the aggregate production function.2

The heterogeneity of firms matter through the aggregation (20.6): the aggregate outcome is
influenced by the distribution of ai to the extent that it yields different values of A in (20.6).

To illustrate, suppose that ai follows a lognormal distribution, where ln(ai) ∼ N(ν −
σ2/2, σ2). From the property of the lognormal distribution, the average of ai,

∫
aidi, is

exp(ν). However, it can be computed that3

A = exp

�
ν +

γ

1− γ
1

2
σ2

�
. (20.8)

Therefore, the dispersion parameter σ influences the level of A even when the average produc-
tivity exp(ν) is constant. This result holds because the productive resources are endogenously
allocated: a productive firm uses more input than an unproductive firm and therefore has
more presence in the aggregate production than merely having higher productivity. When
the dispersion parameter σ is larger, the economy has more room to allocate resources to
the highly productive firms in the right tail. Allocation of inputs is the key to analyzing het-
erogeneous firms: when the inputs are not allocated optimally, aggregate productivity can
be less than what can be achieved optimally. In this chapter, we always keep two questions
in mind: (i) how the distribution of ai is determined, and (ii) how the economy allocates
resources to different firms.

20.3 Firm heterogeneity in the data

This section describes some facts related to firm heterogeneity. We will focus on the U.S.
data. The statistics here are all based on publicly-available data.4 The first natural question
is: how heterogeneous are the U.S. firms? Figure 20.1 shows the firm size distribution as the
number of firms in each size category, as a fraction of the total number of firms. Here, the
firm size is measured by the number of employees.

2An example of this aggregation is when the production function is yi = ai(k
α
i `

1−α
i )γ , where ki is firm i’s

capital input, `i is the firm i’s labor input, and α ∈ (0, 1). In this case, the aggregate production function is

Y = A(KαL1−α)γ ,

where A is given by (20.6). The rental rate of capital in equilibrium is r = γαA(KαL1−α)γ−1Kα−1L1−α, the
wage rate is w = γ(1−α)A(KαL1−α)γ−1KαL−α, and the unit cost of production is c = (r/α)α(w/(1−α))1−α.

3See Appendix 20.A.1 for derivation.
4All figures in this section is drawn from the U.S. Census Bureau’s Business Dynamics Statistics. See

https://bds.explorer.ces.census.gov/.
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Figure 20.1: Distribution of firm size in 2019.

Source: Business Dynamics Statistics.

Figure 20.1 shows that the firm size distribution is quite dispersed. There are over 5
million firms in the U.S., and the majority are very small firms with 1 to 4 employees. At
the same time, there are over 10,000 large firms with more than 1,000 employees, and over
1,000 firms with 10,000 employees.

The fact that very small firms account for the majority of firms does not imply that
large firms are unimportant. Figure 20.2 plots the employment share of each size cate-
gory. Approximately half of all employees work at the 1,000+ employment firms. In fact,
approximately 30% of workers work at very large firms with 10,000+ employees.

Firm dynamics literature often uses data at the establishment level. An establishment is
a fixed physical location where economic activity occurs; it is more straightforward to iden-
tify an establishment than a firm. A firm is a collection of establishments under common
ownership, and it is often difficult to identify a firm in an administrative dataset. Establish-
ments are also heterogeneous. Figure 20.3 is the establishment size distribution. There are
over 7 million establishments in the U.S. economy, and approximately half are very small
establishments with 1 to 4 employees.

Figure 20.4 plots the number of establishments that are owned by each firm size category.
It shows that many establishments are owned by large firms (approximately 17% of all es-
tablishments are owned by the 1,000+ category firms). Whereas almost all “1 to 4” category
firms own only one establishment, the firms in the 1,000+ category own 100 establishments
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Figure 20.2: Employment share of each size category in 2019.

Source: Business Dynamics Statistics.

on average. Very large firms with 10,000+ employees own about 600 establishments.5

Aside from the cross-sectional heterogeneity, U.S. firms conduct significant adjustments
over time. One measure of a firm’s size adjustment is job creation and destruction. Job
creation (JC) refers to the expansion of firms or establishments, and job destruction (JD)
is the contraction of firms or establishments. BDS publishes the establishment-level JC and
JD rates. The JC rate is defined as:

JCt ≡
∑

i:`it>`i,t−1
(`it − `i,t−1)

L̄t
, (20.9)

where `it is the employment of establishment i at year t, Lt is the total employment at year t
(which is the sum of `it), L̄t ≡ (Lt+Lt−1)/2. In words, the JC rate is the sum of employment
increases in all expanding establishments, divided by the total employment (the average of
time t and t− 1). The JD rate is similarly defined as:

JDt ≡
∑

i:`it<`i,t−1
(`i,t−1 − `it)
L̄t

.

The JD rate is the sum of the employment decrease by contracting establishments, divided
by the total employment (the average of time t and t− 1). JC and JD, often called gross job

5See Cao, Hyatt, Mukoyama, and Sager (2022) for a detailed analysis of the number of establishments
per firm and its time-series properties.
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Figure 20.3: Distribution of establishment size in 2019.

Source: Business Dynamics Statistics.

flows, measure the magnitude of labor reallocation across establishments. Figure 20.5 plots
the JC and JD rates from the BDS dataset. The shaded area is the recession period defined
by the National Bureau of Economic Research (NBER).6 Three properties are notable. First,
the magnitude of JC and JD is large. Both the JC and JD rates are over 10% in any year.
Second, both rates are cyclical. When a recession arrives, the JC rate declines and the JD
rate increases. Third, there is a general declining trend in both the JC and JD rates. It is
known that a wide range of indicators of reallocation, including the JC and JD rates, have
declined in recent years. Some researchers call this trend the “declining business dynamism”
of the U.S. economy.

Another measure of reallocation is the rate of entry and exit. Many firms and estab-
lishments enter and exit every year. Figure 20.6 plots the entry rate and exit rates of
establishments. The entry rate is defined as the number of entering establishments between
t− 1 and t divided by the total number of establishments (the average of time t− 1 and t).
The exit rate is defined as the number of exiting establishments between t− 1 and t divided
by the total number of establishments (the average of time t− 1 and t). One can see similar
properties here as the JC and JD rates: the entry and exit rates are large, cyclical, and there
are overall declining trends.

Over the last few decades, there have been significant changes in the heterogeneity among
U.S. firms. In addition to the “declining dynamism” described above, one topic that caught

6See https://www.nber.org/research/business-cycle-dating.
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Figure 20.4: Fraction of establishments owned by each firm size category in
2019.

Source: Business Dynamics Statistics.

researchers’ attention is the dominance of large firms. Figure 20.7 plots the fraction of
workers employed by firms in the 10,000+ size category.7 This fraction has steadily increased
since the early 1990s, indicating that large firms are starting to dominate the U.S. economy.
This dominance raised concerns about the market power of large firms, and is consistent
with another strand of research that tries to measure the trend of market power in the U.S.
economy. Figure 20.8 reproduces the Figure 1 of De Loecker et al. (2020). It measures the
trend of the average markup (i.e., price over the marginal cost) of the U.S. public firms in
the Compustat dataset. The markup series exhibits increasing trend since the 1980s.

20.4 Reallocation and misallocation

The previous section shows that there is a large degree of reallocation among U.S. firms.
How much does the reallocation matter for aggregate productivity? In Section 20.1, we
have seen that firm heterogeneity affects the aggregate outcome through the endogenous
allocation of inputs. In a dynamic economy where firm productivity changes over time,
one can imagine that the constant reallocation of inputs can have an important impact on
aggregate productivity.

7In drawing this figure, the distinction between firms and establishments is very important. See Appendix
20.A.2.
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Figure 20.5: Annual job creation and destruction rates (establishment level).

Source: Business Dynamics Statistics.

Foster, Haltiwanger, and Krizan (2001) illustrate the quantitative impact of reallocation
through the following simple accounting framework. Let us denote the productivity of es-
tablishment i (they use establishment-level data and not firm-level data) at time t be ait.
The (output-weighted) average productivity Āt is defined as

Āt ≡ sitait,

where sit is the output share of establishment i. Then, by denoting the xt − xt−1by ∆xt,

∆Āt =
∑
i∈C

sit−1∆ait +
∑
i∈C

(ait−1 − Āt−1)∆sit +
∑
i∈C

∆ait∆sit

+
∑
i∈N

sit(ait − Āt−1)−
∑
i∈X

sit−1(ait−1 − Āt−1)

holds, where C is the set of continuing establishments (establishments that exist in both time
t−1 and t), N is the set of new establishments (establishments that enter between time t−1
and t), and X is the set of exiting establishments (establishments that exit between time
t− 1 and t). The increase in average productivity can occur for five distinct reasons. First,
each of the existing establishments can increase its productivity. Second, an establishment
whose productivity is higher than average can increase its share. Third, the first two effects
can be magnified if both occur at the same time (i.e., a high-productivity establishment
raises the share and its own productivity). Fourth, the entering establishment can be better
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Figure 20.6: Annual establishment entry and exit rates.

Source: Business Dynamics Statistics.

than the average. Fifth, the exiting establishment can be worse than the average. All factors
except for the first one can be interpreted as the contribution of reallocation. That is, if
∆sit = 0 and there are no entry and exit, the only way for the aggregate productivity to
increase is for each establishment to increase its productivity. Using the U.S. Manufacturing
data from 1977 to 1987, Foster et al. (2001) estimate (see their Table 8.4) that the aggregate
change in multifactor productivity (the change in output that is not accounted for by the
change in capital, labor, and intermediate goods) is 45% accounted for by the first factor,
and the remaining 55% is the contribution of reallocation. This decomposition highlights
the importance of reallocation in determining aggregate productivity growth.

Recently, a large body of literature has evaluated the role of various frictions that hinder
the optimal allocation of resources. This literature emphasizes the existence of the misal-
location of productive inputs as the source of low aggregate total factor productivity. A
subset of literature, such as Restuccia and Rogerson (2008) and Hsieh and Klenow (2009b),
emphasizes firm-specific distortions as the sources of misallocation. To see how firm-specific
distortions can affect aggregate productivity, consider the model of Section 20.1 and add an
assumption that the government taxes the output of firm i at the rate of τi. Thus, instead
of the problem (20.1), the firm solves

max
mi

(1− τi)aimγ
i − cmi.

The rest of the model is the same, and the GDP is still measured as Y =
∫
yidi. After
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Figure 20.7: Fraction of employees working at 10,000+ employee firms.

Source: Business Dynamics Statistics.

going through similar steps as in Section 20.1, one can show that the aggregate production
function still takes the form of (20.7), but A is modified to

A =

∫
a

1
1−γ
i (1− τi)

γ
1−γ di�∫

a
1

1−γ
i (1− τi)

1
1−γ di

�γ . (20.10)

One can easily see that this A is identical to (20.6) when τi = 0 for all i. Now, suppose that
ai and (1− τi) follow a bivariate lognormal distribution. In particular, (ln(ai), ln(1− τi)) ∼
N(µ,Σ), where

µ = (νa − σ2
a/2, ντ − σ2

τ/2)

and

Σ =

 σ2
a ρσaστ

ρσaστ σ2
τ

 .
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Plugging this formulation into (20.10), we obtain8

A = exp

�
νa +

γ

1− γ
1

2
(σ2

a − σ2
τ )

�
. (20.11)

One can easily see that this expression is identical to (20.8) when στ = 0. A large dispersion
in (1− τi) is detrimental to aggregate productivity. This result is because, when (1− τi) is
dispersed, some productive firms do not expand, because (1 − τi)ai is low even when ai is
large. At the same time, some unproductive firms employ a large amount of input because
(1 − τi)ai is large even though ai is small. Note that, in this setting, ντ does not influence
aggregate productivity because it does not distort the allocation of input across firms, and
the total supply of inputs is fixed.

Another subset of literature examines various specific policies and institutions that cause
misallocation. Examples are size-specific taxes and regulations, entry regulations, and firing
and hiring regulations.

8See Appendix 20.A.3 for derivation. Hsieh and Klenow (2009b) obtain a similar expression. This case
is special in that ρ does not appear in the expression for aggregate productivity. In general, correlation
between (1−τi) and ai matter for the aggregate productivity, and Restuccia and Rogerson (2008) emphasize
the importance of such correlation. See Hopenhayn (2014b) for related discussions.
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20.5 Firm heterogeneity in general equilibrium

When firms are forward-looking, frictions for reallocation have further effects through the
firms’ behavior. Hopenhayn and Rogerson (1993) highlight this mechanism in the context
of firing taxes and quantify the outcome in a general equilibrium framework. In the fol-
lowing, we introduce the Hopenhayn and Rogerson (1993) framework with slightly different
notations. In addition to the experiments on firing taxes (replicating the Hopenhayn and
Rogerson (1993) exercises), this section conducts experiments with entry barriers.9

20.5.1 Setup

There is a continuum of firms in the economy. We focus on the steady-state where the
prices and aggregate quantities (employment, output, and the number of firms) are constant
over time. In this section, we omit the firm’s index i when there is no risk of confusion.
Each firm uses only labor `t as an input. Firms behave competitively and maximize the
profit with wage wt. The firm’s production function is yt = at`

γ
t , where at is (exogenous)

idiosyncratic productivity. In addition to wages, firms have to pay cf units of goods as the
fixed operation cost every period. The firing taxes imposed by the government take the
form of τ max(0, `t−1 − `t), where τ > 0 is the firing tax for dismissing one worker. The
government transfers all firing taxes back to the representative consumer. Therefore, the
firm’s flow profit is

π(`t−1, `t, at) = at`
γ
t − wt`t − cf − τ max(0, `t−1 − `t).

Note that the output price is normalized to 1, and the only endogenous price in each period
is wt.

The timing for the firms within a period is as follows. At the beginning of each period,
the incumbent firm from the last period decides whether to exit. If the firm exits, it pays
the firing cost τ`t−1. If it stays, it receives the current period value of at from the stochastic
process

ln(at) = α + ρ ln(at−1) + εt,

where α and ρ ∈ [0, 1) are parameters and εt ∼ N(0, σ2). After observing at, the firm decides
the employment and produce.

Note that unlike the model in Section 20.1, the firm’s employment decision is dynamic
in the presence of a positive firing tax. When the firm decides to hire a worker, it foresees
that it has to pay the firing cost when it wants to shed workers in the future due to negative
productivity shock. This effect makes the firm reluctant to hire a worker when it receives a
positive productivity shock. The dynamic programming problem for the firm is

W (a, `−1) = max
`
π(`−1, `, a) + βmax(E[W (a′, `)|a],−τ`), (20.12)

9The analysis of entry barriers is not in Hopenhayn and Rogerson (1993) but is subsequently conducted
by, for example, Moscoso Boedo and Mukoyama (2012).
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where the subscript −1 represents the previous period value and prime (′) represents the
next period value. β ∈ (0, 1) is the consumer’s discount factor (which is equal to the firm’s
discount factor) and E[·|a] represents the expected value given a.

We assume free entry; that is, anyone can enter as long as the entry cost is paid. After
the entry cost is paid, the firm draws productivity, employs workers, and produces. The
entry cost is assumed to be ce + κ, where ce is the technological entry cost, including the
investment required when enter, and κ is additional (wasteful) policy-related cost that we
interpret as “entry barriers.” Free entry implies

W e = ce + κ, (20.13)

where W e is the value of the entry that satisfies

W e =

∫
(W (a, 0) + cf )dν(a),

where ν(a) is the exogenous distribution of a for a new entrant. Note that we assume entrants
do not have to pay the fixed operation cost cf .

The representative consumer owns the firms, works, and consumes. The utility is

∞∑
t=0

βt[u(Ct)− χLst ],

where u(Ct) is increasing and concave utility from consumption Ct, χ > 0 is a parameter,
and Lst is the labor supply. In the steady-state, the consumer’s problem is static:

max
C,Ls

u(C)− χLs

subject to
C ≤ wLs + Π +R,

where Π is the total profit of the firms and R is the total transfer. The first-order condition
is

wu′(wLs + Π +R) = χ. (20.14)

Therefore, the labor supply is a function of w and Π +R.
As Kaas (2021) points out, the competitive equilibrium of this model has a structure that

is often called “block recursive.” That is, the equilibrium price (wage in this model) can be
computed without the information on the distribution of state variables across incumbent
firms. To see this, note that W (a, `−1) can be computed from (20.12) once the value of w
is known. Thus, W e can be computed as a function of w. The free-entry condition (20.13)
can be used to pin down the equilibrium w. For a given mass of entry M , the decision
rule of (20.12) can be used to compute the stationary distribution of firms across different
state variables a and `−1. With the stationary distribution, one can compute the total labor
demand Ld, the total profit Π, and the total firing tax R. All Ld, Π, and R are functions
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Table 20.1: Model results with firing taxes

τ = 0 τ = 0.1 τ = 0.2

Wage 1.000 0.977 0.957

Total output 100 97.7 95.7

Total employment 100 98.3 97.4

Labor productivity 100 99.4 98.3

JC(= JD) rate 0.28 0.25 0.21

of the entry mass M . Thus, the labor supply equation (20.14) can be used to determine the
level of entry mass M that is consistent with the labor market equilibrium Ld = Ls.

Hopenhayn and Rogerson (1993) calibrate the model with τ = 0 to the U.S. economy
and examine the effect of τ quantitatively. The model here is identical to theirs except
that (i) some notations are different, and (ii) they normalize the wage as 1 and the market
equilibrium determines the product price p, which corresponds to 1/w in our notation. We
also set the baseline κ = 0.

The calibration procedure follows Hopenhayn and Rogerson (1993). One period is set at
five years. First, the functional form of the utility function for consumption is assumed to
be natural log: u(c) = ln(c). Some parameters are set ex-ante. The discount factor is set at
β = 0.8, corresponding to the value of 4% per year. The production function parameter γ is
0.64, corresponding to the labor share.

To set other parameters, we assume that the (τ, κ) = (0, 0) case corresponds to the U.S.
economy and find the parameter values so that various statistics from the model-generated
data match the corresponding data moments. The parameters for the productivity process
are set using the property of the model that the property of the productivity shock is directly
reflected in the firm’s employment decision. By using the plant-level data from the U.S.
manufacturing, α = 0.076 so that the average size of the firms is 61.7 (the actual model
moment is 62.4), ρ = 0.93 so that the autocorrelation of ln(`) is 0.93, and σ = 0.253 so that
the variance of the growth rate for ` is 0.53. The operation cost cf = 18.0 so that the exit
rate is 37% (the actual model moment is 34%). The entrant’s productivity distribution ν
is set so that the size distribution of young firms matches the U.S. data. The entry cost
ce = 9.04 so that the free-entry condition holds with w = 1. The disutility of working χ is
set so that the steady-state labor supply L is 0.6.

20.5.2 The effects of firing taxes

Table 20.1 summarizes the steady-state outcomes of the model with τ = 0, τ = 0.1, and
τ = 0.2, keeping κ = 0. Because one period is assumed to be five years and the period
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wage (earnings per worker) with τ = 0 is 1, τ = 0.1 corresponds to six months’ salary
of a worker.10 For total output, total employment, and labor productivity, τ = 0 case is
normalized to 100.11

There are several important points to note. First, it is not a priori obvious whether the
equilibrium employment L goes up or down when τ increases. The reason is that the effect
on firing (the firms fire less because of the taxes) brings L up, whereas the effect on hiring
(the firms do not hire much even with a positive a shock, given that, in the future, the firm
may have to fire these extra workers) brings L down. Which one dominates is a quantitative
question; here, the latter effect dominates, and L decreases when τ increases to τ = 0.1 and
τ = 0.2.

Second, the productivity Y/L declines with τ . The reason is the misallocation mentioned
in Section 20.4. Because a firm with a good a shock does not expand as much as the first
best, and a firm with a bad a does not fire as much with the firing tax, labor is not allocated
properly across firms. These incentives imply that the marginal product of labor is dispersed
(in the first best, the marginal product of labor is equalized). The difference from Section
20.4 is that the misallocation stems from the firm’s dynamic decisions, especially for hiring.
Firing and exiting behaviors are also affected by dynamic considerations. In the general
equilibrium, misallocation also affects the wage level and entry of firms.

Third, the job creation (JC) rate, defined as (20.9), decreases with τ .12 The reallocation
of labor across firms is reduced because of the reluctance to hire and fire described above.
The lack of reallocation is, therefore, closely linked to productivity loss due to misallocation.

20.5.3 The effects of entry barriers

Table 20.2 describes the model outcome for κ = 0, κ = 0.5, and κ = 5.0, keeping τ = 0.13

As in Table 20.1, for total output, total employment, and labor productivity, κ = 0 case is
normalized to 100.

Entry barriers have a substantial effect on the model outcome. A higher cost of entry
implies that the value of firms has to be higher in equilibrium (see equation (20.13)), and a
high value of firms implies that the equilibrium wage has to be low. A low wage affects labor
productivity through three channels. First, a low wage implies that low-productivity firms
are less likely to exit. This effect pushes down aggregate productivity. Second, a low exit

10Moscoso Boedo and Mukoyama (2012) computes the costs of business regulations corresponding to τ
that explicitly shows up in the World Bank’s Doing Business dataset. The cross-country median of τ is
about eight months of annual wages, and the average of low-income countries is 1.2 times the annual wages.

11Although the calibration is the same as Hopenhayn and Rogerson (1993), the numbers are not exactly
the same. The reason for the discrepancy is likely from detailed differences in computation.

12Here, because the economy is in the steady state, the job creation rate is equal to the job destruction
rate.

13Moscoso Boedo and Mukoyama (2012) measures the costs of entry regulations corresponding to κ in the
World Bank’s Doing Business dataset. The cross-country median value of κ is 3.4 times the annual wages
(about 0.7 times the five-year wages), and the average of the low-income countries is 29.9 times the annual
wages (corresponding to 6 times the five-year wages. Note that although κ in the current model is not in
terms of annual wages, the baseline annual wage is set at 1.0, and thus the units are comparable.
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Table 20.2: Model results with entry barriers

τ = 0 κ = 0.5 κ = 5.0

Wage 1.000 0.986 0.879

Total output 100 98.6 87.9

Total employment 100 99.5 96.2

Labor productivity 100 99.1 91.4

JC(= JD) rate 0.28 0.28 0.28

rate means that the entry rate is also low in the steady state. Because the entrants are of
lower productivity than incumbents, this effect increases aggregate productivity. Finally, the
size of incumbents is larger with lower wages, and because of the decreasing returns to scale,
a large scale implies lower productivity. The first and third effect pushes down the aggregate
productivity, and the second effect pushes up; the lowering force dominates quantitatively.

The outcome of this exercise also highlights a heterogeneity in policy effects across differ-
ent firms. Whereas the entry barriers harm entry, it increases the value of incumbent firms.
When thinking about the policies on entry, there is an important conflict of interest between
incumbent firms and potential entrants.14

20.6 Alternative market arrangements

The above discussions have assumed that all markets are perfectly competitive. We have seen
in earlier chapters that many macro models consider alternative market arrangements. This
section introduces two alternative market arrangements with market power in the context
of firm heterogeneity. There are two takeaways from this section. First, the insights on
misallocation in Section 20.4 goes through with minor modifications. Second, the inclusion
of market power allows us to analyze how firm heterogeneity interacts with other macro
variables of interest, such as the aggregate level of markups.

20.6.1 Monopolistic competition

A popular alternative formulation in the macroeconomic context is monopolistic competition.
In this setting, firms produce differentiated goods, and only one firm produces each good.

A popular setting considers two types of goods, the final good and intermediate goods.
The final good is produced in a perfectly-competitive sector with constant returns to scale

14See Mukoyama and Popov (2014) for a politico-economic analysis of policies on firm entry.
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technology:

Y =

�∫
y
σ−1
σ

i di

� σ
σ−1

. (20.15)

where σ is the elasticity of substitution parameter. We assume σ > 1 so that the monopoly
problem of each intermediate-good producer is well-defined. The aggregate Y in (20.15)
can alternatively be considered as the utility by a consumer. This aggregation (20.15) is
sometimes called the Dixit-Stiglitz utility function.

Consider the setting in Section 20.1, except that (20.15) replaces (20.4) and that each
good i is now monopolistically produced by an intermediate-good producer i. The intermediate-
good producer’s production structure is the same as in Section 20.1. The same inputs are
used by the intermediate-good producers, and the input market is perfectly competitive.
The aggregation of input (20.5) remains the same.

First, consider the cost-minimization problem of the final good producer:

min
{yi}

∫
piyidi

subject to (20.15) for a given Y . Letting the Lagrange multiplier of the constraint be λ, the
first-order condition is

pi = λy
− 1
σ

i Y
1
σ , (20.16)

which implies ∫
piyidi = λY

and thus λ represents the (minimum) cost of producing one unit of the final good. Because
the final-good market is perfectly competitive, λ is also the price of the final good. Let us
call this price P . From (20.16),

P =

�∫
p1−σ
i di

� 1
1−σ

holds. As in Section 20.1, normalize the final-good price to be 1. Therefore, P = λ = 1 and
the inverse demand function for good i is, from (20.16),

pi = y
− 1
σ

i Y
1
σ . (20.17)

Keep in mind here that Y here is a shorthand that represents the production of all other
goods in (20.15).

The monopolistic producer i maximizes profit given the inverse demand function (20.17)
and its production function. The problem, which corresponds to (20.1) in Section 20.1, is

max
mi

(aim
γ
i )
− 1
σY

1
σ aim

γ
i − cmi. (20.18)

In the Nash equilibrium, each intermediate good firm i has to solve this problem given the
other firms’ input choices: mj for all j 6= i. The important assumption in the monopolistic
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competition is that each firm is small compared to the aggregate so that it ignores the effect
of mi (therefore yi) on Y . Therefore, each firm takes Y as given. With a similar step as in
Section 20.1, we can obtain the relationship

Y =
c

γ

σ

σ − 1
M

instead of (20.3), and the same expression for the aggregate production function (20.7) where
A is now modified to

A ≡
�∫

a
1

σ
σ−1−γ

i di

� σ
σ−1
−γ

instead of (20.6). Note that we have σ/(σ − 1) instead of 1, reflecting that each firm faces
another factor (in addition to the decreasing returns to scale) that limits firm size. One
important difference between this formulation from the basic model in Section 20.1 is that
we can now accommodate constant returns to scale (or even some increasing returns to scale).

20.6.2 Oligopoly and endogenous markups

In the model of monopolistic competition with the constant elasticity of substitution aggre-
gation (20.15), intermediate-good producers set a constant markup. To see this, first take a
look at the first-order condition of the problem (20.18):�

1− 1

σ

�
γa

1− 1
σ

i m
γ− γ

σ
−1

i Y
1
σ = c. (20.19)

Using (20.17), yi = aim
γ
i , and the fact that the marginal cost M ≡ ∂(cmi)/∂yi can be

expressed as

M =
cm1−γ

i

γai
, (20.20)

(20.19) can be rewritten as

pi =
σ

σ − 1
M. (20.21)

Therefore, σ/(σ − 1) is the markup and is constant as long as σ is constant.
In many contexts, this constant markup property is a convenient model feature. How-

ever, this feature also imposes some limitations: the model cannot be used to analyze the
endogenous changes in markups when the economic environment or policies change. The
question of markup determination is particularly relevant in the recent U.S. economy. As
mentioned in Section 20.3, De Loecker et al. (2020) observe that the level of markups has
increased since the 1980s in the U.S. economy. There are three different paths explored by
researchers: (i) departing from the monopolistic competition assumption; (ii) departing from
the CES assumption; and (iii) considering the endogenous difference in productivity across
firms. This section briefly introduces the first approach, following the formulation based on
Atkeson and Burstein (2008).
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Consider the same setting as in Section 20.6.1, but each intermediate good itself is the
combination of several products. Following Atkeson and Burstein (2008), call the collection
of J firms that produces inputs for the intermediate good i as the sector i. Within each
sector, let us index each firm by j and call a particular firm’s product a brand. The production
of intermediate good i is dictated by the function

yi =

[
J∑
j=1

q
η−1
η

ij

] η
η−1

. (20.22)

We assume that η < ∞, that is, brands are imperfect substitutes. We also assume that
η > σ > 1, that is, the brands are more substitutable within the sector than across sectors.
The final-good production function is (20.15). We keep assuming that each intermediate good
is small compared to the entire economy so that each firm does not consider the influence of
its production decision on the final good production Y (or the general price level). However,
it is sufficiently large within each sector so that it is aware of the influence on yi (and the
price of intermediate good i).

In this setting, the final good producer has to solve two layers of the cost-minimization
problem: (i) find the best combination of yi for a given Y , and (ii) find the best combination of
qij for a given yi. The first cost-minimization problem is identical to the one in Section 20.6.1.
The inverse demand function of yi is given by (20.17). The second-stage cost-minimization
problem can be solved similarly, and the result is

p̂ij
pi

= q
− 1
η

ij y
1
η

i , (20.23)

where p̂ij is the price of the brand j in sector i and pi is now the price of the sector-i good:

pi =

[
J∑
j=1

p̂1−η
ij

] 1
1−η

.

Note that (20.22) and (20.23) imply

piyi =
J∑
j=1

p̂ijqij. (20.24)

which is the consequence of (20.22) being a constant returns to scale function. Let the
production function for firm j in sector i be

qij = aijm
γ
ij, (20.25)

where mij is the “combined input” as before. The firm maximizes profit p̂ijqij − cmij. Using
the inverse demand function, the problem the firm solves is

max
qij ,mij

q
− 1
η

ij y
1
η

i y
− 1
σ

i Y
1
σ qij − cmij.
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subject to (20.22) (with qij for the other firms as given) and (20.25). As in the monopolistic
competition case, the firm takes Y as given. From the first-order condition, noting the
relationship (20.17) and (20.23), the pricing rule can be derived as

p̂ij =
ε(sij)

ε(sij)− 1
M, (20.26)

where M is the marginal cost (analogous to (20.20))

M =
cm1−γ

ij

γaij

and

ε(sij) =

�
1

η
(1− sij) +

1

σ
sij

�−1

. (20.27)

Here, sij is

sij =
p̂ijqij
piyi

=
p̂ijqij∑J
h=1 p̂ihqih

, (20.28)

where the second equation utilizes the relationship (20.24). Thus, sij is the sales share of the
firm j in sector i. Because sij ∈ [0, 1] and σ < η, ε(sij) takes the value between σ and η. In
particular, ε(sij) is η when sij = 0, monotonically decreases with sij, and reaches ε(sij) = σ
when sij = 1.

Comparing (20.21) and (20.26), the difference is that σ is replaced by ε(sij). In the
current model, the markup of firm j can vary depending on the sales share. When firms are
symmetric,

ε(sij) =

�
1

η

J − 1

J
+

1

σ

1

J

�−1

.

It is intuitive that the markup is the highest with ε(sij) = σ when J = 1 (monopoly
within the sector), which is exactly the monopolistic competition case (20.21). The markup
decreases as J increases and ε(sij) → η as J → ∞. This framework allows the monopoly
power (represented by the number of firms J) to be linked to the markup. When firms are
not symmetric (for example, the values of aij are different across firms), firm heterogeneity
can feed into heterogeneity in markups.

In the above derivation, we made the Cournot competition assumption: each producer
chooses its quantity given the quantities of the other producers in the same sector. Alterna-
tively, we can make the Bertrand competition assumption: each producer chooses its price
given the prices of the other producers in the same sector. It can be shown that the formula
(20.26) still holds, with different ε(sij):

ε(sij) = η(1− sij) + σsij

instead of (20.27), where sij is still defined by (20.28). The intuition is similar to the Cournot
competition case. See Appendix 20.A.4 for the details of the derivation.
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20.7 Business cycles and heterogeneous firms

As we saw in Section 20.3, many statistics on firm behavior, such as job creation and de-
struction rates and entry and exit rates, have clear cyclicality. It is natural, therefore, to
think of the causes and consequences of such cyclicality in firm dynamics.

Note that in the model of Section 20.5, firms face idiosyncratic shocks, but the aggregate
economy is stationary. The basic logic is simple: firm-level shocks are smoothed out by being
summed up across firms to create GDP. To illustrate, suppose that the GDP Yt is the sum of
firm-level output yit, i = 0, 1, ..., N .15 The growth rate of yit is identically and independently
distributed with mean 0 and variance σ2. That is,

yi,t+1 − yit
yit

= σεi,t+1,

where εi,t+1 is a random variable with mean zero and variance one. Then, the growth rate
of Yt is

Yt+1 − Yt
Yt

=
1

Yt

N∑
i=1

∆yi,t+1 =
N∑
i=1

yit
Yt
σεi,t+1.

Thus, the standard deviation of GDP growth rate, σY , is

σY = σ

Ì
N∑
i=1

�
yit
Yt

�2

. (20.29)

When the firms are of equal size, that is, yit/Yt = 1/N , σY = σ/
√
N . When there are one

million firms in the economy (there are over 5 million firms in the U.S. data), 1/
√
N = 0.001.

A typical standard deviation of the firm-level volatility is between 10% to 20%;16 thus, the
effect of idiosyncratic shocks on the aggregate volatility is about two orders of magnitude
smaller than the GDP volatility in the U.S. data. In other words, it is negligible compared
to the actual business cycle fluctuations.

20.7.1 Aggregate shocks and firm dynamics

A strand of literature takes the law of large numbers as given and adds aggregate shocks in
analyzing aggregate fluctuations. In that case, the model in Section 20.5 can be modified to
have a production function for the firm i:

yit = ztsit`
γ
it.

Here, the variable zt is added. As in the standard real business cycle model, zt can be
interpreted as the aggregate productivity shock. The model can then be calibrated and

15This illustration is based on the exposition of Gabaix (2011).
16Gabaix (2011) estimates it to be 12% in the U.S, data.
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computed. As discussed earlier, the Hopenhayn and Rogerson (1993) model has a block-
recursive structure. Therefore, computing this type of model is often substantially easier
than the computation of standard heterogeneous-agent models.

It is known that the modified Hopenhayn and Rogerson (1993) model does well in repli-
cating the aggregate fluctuations in statistics such as job creation and destruction rates and
entry and exit rates. There are some firm-level statistics that are difficult to replicate by a
simple modification of the Hopenhayn and Rogerson (1993) model.17

20.7.2 Can idiosyncratic shocks generate aggregate fluctuations?

Despite the law of large numbers result, some researchers believe that micro-level shocks
can have an important role in generating aggregate fluctuations. The calculation at the
beginning of this section made two assumptions: (i) the distribution of idiosyncratic shock
has a finite variance, and (ii) there are no input-output networks. This subsection introduces
the analysis of the economic environment where one of these two assumptions does not hold.

This research agenda is attractive because, since the outset of the real business cycle
research agenda, the fluctuations in aggregate shocks are often criticized for being a “black
box.” If we know that the cycles stem from idiosyncratic shocks, one can imagine that an
effective stabilization policy would target the firms whose idiosyncratic shocks matter for
the aggregate fluctuations.

Hulten’s theorem

Before discussing how micro shocks can matter for macroeconomic fluctuations, it is useful
to introduce a simple theorem by Hulten (1978). Let us think of a setting where there are
N different sectors indexed by i. Here, we use the terminology “sectors” because we would
like to think of a competitive equilibrium. Using “firms” would yield the same result as long
as firms behave as price-takers. Sector i’s production is yi. The production function is

yi = aiF (ki, `i, xi1, xi2, ..., xiN),

where ai is the TFP, xij is the sector-j product used in sector i, ki is capital used in sector
i, and `i is labor used in sector i. Note that the total sales

∑
i piyi is different from the total

value added (i.e., the GDP), which is equal to
∑

i pici, because some of the output is used
as the intermediate goods. Let Y =

∑
i pici.

Hulten’s (1978) theorem states that the output effect of

dY

Y
=
∑
i

Di
dai
ai
,

where Di is the weight called the Domar weight:

Di =
piyi∑
i pici

. (20.30)

17See Lee and Mukoyama (2018) for a detailed analysis.
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Di’s denominator is the total value added whereas the numerator is the sales of sector i.
The proof of the theorem can be found in Appendix 20.A.5.

Two pieces of intuition are key to understanding Hulten’s theorem. First, why does only
ai matter and not anything about inputs? The intuition is the envelope theorem. Because
the economy achieves the first best, the input allocation is already optimized. Therefore,
to the first-order approximation, the adjustment of inputs due to shocks to ai does not
have an impact on welfare. With the homothetic utility, the welfare result can be mapped
to GDP. Second, why is the numerator of the weight measured as sales? This question
seems natural, especially because the denominator is in value added, which implies that
the Domar weight does not necessarily sum up to 1. The intuition is that, when there are
input-output networks, the improvement in the TFP in a downstream firm also raises the
value of intermediate inputs.

To see the second point more clearly, consider the following simple example. Suppose
that there are two sectors, sectors 1 and 2. Sector 1 produces the consumption good, whose
price is normalized to 1. The production function is y1 = a1x

1−γ
1 `γ, where y1 is the output, a1

is the TFP, x1 is the intermediate input, and ` is the labor input. The parameter γ ∈ (0, 1).
Sector 2 produces the intermediate good using capital: y2 = a2k. The capital supply is
fixed at K and the labor supply is fixed at L. In the competitive equilibrium, because
Y = a1(a2K)1−γLγ,

dY

Y
=
da1

a1

+ (1− γ)
da2

a2

(20.31)

holds. Note that the weights in front of both TFP growths do not sum up to 1. To confirm
Hulten’s Theorem, let us compute the Domar weight of each sector. Let the price of the
intermediate good be p. In the competitive equilibrium, p = (1 − γ)a1x

−γ
1 Lγ holds, where

x1 = a2K. Thus, the value added of sector 2 is

V2 = (1− γ)a1(a2k)1−γLγ.

The value added of sector 1 is

V1 = Y − px1 = γa1(a2k)1−γLγ.

Thus, the Domar weight of sector 2 (because the sales are equal to the value added in sector
2) is V2/Y = (1− γ). The Domar weight of sector 1 (because the sales are Y ) is Y/Y = 1.
Both correspond to the coefficients on the right-hand side of (20.31), confirming Hulten’s
theorem. Note that if we consider the value added instead of sales in sector 1, the coefficient
is computed as V1/Y = γ.

Large firms

As we discussed in Section 20.3, there are many large firms in the U.S. economy. In fact, it
is known that the U.S. firm size distribution is “fat-tailed”: it can be closely approximated
by a Pareto distribution at the right tail. Figure 20.9 reproduces the data plot of Figure
2A in Carvalho and Grassi (2019). It plots the size of a firm, measured by employment,
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Figure 20.9: Distribution of firm size in log-log axes.

Source: Business Dynamics Statistics and Compustat. Reproduced from Carvalho and
Grassi (2019).

against the firm size “percentile” (the fraction of firms whose size is larger than the value on
the x-axis). The blue triangles use the same information as in Figure 20.1.18 Because the
publicly-available BDS table does not contain finer information on large firms, Carvalho and
Grassi (2019) utilizes the Compustat data, which includes only publicly-traded firms (red
circles). To the extent that large privately-held firms are rare, the red circles approximate
the distribution of large firms in the U.S. economy. One can see that the plot with log-log
axes is close to a straight line, indicating that the distribution is well-approximated by the
Pareto distribution.

Gabaix (2011) argues that when the distribution of firm size is fat-tailed, that is, there
is a considerable presence of large firms (as in the Pareto distribution), the formula (20.29)
implies a significant impact of σ on σY . In particular, he considers the case where the firm
size distribution is Pareto

Pr[yi > x] = χx−ζ , (20.32)

where χ and ζ are constants. The variable yi here is employment and Pr[yi > x] is the fraction
of firms whose sizes are larger than x. It is known that the U.S. firm size distribution has
ζ close to 1. (Because (20.32) implies ln(Pr[yi > x]) = −ζ ln(x) + ln(χ), this can be seen
from the slope of Figure 20.9 being close to −1.) Therefore, the empirically relevant case is

18The time period for Figure 20.9 is 1977–2012 whereas the time period for Figure 20.1 is 2019. Figure
20.9 plots in finer categories than Figure 20.1 does.
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ζ = 1. In this case, he derives

σY ∼
vζ

ln(N)
σ

as N →∞, that is, σY ln(N) converges to vζσ in distribution, where vζ is a random variable
that does not depend on N or σ. This formula implies that the GDP volatility is propor-
tional to 1/ ln(N) instead of 1/

√
N . The function 1/ ln(N) declines slower than 1/

√
N as

N becomes large (for example, 1/ ln(1, 000, 000) ≈ 0.072 whereas 1/
√

1, 000, 000 = 0.001).
Gabaix (2011) calculates that the coefficient on σ in the above formula would be approxi-
mately 0.12 instead of 0.001. The effect of idiosyncratic shocks is, therefore, two magnitudes
larger than the identical-firm case; thus the volatility induced by the idiosyncratic shock can
have an effect of a similar magnitude to observed business cycles. In a recent work, Carvalho
and Grassi (2019) build a quantitative business cycle model similar to the one in Section
20.5 and analyze the business cycle dynamics driven by idiosyncratic shocks to large firms.

Effects of production networks

An additional important factor that can magnify the effect of idiosyncratic shocks on the
aggregate economy is that the Domar weight (20.30) divides the firm sales by the aggregate
value added. Many large firms, such as Walmart, Amazon, and GM, have significantly larger
sales than their value added, magnifying their contribution to the aggregate fluctuations.
These firms are at the downstream of the production network, and the impact of their
productivity shocks on the aggregate GDP is larger than their value added.

Some researchers believe that there are further important implications of the production
network. Note that Hulten’s theorem builds on two assumptions: (i) the economy is efficient,
and (ii) the first-order approximation is sufficiently accurate. When these two assumptions
are not appropriate, network structures can play a role in considering the aggregate effects
of idiosyncratic shocks. For example, in a recent paper, Baqaee and Farhi (2019) argue that
there are situations where the second-order effect is quantitatively important. In another
paper, Baqaee and Farhi (2020) consider economies with distortions, and there the network
structure also plays a role.

20.8 Endogenous productivity

Given the importance of the idiosyncratic shocks in generating heterogeneity across firms
and their dynamics, it is natural to wonder what factors influence idiosyncratic productivity.
One natural framework that can be used to analyze this issue is the models of endogenous
productivity change, introduced in the economic growth chapter. Klette and Kortum (2004)
introduced a framework that can generate the entry, exit, expansion, and contraction of firms
due to endogenous innovation. Below, we explain the Klette and Kortum (2004) model with
discrete time.19

19Ates and Saffie (2021) also develops a discrete-time version of the Klette and Kortum (2004) model.
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Consider an economy with a continuum of products on the unit interval [0, 1]. We will
focus on the balanced-growth path of the economy, where all aggregate variables grow at the
same rate. The representative consumer’s utility function is

∞∑
t=0

βt ln(Ct),

where β ∈ (0, 1) is the discount factor and Ct is defined as

Ct = exp

�∫ 1

0

ln

�
Jt(j)∑
k=−1

qt(j, k)ct(j, k)

�
dj

�
. (20.33)

Here, j ∈ [0, 1] is the index of the product. The aggregation with natural log implies that
the elasticity of substitution across goods is 1. The index k is an integer which runs from −1
to Jt(j). The value of k represents the generation of the product: a newer generation (i.e., a
larger k) product is of higher quality. Jt(j) is the cutting-edge (state-of-the-art) generation of
good j. Generation k of product j (call it product (j, k) for short) contributes to consumption
in the form of qt(j, k)ct(j, k). Here, qt(j, k) is the quality of the product (j, k) and ct(j, k) is
the quantity of the product (j, k). The fact that the aggregation is additive across different
generations implies that different generations are perfect substitutes. If generation k′ has
twice the quality of generation k, that is, qt(j, k

′)/qt(j, k) = 2, consuming one unit of product
(j, k′) is equivalent to consuming two units of product (j, k).

The consumer faces two layers of problems: intratemporal and intertemporal. The in-
tratemporal problem is to think of how to allocate the expenditure across different goods at
each point in time. The intertemporal problem is to decide how much to spend across time.

Let us start by thinking about the intratemporal problem. Let Et be the expenditure
at period t and pt(j, k) is the price of product (j, k). First note that within product j, it is
optimal to only purchase the generation whose “quality-adjusted price” pt(j, k)/qt(j, k) is the
lowest. Therefore, let us only consider such generation k for each j. Then, the intratemporal
problem is

max
ct(j,k)

∫ 1

0

ln (qt(j, k)ct(j, k)) dj

subject to ∫ 1

0

pt(j, k)ct(j, k)dj ≤ Et. (20.34)

The solution is

ct(j, k) =
Et

pt(j, k)
. (20.35)

Given the solution to the intratemporal problem, the consumption of each period can be
rewritten as

Ct = Et exp

�∫ 1

0

[ln(qt(j, k))− ln(pt(j, k))]dj

�
.
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This relationship can be rewritten as

PtCt = Et,

where the price index for consumption is

Pt ≡ exp

�∫ 1

0

[ln(pt(j, k))− ln(qt(j, k))]dj

�
.

As in Section 20.6.1, normalize Pt = 1. This normalization implies∫ 1

0

ln(pt(j, k))dj =

∫ 1

0

ln(qt(j, k))dj (20.36)

at any t.
The intertemporal problem is now

max
Ct

∞∑
t=0

βt ln(Ct)

subject to
∞∑
t=0

�
1

1 + r

�t
Ct ≤ A0,

where A0 is the present discounted value of all future labor and asset incomes. The asset
income in this economy comes from the claim to the profit of the firms. Here, we are imposing
that the interest rate r > 0 is constant, given that we will focus on the balanced growth
path. The optimization results in the Euler equation:

1

Ct
= β(1 + r)

1

Ct+1

.

Along the balanced-growth path, Ct+1/Ct grows at a constant rate. Let us define γ ≡
(Ct+1 − Ct)/Ct. Then,

1

1 + r
=

β

1 + γ
. (20.37)

Each product (j, k) is produced by one firm. One firm can own several product lines. A
firm here is indeed defined as a collection of product lines. A small firm owns only a few
product lines, and a large firm owns many product lines. Although firms are heterogeneous
in this dimension, the analysis of the firm decision in the Klette and Kortum (2004) model
is relatively simple because the model has a structure that allows each of the firm’s product
lines to independently make the decision. In the following, we exploit that property and
analyze the firm’s decisions at the product-line level.

First, consider the production decision. Producing one unit of a product takes one unit
of labor.20 Thus, the unit production cost is wt. Given that the production cost is the same,

20As we saw in Section 20.6.1, the production scale remains finite even with constant returns to scale
because of the monopoly power.
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the cutting-edge producer (the “leader”) has an advantage over other producers (with the
older generation of product j). Because the demand elasticity is 1, the optimal pricing is
to set the price as high as possible. Here, the cutting-edge producer cannot increase the
price in an unlimited manner. Once the price is set sufficiently high, the Jt(j)−1 generation
producer can enter profitably. The highest price the cutting-edge producer can charge is

pt(j, Jt(j)) = λwt, (20.38)

where λ > 1 represents the technology step qt(j, k + 1)/qt(j, k). Here λ coincides with the
markup rate. This pricing behavior is called limit pricing.

Given the price, the period profit from one product line for the leader is

πt ≡ (pt(j, Jt(j))− wt)
Ct

pt(j, Jt(j))
=

�
1− 1

λ

�
Ct. (20.39)

From (20.36) and (20.38),

ln(λw0) =

∫ 1

0

ln(q0(j, J0(j))dj.

By normalizing q0(j, J0(j)) = λ for all j, this relationship implies w0 = 1.
Second, consider the innovation decision. We assume that innovation is also conducted

in each product line. In each product line, the firm decides the intensity of innovation η
with the required labor input R(η); therefore, the innovation cost is wtR(η), where R(·) is
an increasing and convex function. The intensity η represents the probability that the firm
gains another product line. When innovation is successful, in addition to the current product
line, the firm can start producing another product line. This newly-added product is λ times
better than the current cutting-edge product. This newly-added product is randomly chosen
from [0, 1]. Each firm is infinitesimally small compared to the entire economy; thus the
probability of innovating over its own product is zero, and the new innovation always takes
the market from another firm. Because other firms also innovate, each firm can also lose its
market for the product line. Let µ be the probability that other firms innovate and take over
the current product line. Along the balanced-growth path, µ is constant over time.

Denoting the value of a leader product line by Vt, the Bellman equation for the firm is

Vt = max
η

πt − wtc(η) +
1

1 + r
(1 + η − µ)Vt+1. (20.40)

The final term is the expected future value of the product line. There are four possible
scenarios for the current leader of the product j: (i) it innovates and is not taken over by
another firm; (ii) it fails to innovate and is taken over by another firm; (iii) both occurs; and
(iv) neither occurs. The probability of (i) is η(1 − µ) and the future value is 2Vt+1. The
probability of (ii) is µ(1− η) and the future value is 0. The probability of (iii) is µη and the
future value is Vt+1. The probability of (iv) is (1 − µ)(1 − η) and the future value is Vt+1.
Therefore, the expected future value is computed as (1 + η − µ)Vt+1, which can be seen in
the final term.
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Along the balanced-growth path, Vt, πt, and wt all grow at the common rate (1 + γ).
Dividing both sides of (20.40) by (1 + γ)t and using (20.37), (20.39), and w0 = 1,

v = max
η

�
1− 1

λ

�
C0 −R(η) + β(1 + η − µ)v, (20.41)

where v ≡ Vt/(1 + γ)t. The first-order condition is

R′(η) = βv. (20.42)

There are many potential entrants in the economy. As in Section 20.5, we assume free
entry. Entrant (with probability 1) can hire ce units of labor and enter. The free-entry
condition is

Vt = wtce.

Normalizing,

v = ce. (20.43)

Let the entry rate (the amount of entry at each period) be ν. We assume that each product
line receives only (up to) one innovation per period. Thus, the fraction of the product lines
that receive innovation is µ. Because the innovation is done by either entrants or incumbents,

µ = η + ν (20.44)

holds.

There are three types of labor demand: (i) production, (ii) innovation by incumbents,
and (iii) entry. From (20.35) and Et = Ct, production at time 0 is c0(j, k) = C0/λ and
thus the labor demand is C0/λ. For innovation by incumbents, R(η) units of labor are used.
For entry, ν units are demanded. The labor supply is fixed at L. Thus, the labor-market
equilibrium condition (using (20.44)) is

C0

λ
+R(η) + ν = L. (20.45)

In sum, the general equilibrium of the model solves four unknowns (v, η, C0, and µ) with
four equations:

v =

�
1− 1

λ

�
C0 −R(η) + β(1 + η − µ)v,

which is from (20.41), the first-order condition (20.42), the free-entry condition (20.43), and
the labor-market equilibrium condition (20.45).

Finally, we can calculate the economy’s growth rate, γ. In this economy, the consumption
Ct in (20.33) is equal to Et, which is aggregate expenditure (see (20.34)). Along the balanced-
growth path, the growth rate of Et is also equal to the growth rate of wt. From (20.36) and
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(20.38),

(γ ≈) ln(wt+1)− ln(wt) =

∫ 1

0

ln(pt+1(j, Jt+1(j)))− ln(pt(j, Jt(j)))dt

=

∫ 1

0

ln(qt+1(j, Jt+1(j)))− ln(qt(j, Jt(j)))dt

=

∫ 1

0

(ln(λJt+1(j))− ln(λJt(j)))dt

= E[ln(λJt+1)]− E[ln(λJt)]

= E[Jt+1] ln(λ)− E[Jt] ln(λ)

= µ(t+ 1) ln(λ)− µt ln(λ)

= µ ln(λ).

The first equality follows from (20.38), the second is from (20.36), and the third is from
the definition that Jt(j) is the cutting-edge generation at industry j. In the fourth equality,
we utilize the law of large numbers. Because each industry is subject to the i.i.d. shock
and there is a continuum of industries, we can replace the cross-sectional average with the
expected value when we interpret Jt as a random variable. The next inequality uses the fact
that Jt is viewed as a sum of Bernoulli trials with winning probability µ (i.e., every period,
the probability that a product receives an innovation is µ). The growth rate of the economy
depends on µ, which is driven by the innovation intensity by incumbents (η) and by entrants
(ν), and the innovation step λ.

The major strength of Klette and Kortum (2004) model over the traditional endogenous
growth models is that the definition of a firm is clear, and one can analyze the dynamics
of firms and the firm-size distribution. The analysis of firm-size distribution is somewhat
more complex than the original Klette-Kortum model, given that many events can happen
to a firm in the same period with the discrete-time formulation. The details are described in
Appendix 20.A.6. Although the firm-size distribution is not analytically straightforward in
the discrete-time version, it is straightforward to compute it on a computer. The advantage
of this model over the models with exogenous idiosyncratic shocks, such as the one in Section
20.5, is that it can analyze how the policies and changes to the economic environment can
affect the productivity process itself.

One simple statistic that we can compute is the average growth rate of the firm size.
First, note that because each product line produces the same quantity and employs the
same number of workers, the firm size distribution coincides with the distribution of product
lines across firms. As can be seen in the discussion of (20.41), the average number of product
lines in the next period per each line this period is (1+η−µ). Therefore, the average growth
rate of the firm size is η − µ. From (20.44), η − µ = −ν < 0. Thus, the average growth
rate of a firm is negative, and a large firm almost always contracts (due to the law of large
numbers). The property that a large and small firm have a common average growth rate
is called Gibrat’s Law, although it is usually stated in the context of the positive average
growth rate.
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There are several counterfactual predictions in Klette and Kortum (2004) model. Recent
literature made progress in modifying the model so that the model can replicate the salient
features of the data.

First, the firm with a higher quality product does not earn a higher profit on that product
line. This feature stems from two assumptions: (i) the elasticity of substitution across goods
is 1 and (ii) the technology is not cumulative. For the first point, the natural log specification
implies that the revenue of the leader is the same regardless of prices and quality level. With
higher substitutability, both can matter for the size and profit of the firm. For the second
point, any outside firm can innovate over the state-of-the-art product at the same cost as
the incumbent. If the model is extended so that the incumbent firm improves its own
product quality in equilibrium, there is an additional reason for the size and profit difference
(therefore, the idiosyncratic productivity shock in Section 20.5) across firms.

Second, the firm-size distribution does not feature a Pareto tail. Intuitively, it is very
difficult to create many large firms in this economy because the firm size contracts on average.
One alternative example is that, instead of a negative growth rate, a large firm has a positive
constant growth rate g. Suppose, in addition, all firms receive an exit shock with the
probability δ ∈ (0, 1). Consider a very large firm so that we can ignore the integer constraint
of product lines. Let us start from the firms between size n and n + ∆, where ∆ is a small
number relative to n. When the stationary density at n is h(n), the mass of firms between
these sizes is approximated by h(n)∆. In the next period, the surviving mass is (1−δ)h(n)∆.
After one period, size n will grow to (1+g)n and size n+∆ will grow to (1+g)(n+∆). Thus,
the mass between these new sizes will be (1 + g)h((1 + g)n)∆. Therefore, in the stationary
distribution,

(1 + g)h((1 + g)n)∆ = (1− δ)h(n)∆

has to hold. Guess that the distribution is Pareto: h(n) = Fn−(ζ+1), where F > 0 and ζ > 0
are parameters. In particular, ζ is the tail index that showed up in Section 20.7.2. The
above equation can then be rewritten as

(1 + g)F ((1 + g)n)−(ζ+1)∆ = (1− δ)Fn−(ζ+1)∆.

This equality holds for any n and ∆ when

ζ = − ln(1− δ)
ln(1 + g)

> 0.

Thus, we verified that the firm dynamics with positive (and constant) growth, combined
with a constant exit rate, can be consistent with the stationary distribution that is Pareto.
The tail index ζ is small (i.e., a thick tail) when δ is small or g is large. One question is
how we can modify the Klette and Kortum (2004) model to have a positive firm growth
rate at the right tail. One possibility is to break equation (20.44).21 For example, if some
innovation creates new products, there can be firm expansion without contributing to µ.
Suppose that the new product creation among the total innovation is ξ (i.e., among the total

21Luttmer (2011) discusses related insights.
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η + ν innovation, ξ creates new products, and µ = η + ν − ξ replaces existing products).
Then, the average growth rate of a firm, which is still η − µ, is now equal to ξ − ν (instead
of just −ν). If ξ is sufficiently large, ξ − ν can be positive.
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22.1 Introduction

With the exception of Chapter 11, which studies how macroeconomic aggregates evolve over
the longer run and how they compare across a wide selection of countries at a point in
time, the bulk of this textbook is designed to deal with advanced economies, i.e., countries
near the top of the world income per capita distribution. However, the term “advanced”,
like the similar notion “developed”, also suggests a dichotomy that goes beyond a relative
comparison of per-capita wealth or income. What is often referred to, in particular, is that
advanced, or developed, countries have market institutions – especially financial markets
but more generally the environments in which businesses operate – that are sophisticated
and enjoy a high degree of property rights protection, backed by well-functioning, democratic
governments. The goal of the present chapter is to depart from this focus and study business
cycles in countries we refer to as emerging-market economies. The attribute “emerging”
chiefly refers to a sense of having established at least basic market institutions and having
begun a transition toward becoming advanced/developed. In practical terms, emerging-
market economies include many countries in the middle of the world’s income distribution,
with a sectoral structure that ranges from a high dependence on the production of natural
resources and agricultural goods to relatively heavy industrialization and a large service
sector. They engage in active international trade, especially with the advanced economies.
The key point here, however, is not their specific output mix but rather the fact that the
governments of these countries engage in borrowing from international capital markets with
relatively weak commitment power to pay back loans: sovereign borrowing with a risk of
default. Sovereign defaults, when they occur, are highly disruptive but also lead emerging-
market business cycles to have different characteristics than those emphasized in Chapter
12. The present chapter thus reviews the key relevant facts and proposes a theory in which a
benevolent government – reflecting the interpretation that democracy produces governments
that pursue the interests of the people – participates in international capital markets and
borrows (and possibly lends) time but occasionally chooses to default.

22.2 Empirical patterns in Emerging Economies

Beginning with the dynamics of aggregate variables in advanced vs. emerging-market economies,
Aguiar and Gopinath (2007) and Neumeyer and Perri (2005) were the first to notice key dif-
ferences. They show that while aggregate consumption is less volatile than income in small
open advanced economies, it is more volatile than income in emerging economies. The extra
consumption volatility is at odds with the standard consumption-smoothing motive, which
prescribes that households save a fraction of the extra income earned during economic booms
to buffer the consumption drop during recessions. Table 22.1 illustrates the differences in
consumption volatility using an updated sample period relative to Aguiar and Gopinath
(2007). The differences in consumption volatility, though less stark than they had found it
to be, have persisted in recent decades.

The extra consumption volatility in emerging economies is accounted for by their external
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Table 22.1: Business Cycle Moments

σ(Y ) σ(C)/σ(Y ) σ(I)/σ(Y ) σ(NX/Y ) ρ(C, Y ) ρ(I, Y ) ρ(NX/Y, Y )

Argentina 3.9 1.2 3.3 2.6 0.9 1.0 -0.8

Brazil 1.7 1.2 3.2 1.0 0.8 0.9 -0.7

Ecuador 2.2 2.1 7.0 3.9 0.6 0.6 -0.4

Israel 1.5 1.0 2.3 1.1 0.7 0.6 0.2

Korea 2.0 1.6 2.5 1.7 0.9 0.9 -0.8

Malaysia 4.7 1.0 -.- 3.9 0.5 -.- -0.1

Mexico 2.3 1.0 3.2 1.3 0.9 0.9 -0.6

Peru 3.9 0.8 2.1 2.0 0.6 0.4 0.1

Philippines 1.1 0.7 5.5 1.7 0.2 0.6 0.2

Slovak Republic 2.2 0.8 3.6 2.1 0.5 0.6 -0.0

South Africa 1.0 1.6 3.8 1.0 0.8 0.6 -0.1

Thailand 2.2 0.8 2.5 3.2 0.6 0.5 0.1

Turkey 3.4 1.0 3.2 2.1 0.9 0.9 -0.6

Mean Emerging 2.5 1.1 3.5 2.1 0.7 0.7 -0.3

Australia 0.6 1.4 6.4 0.9 0.6 0.6 -0.3

Austria 1.2 0.6 1.9 0.7 0.5 0.7 0.4

Belgium 0.9 0.6 3.3 0.6 0.6 0.7 0.1

Canada 1.1 0.7 3.3 0.7 0.6 0.7 -0.0

Denmark 1.3 1.0 3.5 0.8 0.6 0.7 -0.1

Finland 1.9 0.6 1.9 1.1 0.7 0.9 0.3

Netherlands 1.2 0.8 7.0 1.9 0.8 0.4 -0.0

New Zealand 1.0 1.2 5.0 1.1 0.6 0.6 -0.2

Norway 1.1 1.0 5.2 1.0 0.6 0.5 -0.2

Portugal 1.3 1.2 3.6 1.1 0.9 0.9 -0.4

Spain 1.2 1.2 2.9 0.8 0.9 0.8 -0.6

Sweden 1.5 0.7 2.4 0.6 0.7 0.8 0.0

Switzerland 1.1 0.4 2.1 1.9 0.5 0.7 0.4

Mean Advanced 1.2 0.9 3.7 1.0 0.7 0.7 -0.0

Note: We use data from the same countries considered in Aguiar and Gopinath (2007). The
time series are quarterly and seasonally adjusted, and span the period Q1 1994 - Q4 2019
for whenever data are available. All variables are logged and filtered using the Hodrick-
Prescott filter, with a smoothing parameter of 1600. The standard deviations are reported
in percentage terms. We use Y to denote GDP, C to denote private consumption, I to
denote gross capital formation, and NX to denote net exports.
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borrowing behavior. In an open economy, agents can dissave by liquidating capital or by
accumulating net external liabilities. As in Aguiar and Gopinath (2007) and Neumeyer
and Perri (2005), Table 22.1 does not show significant differences in investment behavior
across the two groups, implying that most of the extra consumption volatility in emerging
economies is accounted for by their external borrowing behavior. This is reflected in a more
countercyclical trade balance for emerging economies. A typical pattern in several emerging
economies is to borrow from the rest of the world to finance trade balance deficits during
booms, and partially repay their external liabilities by running trade balance surpluses during
recessions. Again, this is at odds with standard consumption smoothing.

What accounts for the apparently puzzling borrowing behavior of emerging economies?
Alvarez-Parra, Brandao-Marques, and Toledo (2013), Garćıa-Cicco, Pancrazi, and Uribe
(2010), and Neumeyer and Perri (2005) argue that the borrowing cost plays an important
role. They estimate different versions of the small open economy model expanded with
various shocks and the following (simplified) aggregate budget constraint:

Ct+1 +Kt+1 = Yt +Kt(1− δ) + q(Yt, ηt, Bt+1)Bt+1 −Bt. (22.1)

The variable B denotes the net external liabilities, q denotes the price at which the economy
can issue debt, and η denotes a shock to the price q.1 Using samples of different emerg-
ing economies, different econometric methods, and simple ad-hoc parameterized forms for
q(Bt+1, Yt, ηt), Alvarez-Parra et al. (2013), Garćıa-Cicco et al. (2010), and Neumeyer and
Perri (2005) find that a price q that increases with income and decreases with debt plays
a key role in accounting for the strong countercylical trade balance, and thus, procyclical
external borrowing.

22.2.1 Sovereign defaults

The papers cited in the previous paragraphs assume that the economy always repays its
debt. In an environment in which the economy can default on its debt, the debt price
q becomes endogenous, as debt investors internalize potential future losses. A model of
sovereign defaults can thus provide the microfoundations for the observed behavior of the
borrowing cost.

Both the academic and policy literature on sovereign defaults typically use the definition
of a default event proposed by credit-rating agencies. This definition identifies as a default
event every episode in which the sovereign makes a debt restructuring offer with terms that
are less favorable to creditors than the original debt terms. Thus, default events include both
legal defaults in which the sovereign breaches the original debt contract, and “pre-emptive”
debt restructurings (renegotiations of debt terms before a payment has been missed). Ason-
uma and Trebesch (2016) find that 38% of debt restructurings between 1978 and 2010 were
pre-emptive.

1If the economy saves (it chooses Bt+1 < 0) by buying foreign bonds that pay the global risk-free interest
rate r, the bond price is q = 1/(1 + r).
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The most frequently used measure of creditors’ losses after a debt restructuring is the
present-value “haircut,” which is defined as

Haircut = 1−

∞∑
t=1

xPostt

(1+i)t

∞∑
t=1

xPret

(1+i)t

, (22.2)

where xPostt denotes the post-restructuring debt payment obligations in period t, xPret denotes
the pre-restructuring debt payment obligations in period t, and i denotes the bond yield pre-
vailing immediately after the restructuring (see, e.g., Sturzenegger and Zettelmeyer, 2005).
Cruces and Trebesch (2013) calculate that the average present-value haircut in sovereign
debt restructurings is 37%.

Sovereign defaults have been a relatively frequent event in emerging economies. The
updated dataset of Asonuma and Trebesch (2016) and Asonuma and Ranciere (2017) records
201 sovereign defaults to private creditors between 1970 and 2020. Figure 22.1 depicts the
average fraction of sovereign debt in emerging economies that are in default. The latest
observation shows that at the end of 2022, the fraction of emerging economies’ sovereign
debt in default represented 2% of the GDP in emerging economies.

Sovereign default facts

Aguiar and Amador (2014) summarize the key characteristics of sovereign defaults.
First, they tend to occur in bad times. Tomz and Wright (2007) find that more than
60% of sovereign defaults occurred in years when the GDP was below trend. This is
consistent with the aforementioned countercyclicality of the borrowing cost in emerging
economies. Secondly, sovereign defaults are followed by years of negotiations between
the sovereign and its creditors. Thirdly, defaults end when sovereigns settle their debt
in default with a debt restructuring (in which defaulted debt instruments are exchanged
for new debt instruments). Asonuma and Trebesch (2016) and Asonuma and Ranciere
(2017) report an average of 3.2 years between the onset of default and its settlement
with creditors, with a significant heterogeneity in default durations and haircuts. For
example, preemptive restructurings have an average negotiation time of 12 months, and
post-default restructurings have an average negotiation time of 60 months.

22.2.2 Sovereign spreads

As a consequence of default risk, emerging economies’ sovereign bond yields command a
premium over safer bonds.2 The Emerging Markets Bond Index (EMBI) computed by J.P.
Morgan is the most commonly used reference for bond yields for sovereign debt in emerging

2The bond yield at time t represents the hypothetical return an investor would make if it holds the bond
until the maturity data and the bond is not defaulted on.
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Figure 22.1: Fraction of public debt in default for emerging economies.

Notes: The series is expressed as a percentage of the combined GDP of emerging economies.
Source: 2023 Bank of Canada Sovereign Default Database.

economies. The index measures the sovereign yield spread, i.e., the extra yield of US dollar-
denominated bonds over similar bonds issued by the US government.

Table 22.2 shows that sovereigns in emerging economies pay a significant and volatile
premium when they borrow from international markets. Also, the fourth column shows that
the premium increases when the GDP is below trend. The high, volatile, and countercyclical
sovereign spreads here are consistent with the findings in Alvarez-Parra et al. (2013), Garćıa-
Cicco et al. (2010), and Neumeyer and Perri (2005). The last section of this chapter presents
a quantitative sovereign default model in which the spread is endogenous and displays the
same behavior as in the data. We show that this feature plays an important role in accounting
for the distinctive business cycle fluctuations of emerging economies.

Table 22.3 illustrates the potential determinants of the sovereign spread. It presents the
results of a fixed-effects panel regression that estimates

log (Spread)it = α + βXit + δi + ηit, i = 1, ..., N, t = 1, ..., T,

where i denotes the country index, t denotes the year, Xit is a vector of control variables
for country-specific and global macroeconomic factors, δi are country fixed effects; and ηit
represents disturbances that are independent across countries and time. The table shows
that the spread (i) increases with the total government debt, (ii) decreases with GDP growth,
(iii) decreases with foreign reserves owned by the sovereign, and (iv) increases with the VIX
index (reflecting global financial conditions).3 While we cannot extract causal relationships

3The results in the table are similar to the ones reported in Jaramillo and Tejada (2011), Akitoby and
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Table 22.2: Sovereign spread yield

E(Spread) σ(Spread) ρ(Spread, Y)

Argentina 732 377 -0.5

Brazil 514 380 -0.2

Ecuador 1021 647 -0.6

Korea 162 116 -0.7

Malaysia 174 115 -0.3

Mexico 318 221 -0.4

Peru 307 199 -0.1

Philippines 283 172 -0.3

Slovak Republic 57 36 -0.6

South Africa 242 111 -0.3

Thailand 155 112 -0.5

Turkey 385 199 -0.5

Average Emerging 362 224 -0.4

Note: The sovereign spread is expressed in basis points. The spread series is quarterly and
spans the period Q1 1994 - Q4 2019 whenever data is available. We removed periods in
which the sovereign is in default. The series for aggregate GDP (Y ) was logged and filtered
using the Hodrick-Prescott filter with a smoothing parameter of 1600.
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Table 22.3: Panel regressions

Coeff. SE

Public debt to GDP 0.020 (0.004)

Real GDP growth -0.042 (0.006)

Reserves to GDP -0.033 (0.017)

Net gov borrowing to GDP 0.020 (0.014)

VIX 0.034 (0.003)

Observations 523

R-squared 0.77

Number of countries 33

Note: We use annual data from a sample of 33 emerging market countries spanning from
1994 to 2018. Robust standard errors are in parentheses.

from Table 22.3, the findings suggest a strong link between the sovereign spread, sovereign
borrowing, domestic shocks to economic activity, sovereign asset accumulation, and global
financial shocks.

Costs of sovereign risk On top of the adverse effects of sovereign risk on economic
stability and business cycles presented above, following the Eurozone crisis, a recent branch
of the literature has focused on the adverse effects of sovereign risk on investment and growth.
For example, Arellano, Bocola, and Bai (2024) find that a 100 basis points increase of the
sovereign spread leads to a 64 basis points increase in firms’ borrowing cost. They also
calculate that in 2012, if the sovereign spread had not increased, real GDP in Italy would
have fallen 3.2 percent instead of 6.4 percent.

The costs of sovereign risk were also apparent during COVID-19, when countries with
higher risk suffered a stronger deterioration of their borrowing opportunities and thus had
more limited resources to mitigate the adverse effects of the pandemic. Figure 22.2 shows
that the spread increase after COVID-19 was typically larger for countries that were already
facing a higher sovereign spread (reflecting higher risk) before the pandemic. In particular,
countries with a pre-COVID spread below 300 basis points only suffer a spread increase
below 100 basis points.

Stratmann (2008), and other studies.
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Figure 22.2: EMBI Spread increase after COVID-19.

Notes: The (average daily) spread and spread change (2020 average minus 2019 average)
are expressed in basis points. We removed countries with a spread higher than 1000 basis
points in 2019 (Argentina, Lebanon, and Venezuela). Source: Bloomberg.

22.2.3 Debt intolerance.

The inability of sovereigns in emerging economies to commit to repaying their debt con-
strains their borrowing capacity. This feature has been emphasized in the literature on debt
intolerance. Debt intolerance can be understood as a mapping from public debt to sovereign
default risk. Debt intolerance varies both across countries and over time (Reinhart, Rein-
hart, and Rogoff, 2015; Reinhart, Rogoff, and Savastano, 2003). Figure 22.3 illustrates
variations in the mapping between public debt ratios and sovereign default risk (measured
using credit default swap spreads). First, the figure shows that there is significant hetero-
geneity in the debt-spread mapping. Economies like Thailand or Uruguay can feature public
debt ratios above 50% while incurring modest default risk, while Turkey incurs a substantial
default risk at lower debt ratios. Second, some economies have accumulated significant debt
without increasing their default risk (e.g., China and Thailand), while others experience an
increase in default risk after debt accumulation (e.g., Brazil). Finally, the mapping from
debt and spread significantly shifts over time. For instance, default risk in Portugal, Greece,
and Latvia declined significantly between 2010 and 2023, without substantial debt reduc-
tions (note also that before 2008, markets were pricing a nearly zero default risk for most
Eurozone economies).

We will show how assuming shocks to global risk premia and/or aggregate income,
sovereign default models can account for the volatility of default risk observed in the data
for one country. However, those shocks alone are insufficient in accounting for the cross-
country heterogeneity in the debt-spread mapping and some of the time variation in debt
levels within countries. This suggests the presence of structural heterogeneity in default
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incentives across countries and time.
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Figure 22.3: Credit default swaps (CDS) spread and public debt ratios for emerging and
advanced economies.

Notes: The origin point of each arrow illustrates the debt-spread combination in 2010, and its end point
the debt-spread combination in 2023. We use the CDS spread because it enables us to expand the sample
of countries to advanced economies. Sources: Bloomberg and IMF-WEO database.

The difficulty for governments in emerging economies of issuing debt in their own currency
has been associated with the debt intolerance problem in these economies. This contrasts
with the landscape in advanced economies, which typically issue debt in their own currencies.
Eichengreen and Hausmann (1999) refer to the issuance of debt denominated in foreign
currency as the “original sin.” Issuing debt in foreign currency is problematic in part because
the exchange rate tends to depreciate in bad times, increasing the foreign-currency debt
burden (in comparison with the government’s income, which is mostly determined in local
currency; Hausmann, 2003).

The left panel of Figure 22.4 shows that the share of sovereign debt issued in foreign
currency is positively correlated with the sovereign spread. The difficulty emerging economies
have had in issuing debt in their own currency has been linked to pitfalls in their ability to
conduct monetary policy (Du, Pflueger, and Schreger, 2020; Engel and Park, 2022; Ottonello
and Perez, 2019). Some countries are increasingly overcoming this problem: Du and Schreger
(2016) show how sovereigns in emerging economies are borrowing more in their local currency.
The right panel of Figure 22.4 shows that many emerging economies have managed to issue
less foreign currency sovereign debt.
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Figure 22.4: Spreads and foreign currency sovereign debt.

Notes: The left panel shows a positive association between the CDS spread (in basis points)
and the share of foreign currency sovereign debt in emerging economies. The right panel
illustrates how the share of foreign currency sovereign debt in emerging economies changed
from 2000 to 2023. Source: WEO database and Bloomberg.

22.2.4 Remedies

The most notable difference between sovereign debt and household or corporate debt is
that the former lacks a well-specified bankruptcy protocol. One avenue that sovereigns in
emerging economies have followed to enhance their repayment credibility is to issue debt in
foreign financial centers, and thus under the jurisdictions of foreign courts.4 However, in

4Sovereigns also increase their cost of defaulting by introducing debt covenants that include acceleration
and cross-default clauses. Acceleration clauses allow creditors to call all future payments in a bond in case
the government defaults on one payment of that bond. Cross-default clauses state that a default in any
government debt obligation constitutes a default in the contract containing the cross-default clause.
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contrast to the ability of courts to force payments by private agents, it is very difficult for
foreign courts to enforce payments by sovereigns. Thus, while posting collateral is a strategy
often followed by households and firms to obtain loans at a lower interest rate, with a few
notable exceptions, sovereigns have a limited ability to credibly pledge collateral (Hatchondo
and Martinez, 2011). This is because the principle of sovereign immunity limits creditors’
right to confiscate sovereign assets.

Fiscal rules as remedies to sovereign risk. Figure 22.5 shows that an increasing num-
ber of countries are adopting fiscal rules, in part to limit “excessive” borrowing, sovereign
risk, and costly sovereign default episodes.5 The figure also shows that the bulk of coun-
tries adopting fiscal rules are limiting the debt level (limits to the fiscal budget balance
or the fiscal expense also constrain the debt level). Aguiar, Amador, and Fourakis (2020)
and Hatchondo, Martinez, and Roch (2022a) use a sovereign default model to quantify the
benefits of debt limits.

However, the variation in debt intolerance across countries and time described above
presents challenges for the use of debt levels as anchors in fiscal rules. For example, the
variation of debt intolerance across countries makes it challenging to introduce the same
debt limit to a group of heterogeneous countries, as with the Maastricht treaty for Eurozone
members. The common limit is likely to excessively restrain public borrowing for some of
the countries in the group with low debt intolerance (that could otherwise expand debt
without significant increases in default risk). At the same time, the common limit may be
ineffective for economies with high debt intolerance (that could display significant sovereign
risk for lower debt levels). Likewise, a time-invariant fiscal rule can become inadequate for
economies that present time-varying debt intolerance.

The limitations of debt levels as fiscal anchors were underscored in recent debates about
reforming the European Union fiscal framework. Blanchard, Leandro, and Zettelmeyer
(2020) propose to replace debt-limit fiscal rules with fiscal standards (i.e., qualitative pre-
scriptions that leave room for judgment) guided by probabilistic analysis that reflects the
level of sovereign risk (as done by the IMF for their sovereign risk assessment for market-
access countries; IMF, 2022). Similarly, Hatchondo et al. (2022a); Hatchondo, Martinez, and
Roch (2022b) propose to use the sovereign spread (reflecting sovereign risk) as the anchor
for fiscal rules. Furman and Summers (2020) suggest focusing on the government’s interest
payments to account for fluctuations in the (risk-free) interest rate.

Low-income countries

Following the literature, this chapter has focused on emerging economies. One key
difference between low-income countries and emerging economies is the more predom-
inant role of official debt in the former, often in the form of concessional loans (e.g.,
with an interest rate below the market rate or with grace periods). While official debt

5Fiscal rules in Figure 22.5 impose at least one and often more than one numerical target. These targets
may limit the level of debt, the budget balance, revenues, and expenditures.
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Figure 22.5: Number of countries with fiscal rules.

Source: IMF Fiscal Rules dataset.

is sometimes restructured, the majority of official debt restructurings do not feature
face-value write-offs (Cheng, Diaz-Cassou, and Erce, 2016; IMF, 2023), with some well-
known exceptions such as the 1996 Heavily Indebted Poor Countries Initiative. For
example, the Debt Service Suspension Initiative for the official bilateral debt of poorer
countries implemented during COVID-19 (Lang, Mihalyi, and Presbitero, 2023) did not
include face-value write-offs. Thus, in contrast with the sovereign spread for emerging
economies discussed above, the interest rate governments pay for official debt typically
does not reflect default risk. The preponderance of official debt can have a significant
effect on sovereign risk, which is the focus of the sovereign default literature as well as
this chapter. In fact, the ability of governments to obtain debt in concessional terms is
the key criterion of the International Monetary Fund for deciding on the framework used
for assessing the risk of debt distress in a country (IMF, 2013). Horn, Reinhart, and
Trebesch (2021) discuss the increasing importance of China as a lender. This includes
the “Belt and Road” initiative to finance and build infrastructure.
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The rest of the chapter presents first a stylized two-period version of the canonical equilib-
rium default model used to integrate sovereign risk in the analysis of aggregate fluctuations
in emerging economies. We then show how the infinite-horizon version of the model (pre-
sented in the appendix to this chapter) can account quantitatively for the distinctive features
of business cycles in emerging economies. In the default model, both the interest rate and
the sensitivity of the interest rate to borrowing increase in bad times, generating the coun-
tercyclical trade balance and a volatility of consumption higher than the volatility of income
that is characteristic of emerging economies.

22.3 A stylized two-period default model

As Eaton and Gersovitz (1981), we focus on a small-open economy model with strategic
defaults. Following Aguiar and Gopinath (2006) and Arellano (2008), an extensive literature
uses the infinite-horizon version of this model for the quantitative analysis of aggregate
fluctuations in emerging economies. We first present a stylized two-period model that is
amenable to an analytical characterization of how default risk constrains the sovereign’s
choices. We then proceed to presenting the infinite-horizon version of the model used for
quantitative analysis.

The small-open economy is populated by a continuum of identical households (who do
not make any choices) and a benevolent government that maximizes households’ welfare.
That is, the domestic economy is modeled as a single agent that we call the government.
The economy lasts for two periods, t = 1, 2. The economy is endowed with Y2 goods in
period 2.6 The endowment realization Y2 is stochastic. Let F and f denote the c.d.f. and
density functions of Y2, with f(Y2) > 0 for all Y2 ≥ 0. We assume the economy is endowed
with Y1 = 0 goods in period 1, and the government enters period 1 with zero debt. This
ensures the government needs to borrow in period 1.

The government’s objective is to maximize the social welfare function

u(C1) + βEu(C2),

where u denotes the consumers’ utility function, Ct denotes consumption in period t, β ∈
(0, 1) denotes households’ discount factor, and E denotes the expectation operator. The
utility function satisfies u′ > 0, u′′ < 0, and the Inada condition.

In period 1, the government can borrow to finance consumption. A bond issued in period
1 promises to pay one unit of the single good in period 2. Bonds are issued to foreign,
risk-neutral investors that operate in a competitive market. To simplify notation, we assume
these investors discount future payments at a rate of 1, i.e., they ask for a zero interest rate
compensation when purchasing bonds.

The government cannot commit to repaying its debt in period 2. If the government
defaults, it does not pay its debt but loses a fraction φ > 0 of Y2. For sovereign debt to
materialize in equilibrium, it must be more costly for a sovereign to default than to pay back

6Each household is endowed with y2 = Y2 goods.
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its debt for at least some states of the economy. Without a cost of defaulting, the government
would always default and, anticipating this, investors would never lend. At the same time,
for sovereign defaults to also occur in equilibrium, there must be some states for which it is
more costly for the government to pay back its debt than to default. Most of the quantitative
default literature presents a simple formulation of the cost of defaulting calibrated to match
properties of the sovereign spread in the data. Measuring the effect of default on income is
difficult because of a reverse causality problem: while defaults could have a negative effect
on income, low income (and the expectation of low income in the future) may push the
government to default. In contrast, sovereign spreads are easily measured, and the dynamics
of sovereign spreads in the simulations of the quantitative model are determined by the
assumptions on the default cost.7

As is standard in the literature, we use the Markov-Perfect equilibrium concept. This is,
we assume that in period 1, the government cannot commit to its period-2 default decision.
Thus, one may interpret this environment as a game in which the government making deci-
sions in period 1 is a player who takes as given the default strategy of its future self, who
will decide in period 2.

Equilibrium borrowing and default

To characterize the equilibrium in this model, we solve it backwards.

Period 2

Let B2 denote the number of bonds issued by the government in period 1 and that mature
in period 2. Let D2 denote the default decision in period 2, where D2 = 1 (0) indicates that
the government defaults (repays). Since there is no borrowing in period 2, consumption in
period 2 satisfies

C2 =

 Y2 −B2 if D2 = 0, and

Y2 − φY2 if D2 = 1.
(22.3)

We assume that the government repays when it is indifferent between repaying and
default. The government decides whether to default in period 2 maximizing utility u(C2).
Therefore, the government picks the highest possible value for C2, implying that it defaults
if and only if the cost of defaulting (φY2) is below than the cost of paying its debt (B2). Let

7The literature discusses as possible costs of sovereign defaults financial penalties in the form of higher
borrowing costs and/or exclusion from debt markets for defaulting countries (Cruces and Trebesch, 2013),
direct sanctions and trade costs (Asonuma, Chamon, and Sasahara, 2016), reputational spillovers (Cole and
Kehoe, 1998 and Amador and Phelan, 2021), and domestic financial and political costs (Broner, Martin,
and Ventura, 2010). As presented in the Appendix, the quantitative default model often assumes that the
defaulting country is excluded from debt markets for a stochastic number of periods. This assumption does
not have a significant effect on the properties of the model (Hatchondo, Martinez, and Sapriza, 2007). Bulow
and Rogoff (1989) show that assuming financial autarchy as the only cost of defaulting would not be enough
to support debt in equilibrium.
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D̂2 and Ĉ2 denote the equilibrium default and consumption decisions in period 2. It follows
that

D̂2(B2, Y2) =

 1 if Y2 < B2/φ, and

0 otherwise.
(22.4)

and

Ĉ2(B2, Y2) = Y2 − D̂2(B2, Y2)φY2 − [1− D̂2(B2, Y2)]B2.

Period 1

In period 1, investors bid to purchase bonds. Since we assumed investors do not discount the
future, they bid a price q1 that coincides with what they expect to recover from each bond.
Since each sovereign bond promises to pay one unit of the good in period 2, what lenders
expect to recover is this one unit multiplied by the probability of repayment. Formally, the
equilibrium bond price satisfies

q1(B2) = E
�
1− D̂2(B2)

�
= Pr(Y2 < B2/φ) = 1− F (B2/φ) . (22.5)

In a rational expectations equilibrium, the repayment probability expected by lenders is
determined by the government’s equilibrium default decision, as specified in equation (22.4).
The price q1 is an equilibrium because: i) if investors offered to buy bonds at a higher price
than q1(B2), they will earn negative profits in expectation, and ii) if they offered a lower
price than q1, they will be outbid by other investors.

Equation (22.5) illustrates how, in equilibrium default models, borrowing choices available
to the government are restricted by the limited commitment problem. The bond price
decreases with the number of bonds issued. The government’s inability to commit to repaying
in period 2 limits how much it can borrow in period 1.8

At the beginning of period 1, the government chooses how much to borrow taking as
given its own equilibrium default decision in period 2 (equation 22.4) and the implied bond
price schedule (equation 22.5). Thus, the government’s problem in period 1 consists of

Max
B2≥0

¦
u (C1) + βE

�
u
�
Ĉ2(B2, Y2)

��©
s.t. C1 = B2q1(B2).

Equilibrium borrowing B̂2 satisfies

u′ (C1(B2))

�
q1(B2) +B2

dq1(B2)

dB2

�
= βE

�
u′
�
Ĉ2(B2, Y2)

� �
1− D̂2(B2, Y2)

��
. (22.6)

8Note that following the majority of the literature and to be consistent with the most commonly used
sovereign debt instruments, we are assuming the government issues non-contingent debt. In our stylized
model, allowing the government to issue income-contingent debt would expand its borrowing opportunities
and eliminate defaults (Hatchondo and Martinez, 2012). Roch and Roldán (2023) discuss limitations of
state-contingent debt instruments.
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Equation (22.6) shows how the Euler equation in a model with defaults is different from
the one in a model without default. The current marginal benefit of issuing an extra bond
depends on the value of increasing consumption in period 1 (u′(C1)), and the marginal
revenue from issuing an extra bond (q1 + B2dq1/dB2). In a default model, this marginal
revenue depends on the derivative of the bond price because when the government issues an
extra bond, it increases the default probability on all the bonds issued in period 1, not only
the default probability on the extra bond issued. The right-hand side represents the expected
repayment cost of issuing an extra bond. This cost is determined by the additional resources
the government would need to take from households in period 2 to repay B2, reducing
consumption in repayment states (when D̂2 = 0). Since we assumed the government writes
off the entire debt stock when it defaults, consumption in default states does not depend on
B2.

22.4 Simulations using a quantitative default model

This section presents simulation results from a quantitative infinite-horizon version of the
default model (in which the government faces income shocks and can choose whether to
default in every period) calibrated using data from Mexico as reference. We first describe
the fully dynamic environment here and define the equilibrium we will study (using dynamic
programming). This model is a straightforward extension of the two-period model above,
but solving it requires more advanced numerical methods and we explain different methods
in the Appendix 22.A), along with a description of the details of the calibration.

22.4.1 The environment

Preferences. The sovereign’s preferences are given by

Et
∞∑
j=t

βj−tu (Cj) .

The utility function is strictly increasing and concave.

Technology. We assume that the economy receives a stochastic endowment stream of a
single tradable and perishable good. The economy’s endowment is denoted by Y ∈ R++.
The endowment process follows:

log(Yt) = (1− ρ)µ+ ρ log(Yt−1) + εt,

with |ρ| < 1 and εt ∼ N (0, σ2
ε).

Debt Structure. The sovereign issues long-term bonds. Since the relevant state space
for the sovereign consists of the future stream of debt payments, long-term bonds need
to be modeled in a way that maintains tractability. We assume that the sovereign issues
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perpetuities that promise a deterministic stream of coupons that decreases at an exogenous
constant rate δ (Hatchondo and Martinez, 2009; Arellano and Ramanarayanan, 2012). In
particular, a bond issued in period t promises to pay δ(1− δ)j−1 units of the tradable good
in period t+ j, for all j ≥ 1. Hence, debt dynamics can be represented by the following law
of motion:

Bt+1 = (1− δ)Bt + It, (22.7)

where Bt is the number of bonds due at the beginning of period t, and It is the amount
of bonds issued in period t. The advantage of this formulation is that the current debt
stock (Bt) is sufficient for predicting the future stream of debt payments (absent future
debt issuance). Equation (22.7) is akin to the equation for capital accumulation in the
neoclassical growth model. In that model, agents do not need to know when each unit of
capital was incorporated into the economy because all capital units depreciate at a constant
rate. Equation (22.7) shows that agents in this model do not need to know when each bond
was issued because all bond payments decline at the same rate.

Budget constraint. Let qt denote the price at which the sovereign issues bonds. When
the sovereign has access to debt markets, it faces the following budget constraint:

Ct + δBt = Yt + Itqt. (22.8)

The sovereign finances consumption (Ct) and coupon payments (δBt) with income (Yt) and
the resources collected from debt issuance (Itqt).

Defaults. The sovereign cannot commit to repay its debt obligations and can declare a
default in any period. When the sovereign defaults, it does so on all current and future debt
obligations.9 The canonical model assumes that the recovery rate for debt in default (i.e.,
the fraction of the loan that lenders recover after a default) is zero (this assumptions has
been relaxed in several studies and is inconsequential for the issues we underscore in this
chapter).

The cost of defaulting is that the sovereign is excluded from debt markets for a stochastic
number of periods and suffers an income loss φ(Yt) in each period in which the economy is
excluded from debt markets. As in Arellano (2008) and Chatterjee and Eyigungor (2012),
we assume that it is proportionally more costly to default in good times (φ(Y )/Y increases
in Y ). They show that this property is important in accounting for spread dynamics.10

Bond market. Bonds are priced in a competitive market inhabited by a large number of
foreign investors. Thus, the bond price qt is pinned down by a zero-expected profit condition.
Investors are risk-neutral and discount future payoffs at the rate r, representing the global
risk-free interest rate and thus the investors’ opportunity cost of lending.

9This is a standard assumption in the literature and is consistent with the observed behavior of defaulting
sovereigns and the widespread presence of the acceleration and cross-default clauses.

10Mendoza and Yue (2012) shows that this property of the cost of defaulting arises endogenously in a
setup in which defaults affect the ability of local firms to acquire a foreign intermediate input good.
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Timing. The timing of events within each period is as follows. Firstly, the sovereign and
investors observe the income realization. Secondly, the sovereign chooses whether to default
on its debt. Thirdly, if the sovereign does not default, it pays current debt obligations and
rebalances its debt portfolio.

Equilibrium concept. We use the Markov-Perfect equilibrium concept. The sovereign
cannot commit to future default and borrowing decisions. The strategy for the sovereign
acting in period t is assumed to depend only on payoff relevant variables, which in this
environment consist of debt and income in period t (Bt, Yt).

22.4.2 Recursive formulation

Let D denote the current-period default decision, where D = 1 if the sovereign defaults and
D = 0 if the sovereign repays. Let V denote the sovereign’s value function at the beginning
of a period, that is, before the default decision is made. Let V R denote the value function
of a sovereign that has repaid its debt and V D denote the value function of a sovereign in
default. The function V satisfies the following functional equation:

V (B, Y ) = max
D∈{0,1}

{DV D(Y ) + (1−D)V R(B, Y )}. (22.9)

If the sovereign defaults, the economy consumes its available resources y − φ(Y ). With
probability ψ, the sovereign may regain access to bond markets in each of the following
periods. Let F denote the conditional cumulative distribution function of the next-period
endowment y′. The function V D satisfies the following functional equation:

V D(Y ) = u (Y − φ (Y )) + β

∫ [
ψV (0, Y ′) + (1− ψ)V D(Y ′)

]
F (dY ′ | Y ) . (22.10)

Note that the sovereign regains access to debt markets with zero debt and thus, the contin-
uation value of that contingency is V (0, Y ′).

If the sovereign repays, current consumption is determined by equation (22.8). We avoid
a potential discontinuity at B′ = 0 with the constraint B′ ≥ 0. We verify that this constraint
is not binding in the simulations.11 For any bond price function q, V R satisfies the following
functional equation:

V R(B, Y ) = max
B′≥0

§
u (C) + β

∫
V (B′, Y ′)F (dY ′ | Y )

ª
, (22.11)

s.t. C = Y − δB + q(B′, Y ) [B′ − (1− δ)B] .

11In the simulations, the sovereign typically does not even buy back debt (i.e., it never chooses B′ <
(1 − δ)b). In an environment without income shocks, Aguiar, Amador, Hopenhayn, and Werning (2019)
show it is never optimal for the sovereign to buy back debt.
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For investors to break even, the bond price must equal the expected discounted value of
debt payments. Namely:

q(B′, Y ) =
1

1 + r

∫ �
1− D̂ (B′, Y ′)

� �
δ + (1− δ)q(B̂(B′, Y ′), Y ′)

�
F (dY ′ | Y ) ,(22.12)

where D̂ and B̂ denote the default and borrowing rules lenders expect the sovereign to follow
in the next period. The default rule D̂ is equal to 1 if the sovereign defaults and is equal
to 0 otherwise. The function B̂ determines the debt stock chosen by the current sovereign.
The first term on the right-hand side of equation (22.12) equals the expected value of the
next-period coupon payment promised in a bond. The second term in the right-hand side
of equation (22.12) equals the expected value of all other future coupon payments, which is
summarized by the expected price at which the bond could be sold next period.

22.4.3 Equilibrium definition

A Markov Perfect Equilibrium is characterized by

1. Value functions: V , V R, and V D,

2. a default rule D̂ and a borrowing rule B̂, and

3. a bond price function q,

such that:
(a) given D̂ and B̂, V , V R, and V D satisfy functional equations (22.9), (22.10), and

(22.11), when the sovereign can trade bonds at q;

(b) given D̂ and B̂, the bond price function q is given by equation (22.12); and

(c) the default rule D̂ and borrowing rule B̂ solve the dynamic programming problem
defined by equations (22.9) and (22.11) when the sovereign can trade bonds at q.

22.4.4 Results

Table 22.4 illustrates first how the simulations can match the targeted average levels of debt
and spreads in the data.12 Table 22.4 also shows that the default model can account for
distinctive features of business cycles in emerging economies: consumption is more volatile
than income and the trade balance and sovereign spread are countercyclical.13

12As discussed in the Appendix, there are two important assumptions for achieving this: (i) the government
issues long-term debt (Arellano and Ramanarayanan, 2012; Chatterjee and Eyigungor, 2012; Hatchondo and
Martinez, 2009), and (ii) the cost of defaulting increases more than proportionally with income (Arellano,
2008; Chatterjee and Eyigungor, 2012).

13Note that Mexico has experienced a moderation in aggregate fluctuations in recent years and thus
consumption is as volatile as income in Table 22.4 but it was 24% more volatile than income in the earlier
sample used by Aguiar and Gopinath, 2006.
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Table 22.4: Business Cycle Statistics: Model and Data

Targeted moments

Model Data

Mean Debt-to-GDP 43 43

Mean Spread 3.2 3.2

Non-Targeted moments

σ(C)/σ(Y ) 1.3 1.0

σ(TB/Y ) 0.8 1.3

σ (Spread) 1.6 2.2

ρ(TB/Y, Y ) -0.7 -0.6

ρ (C, Y ) 0.98 0.91

ρ (Spread, Y ) -0.8 -0.4

ρ(Spread, TB/Y ) 0.9 0.6

Note: The standard deviation of x is denoted by σ (x). The coefficient of correlation between x and
z is denoted by ρ (x, z). Moments are computed using detrended series. Trends are computed using
the Hodrick-Prescott filter with a smoothing parameter of 1, 600. Moments for the simulations
correspond to the mean value of each moment in 500 simulation samples. We take the last 120
periods (30 years) for each sample without a default episode. Simulation samples start at least
five years after a default. Default episodes are excluded to improve comparability with the data.
Consumption and income are expressed in logs.

599



Figures 22.6 and 22.7 illustrate why the predictions of the quantitative model are con-
sistent with the data for emerging economies. In Figure 22.6, as in the two-period model,
the bond price decreases with debt. The bond price also increases with income, implying
that the sovereign’s borrowing set shrinks when income drops, precisely when the sovereign
needs borrowing the most. This occurs because when income takes low values, investors an-
ticipate lowe income and thus stronger default incentives in future periods.14 The solid dots
in Figure 22.6 illustrate how, in equilibrium, the sovereign chooses to issue fewer bonds and
at a lower price when the income realization is low (one standard deviation below the mean
in the graph). Figure 22.7 shows that when income is low, because of the lower borrowing,
consumption drops more than income, accounting for the excess consumption volatility in
emerging economies.
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Figure 22.6: Bond price schedule for a low income (Ylo = E(Y )− σ(Y )) and a
high income level (Yhi = E(Y ) + σ(Y )).

Notes: The horizontal axis displays the ratio of debt to average annual income B′/4E(Y )
the government could choose. Solid dots correspond to the optimal choices when the gov-
ernment enters the period with the mean debt level in the simulations.

Normative implications in economies with with default risk. We have shown that
the canonical default model offers an empirically plausible micro-founded account of business

14In terms of the two-period model, consider a version of this model with Y1 > 0 and a c.d.f. function for
period-2 income that is decreasing with respect to period-1 income, F (· | Y1). For any chosen B2, a higher
income in the first period shifts the distribution of future income (Y2) to the right, thereby reducing the
default probability. As a consequence, the equilibrium bond price

q1(B2, Y1) = 1− F (B2/φ | Y1)

is an increasing function of period-1 income.
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Figure 22.7: Consumption policy under repayment when the sovereign enters the period with
the mean debt level in the simulations.

cycle dynamics in emerging economies. Could this model also be useful for policy design?
Note that the implication of the model is that a benevolent government (maximizing the
utility of the representative consumer) chooses to face high sovereign risk. At the same time,
as discussed in the introduction, having high sovereign risk seems to have significant adverse
effects no only on business cycle dynamics but also on the ability of governments to react to
large shocks (e.g., COVID-19) and on investment and growth. Given these costs of sovereign
risk, why would benevolent governments still choose debt levels that command high default
risk?

The answer to this question may be related to time inconsistency problems that for
example, also lead governments to choose high inflation. The default model features two
time inconsistency problems. First, the government may want to commit to default less in
the future (in comparison to how often it chooses to default in equilibrium). The government
acting in period t could benefit from restricting defaults in period t+ 1 (and with long-term
debt, in every future period) because this would expand the borrowing set in t (i.e., would
increase bond prices in t). An improved borrowing set would allow the government to
better exploit the gains from trade derived from its relative impatience as the calibration
of quantitative default models typically assumes that the government discounts the future
more than lenders. With β being the government’s discount factor and r be the interest rate
representing the lenders’ opportunity cost of lending, the standard calibration assumes that
β(1 + r) < 1. Bolton and Jeanne (2009) study a model in which issuing debt that is more
costly to restructure can be optimal, as this would deter future defaults. As mentioned before,
governments in emerging countries do issue debt in foreign financial centers and include
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covenants in debt contracts to make their debt more difficult to restructure. Mateos-Planas,
McCrary, Ŕıos-Rull, and Wicht (2023) find that for standard calibrations of the default
model, if the government could commit to its future default policy, it would commit to not
defaulting. They also show that for less standard calibrations it is possible to obtain default
under commitment, but default is very rare. This is, the time inconsistency problem due to
the government’s inability to commit to future default decisions accounts for the majority
if not all equilibrium sovereign risk. Hatchondo et al. (2022a) show that committing to a
no-default rule would generate large welfare gains for the government, but the temptation
to break this rule would also be large.

The second time inconsistency problem stems from the government’s inability to commit
to future borrowing levels. This problem only arises when we assume that the government
can issue long-term debt (Arellano and Ramanarayanan, 2012; Chatterjee and Eyigungor,
2012; Hatchondo and Martinez, 2009). The mechanism behind this time consistency problem
is similar to the one described above: by committing to lower future borrowing levels, the
government could increase current bond prices. For example, by restricting borrowing in
t + 1, the sovereign can reduce default probabilities in t + 2 (and after) and expand the
borrowing set in t. Note that with one-period debt, the default probability in t + 2 does
not affect bond prices in t (which only depend on the default probability in t+ 1) and thus,
this time inconsistency problem does not arise (see Aguiar and Amador, 2019 for a formal
proof).

Assuming differentiability and that the government issues perpetuities with coupon pay-
ments declining at the rate δ (as is standard in the literature; Arellano and Ramanarayanan,
2012; Chatterjee and Eyigungor, 2012; Hatchondo and Martinez, 2009), the time-inconsistency
problem in borrowing policies is apparent from the period-t optimality condition:

u′(Ct)

qt +
∂qt
∂Bt+1

Bt+1 − (1− δ)Bt︸ ︷︷ ︸
Bonds issued at t

 = βE [V1 (Bt+1, Yt+1) | Yt] , (22.13)

where the notation closely follows the one we use for the two-period model: Ct denotes
consumption, qt denotes the bond price, Bt denotes the debt stock at t, E denotes the
expectation operator, V1 denotes the derivative of the government’s value function with
respect to debt, and Yt denotes the income realization at t. Note that the optimality condition
in equation (22.13) resembles the one for the two-period model in equation (22.6).

Equation (22.13) illustrates how, when the sovereign borrows in t, it takes into account
the negative effect that an extra bond sold has on the price at which it sells bonds, qt.
However, the sovereign deciding in t does not take into account how borrowing in t affects
the price of the bonds it issued in periods before t. Of course, a government deciding in
period t should not take into account how its borrowing affect the price of bonds it issued in
previous periods. However, a government that could commit to an optimal borrowing plan
before t, would take into account how borrowing at t would affect the price of bonds (and
thus utility) before t (as the government who could commit to future default plans would
take into account the effect of future default on past prices). Hatchondo, Martinez, and Roch
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(2020) show that in a standard default model, even without commitment to future default
decisions, commitment to the optimal borrowing plan would eliminate more that 80 percent
of default risk.

As discussed in the introduction, a large and increasing number of countries are imple-
menting fiscal rules to limit borrowing by future governments. Hatchondo et al. (2022a) use
the default model to discuss the design of fiscal rules and Hatchondo et al. (2020) show that
a simple fiscal rule can attain 60 percent of the welfare gains achievable with an optimal bor-
rowing plan. Chatterjee and Eyigungor (2015) and Hatchondo, Martinez, and Sosa Padilla
(2016) show how alternative bond contracts could help mitigate the time inconsistency prob-
lem in borrowing policies.
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Chapter 23

Sustainability

John Hassler, Per Krusell, and Conny Olovs-
son
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23.1 Introduction

With climate change surfacing as one of the major challenges of modern society, many
economists have of course taken an interest in the subject. This includes macroeconomists.
In a very clear sense, fighting global warming involves aggregates. Climate change itself is
global in nature—there is warming all around the world—and it is fundamentally caused
by aggregate CO2 emissions, which are a natural byproduct of the use of fossil fuel as an
energy source. Since fossil fuel, since long, has constituted our main source of energy, this
is an aggregate issue, at least to the extent energy use is important. The services provided
by energy generate a cost that roughly amounts to 5% of GDP globally. This is not a small
amount and, moreover, there are many reasons to believe that sharp reductions in energy
use might cause significant recessions; the oil-price hikes during the 1970s are often argued to
have had such an effect. Relatedly, suppose our world leaders decide to enact policies that are
meant to contain global warming. What, then, would be good such policies? Climate change
is a long-run issue and direct evidence on the pros and cons of different policy choices in this
arena, not only in the short run but also in the long run, is not available. For that reason,
macroeconomic modeling appears useful. Thus, one of the main purposes of the present
chapter is to develop some simple tools with the goal of assessing the impact of different
policy paths on the climate and on our welfare. Fortunately, rather minor departures from
our basic macroeconomic models are required for this endeavor, so we will be able to build
significantly on earlier chapters.

A broader, global issue is that of sustainability : do humans, those presently alive and
those of the future, have enough of what they need, for survival and for living happy lives? To
what extent should we economize on natural resources of various kinds? Which, if any, broad
policy tools should be considered? To be more concrete will we need to pursue policies that
aim to limit world output growth or even decrease output: de-growth? These are questions
that are obviously hard to answer definitively, but the chapter will at least begin to address
them with available tools, drawing mostly on those taught in this textbook and on classic
results in public/environmental economics.

The chapter begins in Section 23.2 with a general, but short, discussion of sustainability,
placing “the economy”—the subject of the field of economics—in the broader context of
natural resources and how the field of economics has, or has not, made contact with natu-
ral resources. This connection will receive attendion in the second part of the chapter—in
Section 23.5—where we discuss basic theory as well as technological change in this context.
Before that, however, in Section 23.3, in order to build toward a full analysis of climate
change, we explain “how the climate works”: we offer a summary of the natural-science
knowledge required for understanding how to analyze global warming from an economics
perspective. This section also summarizes some basic facts about fossil fuel supplies as well
as the rapidly growing literature on the economic—broadly defined—consequences of climate
change. With this background, we turn to our main analysis of the climate-economic interac-
tions in Section 23.4. In this chapter, we employ a summary of how the climate works in the
form of a system of dynamic equations and add these equations to our macroeconomic model
and, hence, obtain an Integrated Assessment Model (IAM). The word “integrated” here thus
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refers to the combination of the climate sciences and the economic sciences; “assessment”
refers to using the model as a laboratory: to evaluate how different policy actions work
their way toward climate outcomes and economic outcomes. We also simulate the model to
illustrate its usefulness for policy evaluation.

23.2 The economy and the environment

The term “environment” is a standard term in microeconomic theory to represent the basic
elements of an economy (preferences, technology, etc.). Here, we use it to refer to “nature”:
what planet Earth (and the solar system) gives us access to for free. Today, there is clearly
a movement—especially in advanced economies—to preserve the environment in a variety of
ways, and this chapter will make contact with some of the issues pertinent to this movement.
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Figure 23.1: The economy and the environment. Darker shades of green reflect
a higher degree of property rights.

Figure 23.1 illustrates and depicts a moment in time, say a year. The “economy”, in
blue, consists of households, firms, governments, and other organizations, along with their
preferences and production possibility sets (as well as information), as well as capital stocks
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and infrastructure built up in the past. The economy in turn interacts with Earth’s envi-
ronment, which we separate schematically into different green components. On the top left
we have land mass, which of course is used for a number of economic activities. Land mass
has the darkest shade of green: it is the category which we guess has the highest degree of
property rights attached to it. Second, we have finite resources, such as fossils (which can be
used as fuels), minerals, and so on. We approximate these to be non-renewable, even though
fossils and minerals are reproduced but at a time scale that is so long that we can consider
these resources to be in fixed supply. So we use up these resources over time but can also
recycle. Much of these resources are owned by someone. Ownership is relevant since Coase’s
insights can potentially be used: the owner could themselves manage the resources over time
in a purposeful way as a function of market prices, and so it is not obvious at the outset that
these resources are overconsumed. The management of natural resources in finite supply is
discussed in Section 23.5 below.

Our “global climate” is the average weather (temperature, wind speeds, precipitation,
etc.) across the globe and it is determined by a number of factors exogenous to humans,
but also—as we will discuss in detail in Section 23.3—by the amount of greenhouse gases in
the atmosphere and some of these are directly caused by human economic activity. It is not
possible to attach property rights to the atmospheric greenhouse gas concentration mainly
because this concentration is even around the world: any emissions spread around the Earth
very fast. Thus the global climate is in the lightest green in the picture. Of course local
climate differences are tied to local land ownership and so local climate can be “transacted”,
for example through tourism.

Human activity also crucially uses water—oceans, lakes, and rivers—in a variety of ways,
and we can affect the amount of water available, too. Then there are forests, plants, etc., i.e.,
living organisms; like water, these are inputs into production and consumption and relevant
for leisure activities. The concept biodiversity refers to the amount of variety within this
category.

Finally, there is solar energy: it is a form of radiation and gives us energy without which
we would not survive. The solar energy we have access to is a flow. It does vary somewhat
over time and is an exogenous determinant of our climate.1 Solar energy can be captured to
some extent by land owners, hence giving it a relatively dark green color.

The amount and quality of water, biodiversity, and land are all endogenous to human
activity as well as to the climate. In Section 23.3.5 below, we discuss how climate change
causes “damages” by reducing the value (to humans) of elements within these categories.

The chapter will first discuss the third category, the climate, and its interaction with the
economy. To study this interaction, we employ so-called Integrated Assessment Models—
IAM from now on. Even though the details may differ substantially between different IAMs,
they all consist of three main building blocks: an economy, a carbon cycle, and a climate
module. The term “integrated” refers to the fact that the building blocks affect and interact

1The solar energy flow itself cannot be affected by humans but the part of it that reaches our planet can,
at least in principle. One form of geoengineering involves sending up giant “parasols” into space with the
purpose of reflecting sunlight before it reaches us.
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with each other, as illustrated in Figure 23.2.
Starting with the economy, this block typically consists of a growth model with households

and firms. The firms use fossil energy to produce, thus drawing down on an element of the
first environmental category in the previous picture. This gives rise to CO2 emissions as a
by-product when the fossil fuel is burnt. The generated carbon dioxide then enters the next
block, i.e., the carbon circulation (or carbon cycle).

Figure 23.2: Integrated Assessment Models, IAMs, consist of three building
blocks: an economy, a representation of the carbon cycle, and a climate mod-
ule.

As we will discuss below, carbon (dioxide) circulates in a continuous flow between ground,
air and sea, but what matters for climate change is the amount of CO2 in the atmosphere. We
will discuss this phenomenon too below. A time path for the stock of CO2 in the atmosphere
is thus the output from the carbon cycle block that enters the climate block where it affects
the balance between the incoming energy from the sun and the outgoing heat radiation from
Earth to space. Finally, the climate affects the economy through climate-related damages.
It is this clockwise rotation that typically is modelled in IAMs, but as is indicated in Figure
23.2, in general, the arrows go both ways.2

The IAM we will build below is a neoclassical growth model—as climate change plays out
on the time scale of decades and centuries, a long-run perspective is necessary—together with
a climate module and a carbon cycle module, each in the form of a set of dynamic equations.
To understand the nature of the equations we add to the growth model, we will go through
the natural-science basics next, in Section 23.3. This is a textbook for economists, however,
and it is possible to skip over this section, thus taking as given the extra equations we later
use. Sections 23.3.4 and 23.3.5 may still be relevant: they discuss the fossil reserves left on

2For example, the climate affects the carbon circulation because warmer oceans absorb carbon less easily;
increased CO2 concentration in the oceans makes them more acid, which has negative side effects on our
economy, broadly defined; and the economy’s burning of fossil fuel directly affect the climate by emitting
soot particles into the air, which affects warming.
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the planet, along with the costs of extracting them, and how we measure damages (and how
large they are estimated to be).

23.3 Climate change: natural-science background

Let us start with a basic primer on the interaction between the economy and the climate.
We will then go into detail on each topic in the subsection below. For over 100 years, it has
been known that the amount of carbon dioxide (CO2) in the atmosphere affects the Earth’s
energy balance. This balance captures the difference between the inflow of energy—in the
form of solar radiation—and the outflow of energy, with 1/3 of the outflow consisting of
direct reflection and 2/3 consisting of heat radiation.

The carbon dioxide does not affect the energy inflow, because solar radiation passes right
through the CO2. The outflow of energy, however, is affected by the CO2 in that it makes it
more difficult for heat to radiate back into outer space. If the system is initially in balance,
an increase in the amount of CO2 in the atmosphere will lead to a surplus in the energy
balance, and as a result, the temperature will rise.

This phenomenon is known as the greenhouse effect. The name is motivated by the fact
that it acts exactly like a greenhouse, where solar radiation passes right through the glass of
the house whereas the heat gets trapped inside the greenhouse. The greenhouse effect is not
entirely a bad thing. Without greenhouse gases in the atmosphere, the Earth would, in fact,
be covered in ice and the average surface temperature would be around minus 20◦C instead
of the close to 15◦C that currently prevails.

The emission of greenhouse gases thus leads to climate change and global warming and
these changes then affect our economies. Even though these effects from climate change—
referred to as damages—will vary across space and take many different forms, the aggregate
result is projected to be negative for human welfare. We will discuss climate-related damages
in detail below, but for now it suffices to state that the damages will be the result of more
intensive storms, increased frequency of forest fires, rising sea levels and floods, and so on.
These changes in the climate are expected to destroy property and capital, kill and injure
people, and may lead to mass migration, political instability, and economic crises.

Because it is generally free to emit greenhouse gases into the atmosphere, even though
these emissions gives rise to economic costs, the emissions constitute negative externalities.
When market failures such as externalities are present, policy is needed to restore efficiency.

We now describe the basics of the climate system (Section 23.3) and the carbon cycle
(Section 23.3.2). In Section 23.3.3 we then describe a relatively recent finding that char-
acterizes the combined carbon-cycle and climate systems into an approximately constant
carbon-climate response (CCR) to accumulated emissions. Further, in Section 23.3.4, we
discuss the world supplies of different kinds of fossil fuel and, finally, in Section 23.3.5 we
briefly cover the literature on damage measurements.
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23.3.1 The climate system

Let us now describe how CO2 affects the dynamics of the average atmospheric surface tem-
perature, denoted T and measured as deviations from the pre-industrial temperature. The
energy balance is also defined with respect to the pre-industrial situation. The greenhouse
effect has a positive effect on the energy balance by reducing the energy outflow. Such
changes to the energy balance are called forcing.

A second term in the energy balance is due to the fact that hotter objects radiate more
energy. Thus, as Earth gets warmer, more energy is radiated to space. We approximate
this effect to be proportional to T , with a coefficient κ. Finally we approximate the change
dT/dt as being proportional to the surplus in the energy balance with a coefficient σ1. For
a given forcing f time path, the evolution T (in continuous time) is

dT (t)

dt
= σ (f(s)− κT (s)) . (23.1)

The coefficient κ incorporates feedback effects, such as the phenomenon that melting ice
reduces the direct reflection of incoming sunlight and the effects of increased temperature
on cloud formation. The sum of all the feedbacks is highly uncertain and hence the value of
κ is uncertain. After an increase in forcing to a constant level f , the temperature increases
and the system eventually reaches a new steady state when T (t) = f/κ.

Human activity has substantially increased the concentration of greenhouse gases in
the atmosphere. The dominant greenhouse gas that stems from human activity is CO2.
It is currently responsible for about two thirds of the forcing from greenhouse gases in
the atmosphere.3 Since the beginning of the Industrial Revolution, we have increased the
concentration of CO2 in the atmosphere by around 50 per cent. Humans also emit particles
and aerosols that have a direct effect as well as effects on cloud formation. In sum, these
effects are likely cooling, but the uncertainty here is large.

So far, we have learned that higher concentration of CO2 in atmosphere reduces the
outgoing flow of energy in the form of infrared radiation. This phenomenon is well approx-
imated by a logarithmic function (Arrhenius greenhouse law, 1896). If we denote the stock
of carbon dioxide in the atmosphere by S, and the pre-industrial level (i.e., the level before
the Industrial Revolution) by S0, then forcing due to carbon dioxide is well approximated
by

fCO2 =
η

ln 2
ln
S

S0

. (23.2)

An often used value of η is 3.7. Combining the steady state of (23.1) with (23.2), we obtain
the steady-state temperature associated with a given amount S:

T (f(S)) =
η

κ

1

ln 2
ln

�
S

S0

�
. (23.3)

3However, by far the most important cause of the greenhouse effect is water vapor, but water vapor does
not derive directly from human activity.
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The ratio η/κ is labelled the equilibrium climate sensitivity (ECS), and it measures how
much the the long-run temperature will increase from a doubling of the CO2 level. The
IPCC’s (Intergovernmental Panel on Climate Change) 6th report states that the ECS is
“likely” between 2.5◦C and 4◦C, with a“best” estimate of 3◦C. A 90-% interval is 2◦C–5◦C.
The IPCC has revised their estimate of the ECS several times. The interval reported in the
6th report is more narrow than that in the 5th report where it was given as being between
1.5◦C and 4.5◦C, with no best estimate given.

Equation (23.1) does not take into account the fact that the heating of the atmosphere
involves interaction with the oceans. In particular, the oceans change temperature quite
slowly, creating a long-lasting but not permanent cooling effect on the atmosphere. Denoting
the ocean temperature by TL (again measured as a deviation from its preindustriual level),
a difference between the atmospheric and ocean temperatures will create a third term in the
energy balance for the atmosphere. This term is a the flow of energy from the atmosphere to
the ocean and is approximately proportional to the difference between the two temperatures,
with coefficient σ2. Finally, we need to specify the law-of-motion for TL and we assume it
to be proportional to the temperature difference T − TL (and thus to the energy flow from
the atmosphere to the oceans), with coefficient σ3. Discretizing the resulting system yields

Tt = Tt−1 + σ1

�
η

ln 2
ln

�
St−1

S0

�
− κTt−1 − σ2

(
Tt−1 − TLt−1

)�
(23.4)

TLt = TLt−1 + σ3

(
Tt−1 − TLt−1

)
. (23.5)

It is straightforward to show that for a given S, this system has a steady state that is also
given by equation (23.3). However, since an empirically reasonable parameterization requires
σ3 to be much smaller than σ1, convergence to the steady state is slower than for equation
(23.1).

23.3.2 The carbon cycle

The strength of the greenhouse effect depends on the amount of CO2 in the atmosphere.
CO2 is emitted into the atmosphere and then circulates between three main reservoirs—the
atmosphere, the surface oceans and biosphere, and the deep oceans—and we refer to this
system as the carbon cycle. Denoting the stock of CO2 in the surface oceans and biosphere
and in the deep oceans by SU and SL, respectively, the carbon cycle block can be formulated
as follows.

St − St−1 = φ12St−1 + φ21S
U
t−1 + Et−1 (23.6)

SUt − SUt−1 = φ12St−1 − (φ21 + φ23)SUt−1 + φ32S
L
t−1 (23.7)

SLt − SLt−1 = φ23S
U
t−1 + φ32S

L
t−1, (23.8)

where E denotes CO2 emissions.
The above specification is used in Nordhaus’s RICE model. Folini, Kubler, Malova,

and Scheidegger (2021) show that the carbon-cycle model above closely replicates the mean
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behavior of the most advanced Earth System Models (CMIP5), if the parameters are chosen
appropriately.4 The parameter values suggested by Folini et al. (2021) are φ12 = 0.053,
φ21 = 0.0536, φ23 = 0.0042, and φ32 = 0.001422, when a period is one year. The initial
stocks are set to S2015 = 850, S2015U = 765, and SL2015 = 1799.

Note the important difference between measuring emissions in units of CO2 and carbon
units. One kg of carbon corresponds to approximately 3.67 kg of CO2.5. The distinction
sometimes causes confusion since, e.g., proposed policy tax rates are sometimes expressed
per ton of CO2 and sometimes per ton of carbon.

An alternative to a two-dimensional, linear system, is a one-dimensional reduced form
for excess carbon, S:

St − S0 =
∞∑
t=0

(1− ds)Et−s, (23.9)

where the key feature again is linearity.6 Further simplifying approximations can be made
with reference to the key characteristics of the carbon cycle as described by the IPCC and
Archer (2005). Specifically, about 20-–25 per cent of all carbon dioxide emitted stays in the
atmosphere for up to over a thousand years. About 50 per cent disappears in a few decades.
The rest takes a few centuries to circulate onwards to the oceans (where it contributes to
acidification). Thus,

1− ds = φL + (1− φL)φ0(1− φ)s (23.10)

is proposed in Golosov, Hassler, Krusell, and Tsyvinski (2014) to match these features di-
rectly, with the share of emissions that remains in the atmosphere forever represented by
φL, the share that leaves the atmosphere within a period given by 1−φ0, and the remainder
(1 − φL)φ0 depreciating geometrically at rate φ. For a decadal time scale, the calibration
φL = 0.2, φ0 = 0.393, and φ = 0.0228 matches the data quite well.

23.3.3 Constant carbon-climate response and the carbon budget

A key feature of the system described by equations (23.4)–(23.8) is that Tt is approximately
proportional to cumulative emissions from pre-industrial times until t. This implies that
temperature keeps increasing as long as emissions continue and stay constant at the level it
has then reached for at long time after emissions have come to an end. The latter is due to
two opposite effects that neutralize each other in equation (23.4). On the one hand, CO2

slowly leaves the atmosphere, reducing forcing (the first term within parenthesis). On the
other, the oceans slowly get warmer, reducing their cooling effect (the third term). These
terms approximately balance on a centennial scale. These features also hold for the advanced

4CMIP5 stands for Coupled Model Intercomparison Project, Phase 5; it is used by the IPCC and is
considered to be the state-of-the-art model in climate science.

5A mole of carbon atoms weighs 12 grams, whereas a mole of oxygen weighs 16 grams and we obtain
(2 ∗ 16 + 12)/12 ≈ 3.67

6The word “excess” here refers to the level above that which prevailed before the Industrial Revolution.
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climate models used by IPPC. Formally, we have

Tt ≈ σCCR

t∑
s=0

Es,

where T denotes the global mean surface temperature, E global emissions and σCCR the
constant of proportionality that is referred to as the carbon-climate response (CCR), or the
Transient Climate Response to Cumulative Carbon Emissions (TCRE). Note of course that
this finding is one that combines the climate and carbon modules and generates a direct
mapping from emissions to climate.

The finding is represented in Figure 23.3 below, taken from the latest (6th) IPCC report.
Accumulated emissions and: (i) global warming, ...

Institute for 
International Economic Studies

Stockholm UniversityFigure TS.18, IPCC (2021), The Physical Science Basis.

Accumulated emissions and 
global warming

Figure 23.3: Approximately constant CCR

In the report, σCCR is stated as “likely” being between 1.0◦C and 2.3◦C per 1,000 GtC,
which corresponds to 0.27◦C–0.63◦C/TtCO2).7 There is, however, less agreement on, or at
least significant uncertainty about, the constant of proportionality, as represented by the
different slopes in the figure.

Several valuable insight can be obtained from the finding that the CCR is approximately
constant. One is irreversibility: the relation gives temperature at point in time as a function
of total past emissions. Hence, there is no depreciation, despite the fact that the carbon
cycle fundamentally builds on depreciation, with carbon emitted to the atmosphere, where
it acts as a greenhouse gas and causes warming, slowly moving into other sinks where it
does not cause warming directly. Thus the conclusion is that if warming is to be stopped,
emissions need to stop. Second, a constant CCR also suggests a notion of a carbon budget :

7The term likely is explained to be interpreted as a 2/3 confidence interval.
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given that we wish to maintain warming, by a given date, by a certain target amount, we
can use the σCCR to compute how much can be emitted before that date in order to meet
the target. Of course, the uncertainty about the CCR coefficient makes this computation
somewhat problematic. Up until 2022, we had burnt around 650 gigaton (GtC) of carbon.
If the CCR is 1, the warming caused by all historic CO2 emissions is 0.65 x 1 = 0.65◦C. To
cause a warming of 1.5◦C, another 850 GtC would need to be emitted, which would take
another 85 years with the current emissions rate. If, on the the hand, the CCR is at the upper
end of its likely range at 2.3, the 650 GtC already emitted cause a warming of 2.3 x 0.65 =
1.5◦C.8 Third, the constant CCR means that if a target is set for a certain future date, and
a carbon budget has been correspondingly calculated, then there are many paths that could
attain the target, ranging from high emissions early and gradual reductions over time to the
reverse kind of time path, with radical reductions early and less and less radical reductions
over time—all subject to the same total accumulated emissions. These alternative ways of
reaching the target would, however, not be equivalent for human welfare, which indirectly
suggests a weakness in just having a target set by a future date. To evaluate the consequences
for human welfare, however, requires us to think about the climate-economy interactions, to
which we turn in Section 23.4 below. A final point regards the linearity: a constant CCR
also means a ruling out of non-linearities such as tipping points in the global climate.

23.3.4 The fossil energy supply

Against the background of a carbon budget, the question of how much global warming that
can be expected depends not only on the CCR, but also on how large the stock of fossil fuel
actually is. Here, there is an important distinction between reserves and resources. Using
the definition from the BP (2021), total proven reserves is generally taken to be those
quantities that geological and engineering information indicates with reasonable certainty
can be recovered in the future from known reservoirs under existing economic and operating
conditions. Resources includes the amount of a geologic commodity that exists in both
discovered and undiscovered deposits. Hence, it is by definition a “best guess” that includes
quantities that would not be profitable to extract today but that could become profitable in
the future.

Starting with oil, world proven crude oil reserves are displayed in Figure 23.4.

The figure shows that OPEC accounts for almost 80 % of world crude reserves with their
1,190 billion barrels, whereas the non-OPEC reserves consist of 308 billion barrels.

It is also useful to make a distinction between “conventional” and “unconventional”
oil. The key difference is that conventional oil can be extracted with traditional drilling
methods: it is liquid at atmospheric temperatures and therefore flows without additional
stimulus. Unconventional oil requires more advanced extraction methods because it does
not flow on its on. Marginal extraction costs are therefore (very) low for conventional oil:
only a fraction of the market price. The approximation of marginal cost to 0 in the section

8Note that this calculation does not take into account the effects of other greenhouse gases. These effects,
however, are much less long-lasting than those of CO2-emissions.
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Figure 23.4: Oil Supply.

Source: OPEC (2019).

above on Hotelling rents precisely referred to conventional oil. For unconventional oil, the
marginal extraction cost is substantially higher and much closer to (or above) the market
price. For these reasons, conventional oil is very profitable, whereas unconventional oil is
not. As we will see below, all the conventional oil can therefore be expected to be used up.

How much global warming would result if we were to burn all the reserves of conventional
oil? It is somewhat hard to assess exactly how much of the oil that is conventional, but it
seems reasonable to assume that most of the middle-east reserves are conventional. To
compute the level of warming, we then make use of the approximately constant CCR: each
1,000 GtCO2 of cumulative CO2 emissions is likely to cause a 0.27–0.63 ◦C increase in global
surface temperature. Converting from barrels to GtCO2, we note that one barrel equals
1/7.33 ton, that the carbon content in oil is 85%, and that one ton of carbon equals 3.67 ton
of CO2. We thus have that 1,190 billion barrels equals (1, 190/7.33)·0.85×3.67 = 500GtCO2.
Using constant CCR, this delivers 0.13–0.33◦C of warming.

Turning to coal, total proven reserves are 1,074 GtC, according to BP (2021). With the
carbon content of coal being about 70 percent of its weight. This corresponds to 1, 074 ·
0.70 · 3.67 = 2, 759 GtCO2, which if all burnt results in an increase in the temperature of
between 0.75◦C and 1.73◦C. It is important to point out, however, that proven coal reserves
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are likely underestimation: coal is not particularly profitable, giving only weak incentives to
search for it.

Total proven reserves of natural gas, finally, is 190 trillion cubic meters, again according
to BP (2021). Using the conversion factor 0.511 kgC/cubic meter, we see that burning all
the gas results in less than a tenth of a degree of warming.

What about resources? The numbers are much more uncertain and depend on how likely
it is that some resources become profitable to extract. Estimates of resources (and reserves)
are provided in Table 23.1.

Table 23.1: Reserves and resources in GtC

Reserves Resources (Rogner) Resources (BGR)

Oil (conv+unconv) 173 ≈ 400− 2, 200 ≈500

Coal 1,074 ≈6,200 ≈11,500

Gas 100 ≈350 ≈365

Sources: Rogner (1997), BGR (2020). BGR is the Federal Institute for Geosciences.

As can be seen the resources of coal are an order of magnitude larger than the reserves;
clearly, if this whole amount of coal were burnt, the global temperature would rise by at
least 10◦C, again using the approximate CCR.

23.3.5 Damages

In October of 2007, the Stern Review on the Economics of Climate Change—a report com-
missioned by the British government—was released and it had great impact in the policy-
making world, arguably precisely because of its discussions of how climate change would
“damage” the economy. It pulled together evidence and made a quantitative assessment of
the economic value lost from warming, resulting in strikingly large numbers. This finding,
the review argued, called for strong, early action by governments to halt global warming. In
the present section we discuss the effects of climate change on human welfare, drawing on a
growing literature, which includes touching on the findings in the Stern Review.

From an economic perspective, as the Review and the earlier work by others such as
William Nordhaus had pointed out, the effects of warming on human welfare are to be
regarded as classical externalities: consequences of economic behavior (emissions in the
context of burning fossil fuel) for human welfare that are not priced by the market. An
approach for policy, proposed in the Stern Review, by Nordhaus, as well as by many other
influential economists, is therefore to aggregate all the externalities (measured in dollar
terms), and tax emissions by that amount: the so-called Pigou tax.9 Moreover, in the case

9The so-called Pigou Club, formed in 2006 by N. Gregory Mankiw with the general aim to call for govern-
ments to correct externalities with taxes and subsidies, contains a long list of very well-known economists.
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of climate externalities, though it was not emphasized in the previous sections, because
carbon dioxide emissions spread very quickly around the globe, the total externality is the
same independently of where the emission takes place. Thus, an application of a Pigou
tax in this case means that the tax per unit of emission should be the same everywhere.
There is no universal agreement on a Pigou tax being the best policy, and there is even less
agreement that a tax, if applied, should be set at the same level in all countries. Regardless,
the measurement of damages is still a very important part of the climate-economy field.

Economists have approached damage measurement in two different, and complementary,
ways. One is the bottom-up approach, whereby all kinds of damages are identified, with a
variety of econometric methods, assigned dollar values using market prices, and then added
up. Clearly, there is a space/country dimension here, so the endeavor of covering all damages
is extremely ambitious. Another approach is the top-down method, which focuses on relating
aggregates—such as production, mortality, or migration—to observed changes in the climate
over time or to climate differences across space. We now go through some results from this
(rapidly growing) literature.

The bottom-up approach

The idea here is to measure damages of all kinds imaginable (i.e., broadly defined), assign
them (dollar) values, and then add up over a given time period such as a year, thus generating
a flow value. Moreover, the goal is to estimate the damage effects of each additional degree
of global warming (along with the broader notions of climate change, such as changes in pre-
cipitation patterns, that warming entails), thus obtaining a damage function, i.e., a mapping
from global temperature to a dollar value. Damages functions can be constructed separately
for different countries or regions, for different sectors of production, and so on. Damages
will, moreover, depend on time or economic state variables. For example, if warming affects
output, then economic growth can make damages larger if they are proportional to output:
there is more to lose with higher output. If people’s health is negatively affected too, then
the number of people factors in, so that population growth too will affect the measure of
damages. Clearly, one cannot literally include everything in a global damage measure, at all
points in time and space and for all contingencies, so for the approach to be implementable
in practice it is important to make attempts generalize from specific studies.

Nordhaus pursued a bottom-up approach, thus looking separately at damage effects via
agriculture, sea-level rise, health, non-market amenity impacts, etc., but in adding up found
limited quantitative impacts. He included the potential for catastrophes, with probability
and severity assessments collected in a survey among experts rather by direct measurement
and still arrived at a damage function with very modest effects: global warming of 2 degrees—
the Paris agreement now aims at a maximum of 1.5 degrees—would only generate a flow
damage value of less than a percent of global GDP. Nordhaus argued that the damage
function was likely convex, though the degree of convexity is hard to assess.10 He also

Arthur Pigou was a British economist who introduced the externality concept and proposed this policy; see
Pigou (1920).

10Nordhaus (1994).
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formulated separate damage functions for world regions but associated great uncertainty
here as well.

Later on the European Commission started the PESETA project, which has studied 11
damages categories, including heat waves, windstorms, droughts, flooding, wildfires, agricul-
ture and energy supply, across the EU. PESETA IV reports aggregate EU damages that are
nontrivial (on the same order of magnitude as those found by Nordhaus) with significant
dispersion across different parts of the EU: the north is even estimated to gain from warming,
but the Mediterranean economies lose significantly.

The number of studies with microeconometric damage estimates is growing rapidly, which
is reassuring. We are, however, still far from a comprehensive understanding of the nature
of the effects of warming on people and on our economies.

The top-down approach

The top-down approach starts from aggregate information, typically on production/GDP or
other economic aggregates, such as health indicators and mortality, and then tries to relate
these figures to climate variables. There are multiple econometric challenges in interpreting
the typical regressions of this sort, but they have nevertheless played an important role in the
literature on damages. The end results, moreover, are “reduced forms”, i.e., not pinpointing
through what channels warming affects output or mortality.

One approach has been to use time-series analysis where climate change is represented
by changes in weather (temperature) over time. Here one challenge is that “climate” is
the “distribution of weather”, so that short-run changes in temperature (and the economic
reactions to them) cannot necessarily be interpreted as climate change. Dell, Jones, and
Olken (2014) find, based on a time series study of 125 countries over the period 1950–
2005, that a one degree higher temperature leads to a one percent fall in output growth
among poor countries but no effect for rich countries, and no level effects more generally.
Kahn, Mohaddes, Ng, Pesaran, Raissi, and Yang (2019) use data from 174 countries over
the period 1960–2014 and also find sizable effects on growth, e.g., that a four degree warmer
global average temperature would reduce global GDP by 0.04 percent per year, accumulating
to a reduction in global GDP in 2100 by 7%. A recent study on mortality (Carleton, Jina,
Delgado, Greenstone, Houser, Hsiang, Hultgren, Kopp, McCusker, Nath, Rising, Rode, Seo,
Viaene, Yuan, and Zhang (2022)) finds, in an extreme scenario with a 5-degree increase in
global average temperature by 2100, that the total global cost of mortality (and adaptation
to avoid it) amounts to 3.2% of GDP.

Another approach is to rely on cross-sectional data to glean the effects of climate on
aggregates (regions or countries). This approach is related to Hall and Jones (1999b), which
accounts for differences in output by measuring the distance to the equator (which is closely
related to average temperature), but it is actually preceded by Mendelsohn, Nordhaus, and
Shaw (1994), which tries to explain agricultural output in a similar manner, with some
attempts to hold constant institutions. Dell et al. (2014) also highlight the remarkable
negative correlation between output and average temperature. Looking at regions at an
even higher level of resolution, Cruz and Rossi-Hansberg (2022) and Krusell and Smith
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(2022) find a U-shape in the relation between average temperature and productivity, with
a “sweet spot” around 11 degrees Celsius (measured as an annual average). Clearly, these
cross-sectional estimates carry information about the effects of the climate on output but,
equally clearly, there are confounding factors.

Summaries and modeling

We now summarize the damage estimates in the literature by looking at two meta studies
and then comment on how damages are modeled in the IAMs.

Meta studies We report two meta studies relating global warming to losses in global
GDP. Both these studies draw on a large number of different contributions using a variety
of methods.

Survey Nordhaus and Moffat (2017)

Figure: Metastudy of studies on effects of climate change. Area of ball indicates
reliability judged by Nordhaus and Moffat.

John Hassler (Institute) Lecture Notes on Climate Damages 08/23 22 / 35

Figure 23.5: Meta study of damages: Nordhaus and Moffat (2017). Ball area:
reliability.

As the figures show, the costs of one or two degrees of warming are on average quite low
but there is convexity as a function of temperature.

Damages: modeling the function(s) How can the economic damages be modeled?
Nordhaus pioneered an approach where all damages are contained in a TFP factor. Nordhaus
(2013) specifies damages, as a share of GDP, at a temperature T degrees above the pre-
industrial level as given by

D(T ) = 1− 1

1 + 0.00267T 2
,

where the coefficient in front of T 2. This formulation can be approximated locally around 0

by 0.024
(
T
3

)2
, a convex function indicating that at three degrees of warming, 2.4 percent of

output is lost.11. Nordhaus also considered including higher order polynomials; Weitzman

11Globally, the damage function is not convex: it asymptotes to 1 (all of output is lost) as T goes to
infinity.
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Survey Howard&Sterner (2017)

Figure: Metastudie H&S Red dots are non-duplicate studies and line is prefered
regression.
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Figure 23.6: Meta study of damages: Howard and Sterner (2017). Red dots:
non-duplicate studies. Regression line that preferred by authors.

argued for an order of 6.8. The higher orders, however, are not based on the use of data but
rather as examples.

It is of course also possible to introduce damages in other parts of one’s integrated assess-
ment model. Endogenous life-expectancy fits naturally by introducing variable population
size and a value of life, one can have endogenous depreciation by taking capital destruction
(due to, say, flooding) into account, and so on. One common approach is to simply have
damages additively in utility—we describe a simple model of that sort below—because in
such a case there is no feedback from damages to economic activity, which makes the model
simpler to solve.

An interesting case is obtained by mapping the carbon dioxide concentration in the
atmosphere, S above, directly into percentage TFP losses. In particular, Golosov et al.
(2014) show that the maps from S to T , by the use of the Arrhenius law described in Section
23.3, and then further from T to D according to Nordhaus’s estimated function, can be very
well approximated by a TFP factor e−γS. I.e., if output before damages is multiplied by this
expression we obtain a surprisingly good approximation (for a specific numerical γ value) to
the original formulation. This, we shall also see below, turns out to be another useful case
for applied use.

Damages: adaptation In response to global warming and damages therefrom, it is pos-
sible to respond in a variety of ways to lessen the damages. This phenomenon is referred
to as adaptation. For example, air conditioning can be installed in response to heat in-
creases, walls can be built to protect against flooding, and so on. Reduced-form damage
assessments thus should be interpreted as incorporating adaptation, whereas at least some
microeconometric damage estimates simply do not factor in the possibility of adaptation.

There are reasons to think that damages net of adaptation are less convex than damages
not taking adaptation into account. Consider the following example: total damages, in
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output units, are
(T − a)x

x
+ a,

where a is adaptation. This formulation captures a possible convexity—with x > 1—and the
assumption that adaptation costs scale linearly: a wall twice as high costs twice as much.
Minimizing this expression with respect to a delivers adaptation of T −1 (so long as T ≥ 1).
The reduced-form damage is then, again for T > 1, D(T ) = T + 1−x

x
, i.e., the damage

function is linear, regardless of the value of x!

Damages: discounting Finally, we comment very briefly on a contentious issue: how to
add up damages that occur over time. In a typical macroeconomic model based on microe-
conomic foundations, welfare for each agent is simply measured by the utility function of
that agent, using a revealed-preference argument. So if we have measures of utility func-
tion parameters, the revealed-preference approach would be straightforward to apply. In a
representative-agent model with standard discounting, we would use an estimate of β, the
discount factor, to add up utils accruing at different points in time: a utility flow occurring t
periods into the future is then discounted by βt. We also explained in our early chapters that
estimates of β come from observations on the average long-run (riskless) real interest rate
and consumption growth together with the Euler equation and a measure for consumption
curvature. Thus, a β around 0.985 is standard for an annual time period. This approach is
followed by Nordhaus in his work.

In the Stern Review, an argument is put forth that a much higher β, e.g., 0.999, is
appropriate. The idea is thus to “assign a higher weight to future generations”, which
may not be appropriately taken into account using the revealed-preference approach above.
The choice of β matters greatly on a quantitative level, since global warming is (largely)
irreversible and damages long-lasting. In our view, the choice is more a matter of philosophy,
not economics. It deserves to be pointed out, however, that if one disagrees with market
discounting (for philosophical reasons), there may also be reason to revisit the assessments
of how markets make investment decisions more generally, potentially thus implying a need
for large subsidies to saving and investment.

23.4 Integrated assessment models

We are now ready to put together an integrated assessment model. The quantitative model
we will use is, as advertised, a neoclassical growth model in its core, but we will actually
begin with a static model, as it can provide us with significant insight, including how to
think about climate policy.

23.4.1 A static one-region model

The static model is a very simple static version of the macroeconomic models earlier in the
book. It might, at first thought, seem strange to think of climate change in a static setting
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since change by definition is non-static. However, this setting has proven useful in providing
intuition for much more complex models.12 The model has three sectors and all sectors are
perfectible competitive. The final-goods sector uses capital, labor, and energy services to
produce a final good. Energy services is a new element relative to earlier chapters. We
assume a very simple structure whereby these energy services are produced one-for-one from
coal. Coal, finally, is produced at a constant marginal cost, labeled p, in terms of the output
good.13 Coal is thus for simplicity not regarded as a resource in finite supply here. Our
dynamic model below will, however, consider fossil fuel in finite supply.

The production, Y , of the final good is given by

Y ≡ F (K,L,E) = AKαL1−α−νEν , (23.11)

where A is total factor productivity, K is the capital stock, L is labor, and E energy services.
Unitary elasticity between inputs is a good approximation in the longer run (and the static
model is meant to capture a longer run, e.g., 100 years) but not in the shorter run, where the
elasticity is much lower between energy and the other inputs. In Section 23.5.3 we discuss
this issue in detail. Without loss of generality, we normalize L and K to unity, which implies
that output can be written as

Y ≡ f(1, 1, E) = AEν . (23.12)

In a decentralized allocation, the energy-service provider buys the energy input at marginal
cost from the fuel producer. The profit-maximizing problem in the final-goods sector is then
given by

πe = max
E

AEν − (p+ τ)E, (23.13)

where τ is a tax on coal use. We will, below, refer to (23.13) as the private economy since
this is the profit-maximization problem for a representative firm in the market economy.

This simple IAM assumes a direct link between coal use and damages. As explained
above, there exists a mapping from E to S (see equation (23.10)) and then from S to T
(see equations (23.4)-(23.5)). Here, these relationships are summarized in a way that implies
that the damage function is quadratic in coal use:

D (e1) = γE2. (23.14)

The above function captures the typical property in climate models that was described above,
i.e., a proportional relation between accumulated emissions and the temperature. Combining
this property with the assumption that damages are moderately convex in temperature yields
(23.14). Damages are, moreover, assumed to be separable from output, which implies that
consumption is given by

C = AEν − pE − γE2. (23.15)

12See, for instance, Hassler, Krusell, and Olovsson (2021b).
13Recall from earlier in the book that this is equivalent to regarding coal as being produced by the same

basic inputs, and with the same production technology isoquants, as for final goods, only at a relative TFP
of 1/p.
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Let us now consider the equilibrium in the market economy. Because damages are additively
separable, the temperature and the damages do not appear in the problem for the firm, i.e.,
equation (23.13). The first-order condition for this problem can then be written as

νAEν−1 = p+ τ . (23.16)

The only unknown in the above equation is E so this variable is uniquely pinned down

by(23.16); it is given by E = ((νA)/(p+ τ))
1

1−ν . Note that there is direct negative relation-
ship between E and τ so coal use is decreasing in the coal tax. Note also that, with mappings
between E and S and T specified, it is possible to compute the temperature increases that
result from different tax rates in the static period.

Pigou taxation

Turning to the social-planning problem, the objective is given by

max
E

AEν − pE − γE2, (23.17)

and the first-order condition can be written as

νAEν−1 = p+ 2γE. (23.18)

Clearly (23.16) and (23.18) differ if γ 6= 0 and τ = 0. In this case, the market economy will
be inefficient and emissions will be too high relative to the efficient level. Even though we
cannot solve for τ in closed form, it is clear that implementing the first best in the market
economy implies setting τ = 2γE∗, where E∗ is the solution to (23.17). This is Pigou’s
recipe: tax the activity that is causing a social cost and set the tax equal to the marginal
externality damage that the activity is causing.14 At the social optimum in this economy,
the marginal damage is equal to 2γE∗.

For the private economy, i.e., ignoring the externality entirely, τ = 0 constitutes a maxi-
mum. Moreover, this objective function is smoothly mountain-shaped, and concave, around
a zero tax. It also implies that the costs for the private economy of modestly raising the
global carbon tax above zero are negligible. The benefits for overall welfare, however, can
potentially be very large if γ is large. In other words, even a modest tax can be very beneficial
in alleviating the negative consequences of global warming.15

Regulation: prices vs. quantities

In practice, it seems that quantity restrictions have been preferred by politicians over affect-
ing prices by the use of taxes. In 2005, the European Union implemented a cap-and-trade
system—the EU Emission Trading System (EU ETS)—which is a quantity restriction where

14Pigou (1920).
15See Hassler, Krusell, and Olovsson (2023).
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firms also can trade in emission rights. This raises the question of how effective quantity
restrictions are relative to Pigou taxation.

To answer that question, consider a social planner that implements a quantity restriction.
The regulator then decides on a quantity of coal that cannot be exceeded by the market.
To ensure that the restriction is honored, anyone that wants to burn a unit of coal (and
thus emit carbon dioxide into the atmosphere) also has to hand in an emission right to
the regulator for doing so. A quantity restriction therefore requires the regulator to take
a stance on how the emission rights are to be allocated. This can be carried out in many
ways: the emission rights can, for instance, be handed out to one or several agents for free.
Alternatively, the government can sell them in an auction format. Here, we simply assume
that the emission rights are handed out for free to the producer of coal. This firm then sell
these emission rights to the final-output firm (which, in this economy, is the only one that
buys coal).

Every time that the final-good firm now wants to buy a unit of coal, it also has to buy
an emission right from the coal producer. The total cost of buying a unit of coal is then
p+λ, where λ is the price of the emission right. Note that the usage of a quantity restriction
transforms the problem from one where, in principle, an infinite amount of coal can be
supplied to one where coal effectively becomes a resource in finite supply.

Consider first the case where the quantity restriction requires E ≤ E∗, i.e., we target the
optimal level. The first-order condition for the final-output firm reads

νAEν−1 = p+ λ. (23.19)

Will E∗ be an equilibrium outcome and, if so, what will the equilibrium price of emission
rights be? It is easy to see that, by construction, λ = τ = 2γE∗ satisfies the first-order
condition and, hence, is an equilibrium. At this quantity, λ has to be positive, since otherwise
more E would be purchased than what is available. A lower E is not possible: then all
emission rights would not be sold, but that can only occur if λ = 0, which clearly does not
satisfy the first-order condition. The equilibrium is unique. Hence, the price and quantity
regulations are equivalent.16

What is the price of an emission right if the quantity restriction instead selects another
quantity? If the quantity is higher than that of the laissez-faire equilibrium, the restriction
will not bind and λ will be zero. If it is lower than that, the restriction will bind and one
reads off λ from the firm’s first-order condition.

Finally, let us briefly consider how the efficient prices and quantities are affected by
firm heterogeneity. For simplicity, consider the case with two final-output firms, labeled 1
and 2, that differ in their technologies with respect to energy intensity (ν1 vs. ν2). The
damage function then reads D(E1 + E2) = γ(E1 + E2)2. The planning problem reads
maxE1,E2 AE

ν1
1 + AEν2

2 − γ(E1 + E2)2 and the first-order condition for firm i ∈ {1, 2} is
then νiAE

νi−1
i = 2γ(E1 + E2), which solves uniquely for {E∗1 , E∗2}. A carbon tax satisfying

τ = 2γ(E∗1 + E∗2) would deliver the optimal outcome. What about a quantity regulation:
would the government need to assign two values for quantities, one for each technology?

16Weitzman (1974) shows that random fundamentals can, under some conditions, break the equivalence.

625



That would be a possible approach—in theory, given if the government knows all the details
of how firms differ—but it is not necessary: a mere restriction for total use not to exceed
E∗1 + E∗2 would also work (the equilibrium price of emission rights would again equal the
optimal tax). In particular, it would ensure an optimal allocation of energy across firms,
since they all face the same price (or tax): ν1AE

ν1−1
1 = ν2AE

ν2−1
2 . This is exactly how the

EU system works.

23.4.2 A fully dynamic integrated assessment model

The static one-region IAM described in the previous section can straightforwardly be ex-
tended to a fully dynamic model which is also richer in other ways. The model that we will
formulate here builds on that described in Golosov et al. (2014) and it incorporates 2 regions.
Region 1 is inhabited by a representative oil producer that is endowed with a finite amount
of conventional oil that it extracts and sells to the other region in a competitive manner. We
refer to this region as the oil producer. The other region does not have any endowments of
conventional oil but, given that they need oil, import it from the oil producer and pay for
this import with a common final good. This region is referred to as the oil consumer. Each
region is inhabited by a representative consumer with preferences given by

∞∑
t=0

βt log(Ct). (23.20)

The law of motion for the atmospheric excess stock of carbon St is given by (23.9). The
climate is then affected by the concentration of CO2 in the atmosphere via the greenhouse
effect. Here, we employ the direct, exponential relationship between atmospheric carbon
concentration S and damages discussed in Section 23.3.5, but modify it slightly so that the
production function reads

Yt = exp (zt − γSt)︸ ︷︷ ︸
≡At

L1−α−ν
t Kα

t E
ν
t , (23.21)

where z is a potentially stochastic productivity trend and γ is a parameter that determines
how climate-related damages depend on the level of the atmospheric CO2 concentration.
The climate system, i.e., the temperatures follow the energy budget model in DICE and
RICE and is thus given by (23.4) and (23.5).

Energy services in the oil-consuming region are produced and supplied by a local compet-
itive representative firm that combines different energy sources as inputs. There are three
available energy sources: conventional oil, coal, and a green energy source.17 All energy
sources except conventional oil are locally produced by competitive firms that are using a
production technology that is linear in the final good, as in the static model.18 Specifically,

17It is straightforward to include additional energy sources. Hassler et al. (2021b) also incorporate hydraulic
fracturing or “fracking”.

18As before, we abstract from the finiteness of coal supply as the amount of coal is so large that the resource
restriction is unlikely to bind, unless we are willing to accept global warming at the two-digit Celsius level.
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pκ,t units of the final good are required to produce eκ,t units of the energy source κ ∈ {c, g}
in period t, where c and g refer to coal and green, respectively. The total amount of energy
services is an aggregate of the energy inputs

Et =
[
λoe

ρ
o,t + λce

ρ
c,t + λge

ρ
g,t

] 1
ρ , (23.22)

where ρ determines the elasticity of substitution, and λo + λc + λg = 1.

Final goods are either consumed, invested or used for energy production, and capital is
assumed to fully depreciate between periods. This assumption is not too problematic given
that a period will be calibrated to be ten years. The resource constraint for the final good
is then given by

Ct +Kt+1 = AtL
1−α−ν
t Kα

t E
ν
t − po,teo,t − pc,tec,t − pg,teg,t, (23.23)

where po,t denotes the world market price for conventional oil. Total emissions in period t
are given by

Mt = eo,t + ec,t, (23.24)

where this simple summation reflects the fact that the fossil energy sources all are measured
in carbon units.

The oil producer extracts oil without any extraction costs, and the total stock of oil in
the ground at time t has size Rt.

19 With extraction in period t given by eo,t, the law of
motion for the stock of oil is given by

Rt+1 = Rt − eo,t, s.t. Rt ≥ 0, ∀t. (23.25)

The government, finally, simply sets a carbon tax and then recycle the proceeds back
to the household within the period in the form of a negative income tax rate, Γt. The
government budget constraint is then given by

Γt (wtLt + rtKt) = τt(eo,t + ec,t).

Households supply labor inelastically and maximize (23.20) subject to the budget con-
straint

Ct +Kt+1 = (1 + Γt) (wtLt + rtKt) = (1 + Γt)ÒYt,
where ÒYt ≡ (1− ν)Yt is output net of energy expenses.20

19The approximation that oil is costless to produce is good for conventional oil/natural gas but not for
non-conventional resources such as fracking or deep-sea oil.

20The assumption of constant returns to scale implies that profits are zero in equilibrium, and that energy
expenses account for the share ν of output.
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Equilibrium

We now describe how to compute the market equilibrium. The problem of the oil supplier
has a very simple solution. The budget constraint of this agent can be written Co,t = po,teo,t,
where Co is the oil supplier’s consumption. The maximization of

∑∞
t=0 β

t log(Co,t) subject
to this constraint and (23.25) straightforwardly delivers eo,t = (1−β)Rt for all t. We discuss
“optimal extraction” much more in Section 23.5 below.

The problem for the energy-service provider is to derive the demand functions for all
fuels; it reads

min
eo,t,ec,t,eg,t

po,teo,t + pc,tec,t + pg,teg,t − Pt
([
λoe

ρ
o,t + λce

ρ
c,t + λge

ρ
g,t

] 1
ρ − Et

)
,

where Pt is both the Lagrange multiplier on the constraint and the price index of energy
services. We know from Chapter 6 that cost minimization for the energy-service provider
delivers that this price index is a CES function of the different input costs. The price of
energy services can then be shown to be given by

Pt =

�
λ

1
1−ρ
o p̂

ρ
ρ−1

o,t + λ
1

1−ρ
c p̂

ρ
ρ−1

c,t + λ
1

1−ρ
g p̂

ρ
ρ−1

g,t

� ρ−1
ρ

. (23.26)

The first-order conditions with respect to eκ,t then yield

eκ,t = Et

�
Ptλκ
pκ,t

� 1
1−ρ

, for κ ∈ {o, c, g} . (23.27)

Producers of the final good maximize profits taking Pt as given, implying that Pt = νAtL
1−α−ν
t KαEν−1

t ,
which can be rearranged to solve for energy service use:

Et =

�
ν
AtL

1−α−ν
t Kα

Pt

� 1
1−ν

. (23.28)

Similarly, wages and the interest rate will be given by wt = (1−α−ν)Yt/Lt and rt = αYt/Kt,
respectively. The household’s Euler equation reads

Ct+1

Ct
= β (1 + Γt) rt+1. (23.29)

Defining the savings rate out of net output as st = (ÒYt−Ct)/ÒYt, we obtain Ct = (1− st)(1 +

Γt)ÒYt and Kt+1 = st(1 + Γt)ÒYt. Inserting these expressions and rt+1 = αYt+1/Kt+1 into
(23.29) yields

1 + st+1

1 + st
=

αβ

st(1− ν)
.

The difference equation in st defined by the above expression only has one non-explosive
solution: st = (αβ)/(1− ν) ≡ s, ∀t. The savings rate is thus constant and it defines optimal
household behavior.
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The equilibrium can now be defined by equation (23.21)–(23.28), st = (αβ)/(1 − ν),
and where the state variables evolve according to Kt+1 = αβ

1−ν (1 + Γt) Ŷt, Rt+1 = βRt, and

St =
∑t

v=0(1− dt−v)
∑

iMt.
Note that the allocation is determined sequentially without any forward-looking terms.

This is due to the combination of logarithmic utility, Cobb-Douglas production, full depre-
ciation, and the way that tax revenues are rebated. Moreover, except for the world market
price of oil all equilibrium conditions have closed-form solutions. Hence, when it comes to
solving the model, finding the equilibrium is only a matter of finding the equilibrium oil price
in each period. This is easy since the supply in each period is predetermined at (1− β)Rt.
As a result, the model typically solves in under a second also when it is expanded to include
many regions.

Turning to the social planning problem, it is given by

max
{Ct,Kt+1,eo,t,ec,t,eg,t,Rt+1}∞t=0

Et
∞∑
t=0

βt log(Ct)

subject to (23.9), (23.21), (23.23), and (23.25). In a more general version of this model, it
is possible to define the marginal damage externality caused by energy source κ, Λκ

t , to be
given by

Λκ
t = Et

∞∑
j=0

βj
U ′(Ct+j)

U ′(Ct)

∂Ft+j
∂St+j

∂St+j
∂eκ,t

, (23.30)

where U is a more general utility function and F is a more general production function for
final goods. The intuition is clear and very robust: a unit emitted today gives

∂St+j
∂eκ,t

units of

increased atmospheric carbon concentration j periods later, which in turn changes output
by

∂Ft+j
∂St+j

per unit. Standard discounting and adding up of these future output effects then

gives us the formula.
With the functional form of the production function that we have considered here, we

have
∂Ft
∂St

1

Yt
=
∂
(
e−γStYt

)
∂St

1

e−γStYt
= −γ. (23.31)

The implication of the above equation is that every additional unit of carbon in the atmo-
sphere yields a constant percentage reduction in GDP. In other words, the “marginal damage
flow” is independent of both GDP and the CO2 concentration. Moreover, the marginal utility
of consumption, U ′(Ct), just becomes 1/Ct under logarithmic utility. Finally, the derivative
∂St+j
∂eκ,t

is straightforwardly computed from (23.9). Combining these expressions, we can now

write the marginal damage, which according to the Pigou principle also is the optimal tax
on carbon, in the following way.

τt = Yt

[
Et

∞∑
j=0

βjγ(1− dj)
]

. (23.32)

The expression for the optimal tax rate is surprisingly simple. The marginal externality
cost of emissions as a proportion of GDP inherits the time path of GDP. The tax rate then
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depends on three “d:s”. The first one is depreciation (d), i.e., how long the marginal unit
of emitted carbon dioxide is staying in the atmosphere. Since a unit will generate more
damages the longer it stays in the atmosphere, the higher the tax will be. The second d is
the damage as measured by γ. Naturally, the tax is increasing in γ since this is a direct
measure of the damages that are generated by the emission. The third d, finally, is the
discount factor, β, i.e., the weight that is put on the future. Clearly, the tax is also higher if
a higher weight is put on the future. What is remarkable about the formula is that it does
not contain any other parameters, for example involving how fossil fuel is produced. It is,
moreover, a reasonable benchmark case since logarithmic utility and Cobb-Douglas utility
are standard assumptions in the macroeconomic literature; δ = 1 is a decent approximation
if the time period is long enough.

Simulations

We are now ready to show some output from the model. We are particularly interested in
evaluating the effect on the global temperature of different carbon taxes. We consider three
levels for the tax: 0, an optimal tax computed from (23.32), and a moderate carbon tax
that we take to be one third of the optimal tax. To evaluate these policies, we first need to
calibrate the model; this is carried out in the appendix and follows Golosov et al. (2014) and
Hassler et al. (2021b). The model has many parameters but almost all of them can be set to
match standard long-run economic facts or facts from the natural-science material presented
above. The observed prices and shares of different energy sources can be used to select the
energy-related parameters; the elasticity of substitution between different energy sources is
hard to calibrate and we set it to 2, i.e., a significantly higher substitution elasticity than
for Cobb-Douglas. We use Nordhaus’s benchmark damage estimate.

Figure 23.7: The effect om the global temperature of different carbon taxes.
The optimal tax is set to US $25 per ton CO2 and the moderate tax is US $8
per ton CO2.

Given the calibration, the optimal tax is about US $25 per ton CO2 (or US $90 per ton
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carbon). This relatively low number is clearly sensitive to assumptions about the three “d”s
in equation (23.32).21 The moderate tax is then only about US $8 per ton CO2. The results
associated with these different carbon taxes are presented in Figure 23.7. Note the very large
difference in temperature increase between the laissez faire with no tax and the case with the
optimal tax. Without any climate policy, the global temperature will have increased by as
much as 9◦C by the year 2200. In contrast, with a global optimal tax in place, the increase
will be contained at about two degrees Celsius at the end of the considered period. This
shows the strength and potency of the carbon tax as a policy for mitigating global warming.
Note also that even a very low carbon tax (i.e., the moderate tax) can go a long way in
making sure that the temperature increase is not too large.

23.5 Natural resources in finite supply

We now turn back to the broader issue of finite resources. When a resource is in finite supply,
a basic issue is the normative one of how to manage the resource properly: at what rate
should the resource be used over time? Another question is how markets, left to their own
devices, will actually manage the resource. An associated question is how the resource price
will evolve over time. From the perspective of climate change, it also becomes important to
think about how the economy can manage without fossil fuels: can we economize on energy
use by altering the way we produce and consume? The goods and services that are very
energy-intense in production can perhaps be replaced by other products. Alternatively, we
can explore other sources of energy. These issues will all be discussed in this chapter. We
begin with a core theory that rests on Harald Hotelling’s seminal contribution from 1931.22

23.5.1 Some data

Before we dive in to the theory, it is useful to look at some data. Figure 23.8 shows U.S.
data on the uses of different renewable as well as non-renewable energy sources over a long
time span. We see clear upward trends, while there are also (potential) peaks in use for oil
and coal.

In per capita terms, the picture is different. For example, oil use peaked in the 1970s both
in the U.S. and in the world as a whole and oil usage per capita has thus been decreasing
since then. 23

Turning to prices, we first look at a long time series of the oil price as displayed in Figure
23.9.

Maybe the most prominent feature of the time series of the price is the enormous volatility,
a feature that oil shares with other natural resources. Over a long horizon, the price appear

21Again, see Golosov et al. (2014) for a detailed discussion.
22Hotelling, born in 1895 in Fulda, Minnesota, taught Milton Friedman statistics in the early 1930s.

Friedman had a number of PhD students at Chicago, one of them Neil Wallace, the PhD advisor of one of
the authors of the present chapter.

23See Hassler, Krusell, and Olovsson (2022).
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Figure 23.8: U.S. energy consumption.

Source: Administration (2012).

Figure 23.9: Crude oil price.

Source: BP (2021).

to have no trend. However, if we limit attention to the postwar period, there is potentially
a positive growth rate of the oil price.

Figures 23.10–23.11 show the prices of coal, lead, zinc, and copper. Coal’s price resembles
that of oil, but the metals are somewhat different. They share the stationarity of a longer
time horizon but they differ from the fossil fuels in that there is no visible upward trend
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in prices over the postwar period. A potential reason for this difference has to do with
differences in extraction technologies across resources and over time. We will return to this
point below.

Figure 23.10: Coal and lead prices. Source: Jacks (2019).

To summarize, we observe large swings in prices for natural resources, in fact on the
order of magnitude of stock-price fluctuations. We do not observe marked trends, although
for oil there is an upward trend over the postwar period. Quantities are rising significantly
over time, fossil fuels included.24 For fossil fuels, however, here we do see slowdowns, at
least in per-capita consumption. It will turn out to be a challenge to account for these facts
quantitatively.

23.5.2 Basic theory

The so called “cake-eating” problem that analyses how a finite resource should be depleted
over time was first studied by Hotelling (1931) and later by Gale (1967). A more recent
review of the empirical performance of Hotelling’s theory can be found in Livernois (2009).
The implications of natural resource scarcity then received renewed interest after the first
oil-price shock in 1973 when concerns that world oil supply would run out or simply become
too costly to use. The Review of Economic Studies featured a special issue on the economics
of exhaustible resources already in 1974. The issue contains important contributions by

24We omit data on quantities for lead, zinc, and copper; they display significant positive trends, too.
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Figure 23.11: Zinc and copper prices. Source: Jacks (2019).

Dasgupta and Heal, whose model we will use below, Solow, Stiglitz, among others; these
papers are all concerned with the question of how economic growth is affected by the presence
of an input that is depleted over time. Since a theory of endogenous technical change had
not been developed at this point, however, the important concept of endogenous technical
change, discussed in Chapter 11 and revisited in the present chapter, is naturally absent
from the analysis in these papers.25

Pure cake eating: the planner Consider first the simplest possible cake eating problem:
the cake’s size is R0, it can be stored over time and does not depreciate, and an infinitely-
lived consumer with standard preferences likes cake. There is no other good in the economy.
The planning problem thus reads

Consider a planning problem under zero extraction costs.

max
{ct}∞t=0

∞∑
t=0

βt log ct

25Later contributions that are also concerned with the growth implications of natural resource scarcity
but allow for endogenous technical change include Barbier (1999), Scholz and Ziemes (1999), Smulders and
de Nooij (2003), Grimaud and Rouge (2003), and Hassler, Krusell, and Olovsson (2021a).
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subject to
∞∑
t=0

ct = R0,

with c denoting consumption of the resource. Notice that there is no cost of production:
this is the sense in which this is a cake. We assume logarithmic consumption mostly for
illustrative purposes; we do, however, want to insist on balanced-growth preferences since
this chapter concerns the long run. Thus, we could generalize preference somewhat, but not
much.

The solution to the planning problem is ct = (1 − β)Rt, where Rt+1 = Rt − ct, so that
ct = (1− β)βtR0.26 The model is extremely stylized but allows us to make some important
points. First, the problem is well defined, despite the resource use going to zero and the
marginal utility of consumption going to infinity: utility is bounded. Second, consumption
is higher in the beginning than later, all because of discounting.

Pure cake eating: the market outcome and Hotelling rents A third point we can
learn by studying this simple economy comes from studying the market allocation. Let us imagine a
perfectly competitive world where a representative consumer owns (and sells) the resource. Thus, the
consumer would sell an amount of the resource et at time t at market price p̂ot (“o” for oil) in terms of
the numéraire, which we take to be the resource at time 0, and also and buy an amount ct at t, subject
to the Arrow-Debreu budget constraint

∞∑
t=0

p̂ot ct =

∞∑
t=0

p̂ot et,

with Rt − Rt+1 = et ≥ 0 for all t. Market clearing in the simple cake-eating economy is then simply
ct = et for all t.

Taking and combining first-order conditions with respect to ct at two adjacent points in time, we
obtain

p̂ot+1

p̂ot
= β

ct
ct+1

.

The first-order conditions with respect to et and et+1, when combined, become p̂ot = p̂ot+1 for all t: it is
equally costly to sell the resource at different points in time—the marginal production cost is zero—and
therefore the price has to be the same; otherwise the consumer would sell all of the resource at the
date with the highest price. Given this characterization of prices, we obtain, from the earlier first-order
condition, that ct+1 = βct or, imposing market clearing, et+1 = βet. That is, markets deliver the same
outcome as does the planning allocation, not surprisingly.

How should we interpret the price implications, i.e., that the price of the resource at different points
in time is the same? Recall that these are Arrow-Debreu prices, in terms of the numéraire (cake at 0).
If we instead think about spot prices, what would they be? There is no other consumption good than
cake here, so the notion of a spot price is not a natural one. Imagine, however, that we had another
consumption good whose time-t Arrow-Debreu price in terms of the numéraire would be pt. Then

26To obtain this amounts to a calculation that is standard for this text. Simply take first-order conditions
with respect to ct and ct+1 to see that, when the multiplier on the constraint is eliminated, ct+1/ct = β.
Then substitute all the cts in terms of c0 into the constraint.
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pt/pt+1 would be the gross real interest rate and optimal cake selling for the owner would require that
the resource price satisfy the same condition as before, where pot now means the spot price, in terms of
the other consumption good, i.e., p̂ot = potpt = pot+1pt+1 = p̂ot+1, i.e.,

pot =
pt+1

pt
pot+1.

That is, the spot price of the resource today equals the discounted value of the spot price tomorrow.
This is because consumption of the resource at all times requires indifference between selling the good
at different points in time. By implication, the spot price of the resource would have to grow at the
real rate of interest. This is the Hotelling rule governing the prices of resources in finite supply, for the
case of zero extraction costs. This is a remarkably robust insight. The fact that the interest rate is zero
in this simple economy is not central; if the interest rate were positive, the Hotelling rule would simply
mean the price is growing.

So from the market analysis, we obtain this fourth result. A fifth result, which has been implicit in

the discussion so far, is that pot > 0 for all t: even though the cost of producing the resource is zero, the

resource commands a positive price. This price, called the Hotelling rent, is a case where price exceeds

marginal cost, even though there is perfect competition. If you earn a resource in limited supply, you

earn rents from it, to the extent it is valued by consumers or firms.

A production economy Moving away from cake eating and toward a setting that views
the natural resource as a input into production, consider planning a problem in the context
of a growth model where the natural resource is used as an input: this is the Dasgupta and
Heal (1974) setting. We assume that production is Cobb-Douglas in capital and energy,
with decreasing returns to scale (labor is assumed fixed and would command the remainder
of returns) and δ = 1, i.e., capital depreciates fully from period to period. The resource,
however, is modeled as before.

max
{ct}∞t=0

∞∑
t=0

βt log ct

subject to

ct + kt+1 = Aztk
α
t e

ν
t

and
∞∑
t=0

et = R.

Our assumption of a Cobb-Douglas production function in k and e can be motivated if the
resource costs, as a fraction of output, have been stationary. We will display the data later
but a summary is that, for energy (or fossil fuel), the cost share fluctuates sharply over
time, though without a strong trend. Hence, for long-run analysis, Cobb-Douglas seems
like a decent starting point. For reasons we will explain shortly, we will also go beyond a
Cobb-Douglas function.

The solution is straightforward to derive, following our basic chapters. For resource
extraction we obtain the same solution here as for the cake-eating problem: et = (1− β)Rt,
where Rt+1 = Rt − et. Hence et = (1− β)βtR0.
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As part of the solution, we find kt+1 = αβAztk
α
t e

ν
t and that long-run gross capital growth

g is constant if z grows at a constant rate: g = γzg
αβν = (γzβ

ν)
1

1−α , where γz − 1 is the
growth rate of z. For large enough γz, we see that g > 1. I.e., technology growth, of the
form assumed here, allows net positive production growth.

As for price implications, from the Euler equation, we obtain g = β(1 + r), so that

1 + r = (γzβ
ν)

1
1−α /β.

Here, the net real interest rate is positive if g > β, i.e., if γz is large enough. The implications
for the resource price, po, is pt = νyt/et, which grows at g/β = 1 + r. I.e., it rises at the
real rate of interest. This result holds true time period by time period, as before. What
the growth rate is of course depends on the value for the real interest rate; in the pure
cake-eating case, the net real interest rate was zero at all times. Here, we can choose model
parameters so that it matches observations in the data. That would mean 1 + r > 1, for at
least most of the postwar period. Hence the resource price should rise exponentially, based
on the simple setting here where there are no costs from extracting the resource.

Hotelling’s rule in partial equilibrium with extraction costs Taking interest rates
as given, it is straightforward to extend the Hotelling formula to a case where there are resource
extraction costs, i.e., costs that resource producers have to pay in terms of goods. The idea is the same
as before: for extraction to occur in two consecutive time periods, we need to have indifference between
producing today and producing later. I.e., we need to have

pot −mct =
pot+1 −mct+1

1 + rt
,

where mct is the “marginal extraction cost” at time t. This marginal cost should be interpreted in a
broad sense: it involves the input costs of extraction at t but also potential dynamic effects of extraction:
if, for example, it is more and more expensive to extract the more you extract, the marginal cost of
extracting a unit now must include the cost of making extraction harder later. The specific forms for the
marginal cost that would materialize depend on the detailed specification of the extraction technology,
but there will always be a formula of the kind stated here (with a broad notion of mc).

This implies
pt+1

pt
= 1 + rt +

1

pt
(mct+1 − (1 + rt)mct) .

That is, if the marginal cost is rising faster than the rate of interest, the price has to rise faster to
compensate. If we had data on marginal costs, we could assess whether this formula holds in the data,
given a rate of interest, at least on average. As already pointed out, however, marginal costs are rarely
directly observable and here they also have dynamic components, to the extent extraction at a point
in time affects the extraction costs at other dates. The “given interest rate” is also a challenge, since
it is not clear which interest rate to use: a low one from a comparatively safe rate of return (say, on
government bonds), or a higher one that reflects risk? Many observers claim that the Hotelling rule
is violated also in the postwar data, with reference to the lack of a trend whose average real increase
equals real interest rate on the higher side.

Another challenge is volatility: the Hotelling-based price formula derived solely from a production

perspective means a sharp focus on supply. One can imagine that various hard-to-predict shocks on
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the demand side cause fluctuations, but the literature has very few full quantitative general-equilibrium

treatment of the world supply and demand for natural resources. For the purposes of studying fossil

fuel and climate change, which is a very long-run issue, abstracting from short-run volatility seems a

reasonable way forward.

23.5.3 Capital-energy complementarity and technical change

We discussed the challenges involved in accounting for the price data on natural resources.
Another challenge, implicit in our discussion of the simple models above, is the strong positive
trend in the use of natural resources over time, including fossil fuel. We mentioned that if
the marginal production costs fell fast over time, then an upward trend would be visible.
There are two factors working in opposite directions: fossil fuel is getting more and more
difficult to extract, while technical change has made any given type of extraction cheaper
over time. Arguably, the latter force does not dominate, or at least not so much that it can
account for the strong positive trend in fossil-fuel use since the Industrial Revolution.

Another possibility arises, however, if one considers an alternative production technology,
whereby energy—at least in a short-run sense—is very highly complementary with capital
and labor. We now look at this case.

Strong complementarity For simplicity, consider an extreme case, a Leontief technology,
whereby

yt = min {Akαt , et} .

Note here that A is not Hicksian but merely capital-augmenting. Also, to the extent at
least one of the inputs is endogenously chosen, and costly to use, a Leontief function implies
that Akαt et must hold at all points in time. At time 0, this means that e0 must be given by
Akα0 , which is exogenous, k is a state variable. However, at time 1 and on, k is endogenous
and costly: consumption earlier on needs to be forsaken in order to obtain it. What is the
optimal path for capital and the resource? We will argue, without fully solving the model,
that the outcome, based on a plausible parameter specification, is one where e initially grows
over time and then falls.

So suppose that time 0 is at the beginning of the Industrial Revolution, where presumably
k0 is near zero, and A, interpreted as capital-specific technology, is also low. However, the
energy problem had been “solved”: for the purposes at the time, energy was cheap and
plentiful. That is, the initial endowment R0 was high in relation to Akα0 . Then the optimal
allocation would be to accumulate capital over time, i.e., k0 < k1 < k2 . . . at least for some
time, so that et = Akαt is increasing over time. Unlike in the standard neoclassical growth
model, however, the economy would not asymptotically move toward a steady state, because
e is in finite supply (R is high but not infinity). So eventually, e will have to decline, and
k along with it. Fully working out a solution to this problem is somewhat involved but not
necessary for the purposes here.
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A more general case The example just studied makes clear that complementarity can
generate an upward-sloping path for resource use. What would, however, a more systematic
quantitative approach be like? A convenient generalization of the simple case displayed is a
CES formulation:

yt ≡ F
(
Atk

α
t l

1−α
t , Aetet

)
=
[
(1− ν)

(
Atk

α
t l

1−α
t

) ε−1
ε + ν (Aetet)

ε−1
ε

] ε
ε−1

.

Here, we have reintroduced (possibly time-varying) labor, making clear that overall pro-
duction has constant returns to scale; we have also allowed two technology variables, one
augmenting each input, that can also change over time. The parameter ε is the elasticity of
substitution between the capital-labor composite and the resource. The Leontief formulation
used above is a special case: ε = 0.

Solow’s growth-accounting method can be used to measure TFP changes over time, i.e.,
technological progress affecting overall production, under relatively weak assumptions.27

However, how can factor-specific technology movements, such as those in A, and Ae be
measured? The short answer is that they can, under stronger assumptions on the produc-
tion function. Suppose, for instance, that we knew that production was CES as just stated,
and that we knew the parameters α, ν, and ε. Then the competitive firm’s first-order con-
ditions can be used to simply back out At and Aet period by period, given that all prices
and quantities are observed. In this case, we obtain (after taking first-order conditions with
respect to labor and the resource) and rearranging, that

At =
yt

kαt l
1−α
t

�
lsharet

1− α

� ε
ε−1

(23.33)

and
Aet =

yt
et

(
esharet

) ε
ε−1 , (23.34)

where lsharet ≡ wtlt/yt and esharet = potet/yt are cost shares.

An application to fossil fuel-based energy Hassler et al. (2021a) apply the ideas just
discussed to the case of fossil fuel-based energy use in the United States. Relevant facts
appear in Figure 23.12.

Clearly, the price of fossil energy is extremely volatile over the medium run and the cost
share of fossil energy appears to follow the price quite closely: when the price rises, so does
the cost share. This means that a production function with ε close to zero fits the data
very well; recall that a function with Cobb-Douglas or higher elasticity (ε ≥ 1) would mean
that when the price rises, the share falls (or, in the Cobb-Douglas case, does not move at
all). In fact, even a Leontief function fits well. An α similar to what is used in the case
without energy and a ν that matches average shares can then be added and, as a result, the

27Recall, from Chapter 2, that the key assumptions are that inputs, outputs, and prices can be measured,
that the production function has constant returns to scale, that there is perfect competition, and that firms
maximize profits.
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Figure: The real price of a unit (Btu) of energy, U.S.

Average real (using a GDP deflator) price of a Btu for the U.S., including all energy sources. Source: US Energy Information
Administration.
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Figure: The energy share in the U.S.

The total nominal energy bill divided by nominal GDP. Source: US Energy Information Administration.

Per Krusell Some (mostly U.S.) facts EC442, London, October 2018 20 / 21Figure 23.12: The price of fossil energy and its cost share.

movements of prices and shares match the data quite well. Given such a parameterization, it
is then possible to use equations (23.33)–(23.34) to back out the factor-specific technologies.
The result is depicted in Figure 23.13 together with the levels of yt and et.

In the figure, e/l is (the normalized logarithm of) a fossil-fuel composite consisting of oil,
coal, and natural gas per worker.28. Note that energy use per worker increased up to the
early 1970s and it has been decreasing since. The variable y/l is (the normalized logarithm
of) labor productivity. We see that e/l closely follows y/l between 1949 and 1973 and that,
over this period, energy-saving technical change was effectively zero. Since 1973, however,
Ae is increasing at a fast rate, while e/l has been falling. As a result, energy use in efficiency
units, Aee/l, has increased.29 The reduction in physical energy use has thus been offset by
faster energy-saving technical change.

The findings in Figure 23.13 strongly suggest that technology is endogenous: when prices
of oil and gas shot up, energy-saving technological change started growing at a rapid rate.
Moreover, technological change that augments capital and labor appears to have slowed
down at the same time, suggesting that the endogeneity is directed in nature: away from
the factors that are becoming relatively cheap toward those that are becoming relatively
expensive.

28The picture looks very similar if we instead plotted oil per person
29In fact, fossil-fuel use in efficiency units closely follows output.
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Figure 23.13

Endogenous directed technology Chapter 11 developed models of endogenous technical
change. An aspect that was not covered there is the multi-dimensionality of technology
(such as the (A,Ae) here) and how inputs into research can be allocated based on relative
profitability. In the context of Romer (1990b) product variety model, A could thus be thought
of as the variety range of intermediate inputs specifically used to save on capital and labor
and whereas Ae would be the variety range of intermediate inputs directed toward energy-
saving. Or, using Aghion and Howitt’s (Aghion and Howitt (1992b)) model of creative
destruction, A and Ae could be the average efficiency levels of attained in (endogenous)
productivity enhancements of a fixed set of intermediate inputs that are capital/labor- and
energy-saving, respectively. In each of these applications, one can imagine that there is a
fixed set of R& D workers that can be allocated to either of the two innovative (and patent-
seeking) sectors and that market forces would dictate where the R& D workers locate each
period. A richer model would have the total amount of R& D workers be endogenous as
well.

The technology menu approach In Hassler et al. (2021a), a simpler setting is used where
a technology menu G is postulated that lists different options for each firm to choose freely among. In
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particular, consider

G

�
At+1

At
,
Ae,t+1

Aet

�
= 0, (23.35)

where G is strictly increasing in both arguments. Then the idea is that a given, competitive firm can

choose any (At+1, Ae,t+1) at time t satisfying equation (23.35) at no cost, treating (At, Ae,t) as given:

these are the economy-wide average chosen in the previous period. I.e., all firms choose what respective

technology saving they prefer next period but do not internalize the dynamic technology impact of

their choice. Under some conditions on G (jointly with assumption on the firm’s production function),

the firm’s profit maximization problem—which now involves choosing both inputs and the input-saving

technology levels—is well defined and consistent with perfect competition. A simple, static example of

this procedure is as follows: suppose (i) that the production function is CES in inputs x and y, i.e.,

f(Axx,Ayy), and that the elasticity of substitution between x and y is less than 1 (more complementary

than Cobb-Douglas); and (ii) that G(Ax, Ay) is a CES minus a positive constant, so that the non-linear

(CES) average of Ax and Ay equals this constant. Then it is straightforward (though tedious) to show

that the technology choice will lead to a “reduced-form” production function in x and y that is a CES

in x and y with a higher elasticity of substitution than in f .a That is, when (Ax, Ay) is given and not

subject to choice, x and y are harder to substitute than when they can be chosen. This captures the

intuitive notion that the substitutability between inputs is higher in the long than in the short run.

For example, fossil fuel may be very costly to replace as energy source in the short run but much less

so in the longer run, since production techniques can then be developed that work better with other

energy sources.

aThe original paper working these results out is Leon-Ledesma and Satchi (2019).

Whichever way endogenous technology is added to the model, we can capture that natural
notion that low short-run substitutability between energy and other input factors turns into
higher substitutability in the longer run, when technology moves in such a way as to save on
expensive inputs. Thus, a sharp short-run rise in the energy share in response to an increase
in the price of energy will then be falling over time, even if the energy price remains high.

23.5.4 Taking stock

To conclude this section, we have presented some basic facts about natural resources in
finite supply and some basic theory to begin accounting for the facts. We have focused on
resources that, in contrast to the climate, have property rights associated to them, thus
bracketing a broad class of environmental goods and services. The data we looked at showed
increasing paths of use, presumably going hand in hand with economic growth, but also a
slowdown of use toward the end of the sample. This overall pattern, we argued, seems at
least qualitatively consistent with the basic theory of resource depletion that we presented, so
long as we incorporate time-varying, input-specific technology levels. The data also showed
wildly fluctuating prices for natural resources, with weak time trends. The price data still
remains a challenge to fully explain.

The basic theories we presented do not call for government intervention, at least not in
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an obvious way. The market outcome is optimal in the basic model, and although extensions
involving endogenous directed technical change would suggest that some externalities to R&D
be internalized with subsidies/taxes, it is not immediately obvious whether such subsidies
should be directed or imply general to all kinds of R&D. Of course, the efficiency of the
market outcome presumes that property owners and market participants are rational and
that there are no major frictions in the relevant markets. The purpose of this section,
however, was not to make the point that sustainability concerns generally are dealt with
perfectly by markets; rather, it was to show how markets under ideal circumstances, given
property rights, can be functioning well.
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3.A Appendix to Chapter 3

This appendix proves a discrete-time version of the Uzawa (1961) Theorem, following the
continuous-time proof by Schlicht (2006). Schlicht’s continuous-time proof was also discussed
in Jones and Scrimgeour (2008). We will separate the Theorem into two parts.

First, consider the following aggregate production function

Yt = F̃t(Kt, Lt), (3.A.1)

where Yt is output, Kt is capital, and Lt is labor input. The sequence of functions F̃t is
defined for all K and L in the positive orthant and each F̃t exhibits constant returns to
scale. Assume that the population (labor) grows at the constant rate n:

Lt = L0(1 + n)t.

The first theorem asserts that, if there is a balanced growth path where Yt and Kt grow at
the same rate γ, the sequence of functions F̃t has to take a particular form, under which
technological progress is labor-augmenting (Harrod neutral).

Theorem .1 (Uzawa Theorem, Part I) Suppose that for all Y , K, and L such that Y =
F0(K,L),

Yt = F̃t(Kt, Lt), where Yt = Y (1 + γ)t, Kt = K(1 + γ)t, and Lt = L(1 + n)t

holds for all t. That is, the sequence of functions F̃t is consistent with balanced growth,
regardless of the initial conditions and factor combinations. Then there exists a function
F (K,L), defined for all K and L, such that for all Kt, Lt, and t

F̃t(Kt, Lt) = F (Kt, AtLt).

In particular, the function F is identical to F̃0. The variable At grows at a constant rate
(1 + γ)(1 + n)− 1.

Proof. Take any Kt, Lt, and t. Define K by K = Kt/(1 + γ)t, L by L = Lt/(1 + n)t, and
Y by Y = F̃t(Kt, Lt)/(1 + γ)t. Define F (k, l) = F̃0(k, l) for any (k, l).

We know that Y = F̃0(K,L). So Y = F (K,L). Because F̃0 exhibits constant returns to
scale, we can multiply both sides by (1+γ)t and obtain Y (1+γ)t = F (K(1+γ)t, L(1+γ)t).
Transferring back using the definitions of Y , K, and L, we obtain

F̃t(Kt, Lt) = F (Kt, AtLt),

where

At =

�
1 + γ

1 + n

�t
.

The proof makes it clear that F (Kt, AtLt) completely characterizes F̃t over its domain.
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Now, in Part II of the Theorem, we specify a setting that is common in macroeconomic
modeling and show that, indeed, output and capital have to grow at the same rate when
the growth rates of capital, output, consumption, investment are constant over time. The
capital accumulation equation is specified as

Kt+1 −Kt = It − δKt. (3.A.2)

It is investment and δ > 0 is depreciation rate. In the goods market, output equals con-
sumption Ct plus investment It:

Yt = Ct + It. (3.A.3)

Note that the setting is more general than the Solow model covered in the main text: here,
we don’t impose any assumption on investment.

Theorem .2 (Uzawa Theorem, PartII) Suppose that, under the assumptions (3.A.2)
and (3.A.3), there exists a growth path in which the investment is strictly positive It > 0 and
the growth rates of Yt, Ct, It, and Kt are constant over time. Call these growth rates γY ,
γC, γI , and γK. Then γY = γK.

Proof. From (3.A.2),

1 + γK =
It
Kt

− δ

holds. Thus, It/Kt has to remain constant, which implies γI = γK . Therefore, it suffices to
show γY = γI . Subtracting (3.A.3) for time t from (3.A.3) for time t+ 1:

Ct+1 − Ct + It+1 − It = Yt+1 − Yt.

Then
Ct+1 − Ct

Ct
Ct +

It+1 − It
It

It =
Yt+1 − Yt

Yt
Yt

and thus
γCCt + γIIt = γY Yt

holds. Again using (3.A.3),
(γC − γY )Ct = (γY − γI)It. (3.A.4)

Suppose, by contradiction, γY 6= γI . Because It > 0, (3.A.4) implies Ct 6= 0 and (3.A.4) can
be rewritten as

It
Ct

=
γC − γY
γY − γI

and therefore It/Ct has to remain constant. This fact means γI = γC , but because of (3.A.3)
γI = γC implies γI = γC = γY . Contradiction.
Note that, in the Solow model, the latter half of the proof is unnecessary because γY = γI
by the assumption of the constant saving rate.
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4.A Appendix to Chapter 4

This Appendix includes the proofs of theorems and propositions in Chapter 4, and analyzes
the NGM with a phase diagram.

4.A.1 Constraints in the consumption-saving problem

Consider the infinite horizon version of the consumption-saving problem P2, where the con-
sumer maximizes

max
{ct,at+1}∞t=0

∞∑
t=0

βtu(ct),

subject to the sequential budget constraint

at+1 = (1 + r)at + wt − ct. (4.A.1)

As we saw in the main text, this constraint is not sufficient in guaranteeing a well-behaved
maximization problem, as Ponzi schemes are possible. In the finite-horizon model, we im-
posed the terminal condition aT+1 ≥ 0. Would it make sense to impose a similar condition in
the limit of this environment, limT→∞ aT+1 ≥ 0? The answer is no, because such constraint
would be “too restrictive.” To see this, consider a situation where wt = w̄ > 0 for all t. The
consumer could borrow a small amount, for example ε < w̄/(1+r), which can be repaid with
her income w̄ in the following period. The outcome of this, at+1 = −ε for all t, violates the
condition limT→∞ aT+1 ≥ 0 but it would not constitute a Ponzi-scheme. In other words, such
behavior is completely feasible in this environment. What is then the “natural borrowing
limit” for this economy?

To find a reasonable alternative, let us start by assuming the flow budget constraint
(4.A.1) always has to hold. Combining (4.A.1) up to time T , we can obtain

T∑
t=0

ct
(1 + r)t

+
aT+1

(1 + r)T
= (1 + r)a0 +

T∑
t=0

wt
(1 + r)t

. (4.A.2)

It seems reasonable to impose

lim
T→∞

aT+1

(1 + r)T
≥ 0 (4.A.3)

to ensure that
∞∑
t=0

ct
(1 + r)t

≤ (1 + r)a0 +
∞∑
t=0

wt
(1 + r)t

(4.A.4)

holds as T → ∞. Here, we are assuming
∑T

t=0wt/(1 + r)t is finite. Constraint (4.A.4)
corresponds to the lifetime budget constraint in the main text. Condition (4.A.3) is the
no Ponzi game (nPg) condition. It is straightforward to check that imposing (4.A.3) would
prevent the Ponzi scheme described in the main text.
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The natural borrowing limit in this setting turns out to be

at+1 ≥ −
∞∑

s=t+1

ws
(1 + r)s−t

. (4.A.5)

The next Theorem shows the equivalence of different ways of imposing the constraints.

Theorem .3 The following three constraint sets are equivalent.

(i) The flow budget constraint (4.A.1) for t = 0, 1, .... and no Ponzi game condition (4.A.3)

(ii) The flow budget constraint (4.A.1) for t = 0, 1, .... and the natural borrowing limit
(4.A.5) for t = 0, 1, ....

(iii) The lifetime budget constraint (4.A.4)

Proof. To show the equivalence, we start from showing that (i)⇒(ii), then (ii)⇒(iii), and
then (iii)⇒(i).

(i)⇒(ii): Using (4.A.1) from time t+ 1 to T ,

aT+1

(1 + r)T
=

at+1

(1 + r)t
+

T∑
s=t+1

ws − cs
(1 + r)s

(4.A.6)

holds. Rewriting (4.A.6):

at+1 = (1 + r)t
aT+1

(1 + r)T
−

T∑
s=t+1

ws − cs
(1 + r)s−t

.

Taking T →∞,

at+1 = (1 + r)t lim
T→∞

aT+1

(1 + r)T
−

∞∑
s=t+1

ws − cs
(1 + r)s−t

.

Using (4.A.3), this equation implies

at+1 ≥ −
∞∑

s=t+1

ws − cs
(1 + r)s−t

.

Because cs ≥ 0 for all s,

at+1 ≥ −
∞∑

s=t+1

ws
(1 + r)s−t

holds, which is (4.A.5). Because t was arbitrary, we are done.
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(ii)⇒(iii): To show that (4.A.5) for all t implies (4.A.4), first note (4.A.5) implies

at+1

(1 + r)t
≥ −

∞∑
s=t+1

ws
(1 + r)s

. (4.A.7)

The flow budget constraint (4.A.1) implies (4.A.2) holds for any T :

aT+1

(1 + r)T
= (1 + r)a0 +

T∑
t=0

wt − ct
(1 + r)t

.

Thus, combining with (4.A.7),

(1 + r)a0 +
T∑
t=0

wt − ct
(1 + r)t

≥ −
∞∑

t=T+1

wt
(1 + r)t

.

holds. Rearranging and taking T →∞ (the right-hand side converges to zero30) results
in (4.A.4).

(iii)⇒(i): Note that because (4.A.4) doesn’t specify a1, a2, ..., one can create (4.A.2) by
appropriately defining aT . In turn, one can also create (4.A.1) that corresponds these
a1, a2, ..., because (4.A.2) and (4.A.1) are equivalent.

Take a limit of (4.A.2) for T →∞,

∞∑
t=0

ct
(1 + r)t

+ lim
T→∞

aT+1

(1 + r)T
= (1 + r)a0 +

∞∑
t=0

wt
(1 + r)t

.

Rewriting,

lim
T→∞

aT+1

(1 + r)T
= (1 + r)a0 +

∞∑
t=0

wt
(1 + r)t

−
∞∑
t=0

ct
(1 + r)t

.

From (4.A.4), this equation implies (4.A.3).

30This result follows from
∑∞
t=0

wt
(1+r)t being finite. The right-hand side can be rewritten as

−
∞∑
t=0

wt
(1 + r)t

+

T∑
t=0

wt
(1 + r)t

,

whose limit with T →∞ equals zero.
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4.A.2 Balanced growth and CRRA utility

The following theorem shows that CRRA utility is the only form of utility function consistent
with balanced growth. In Appendix 3.A, we have seen that capital, output, and consumption
have to grow at a same rate along the balanced growth. This fact also implies that the rental
rate of capital r = f ′(k) is constant, because K/Y = k/f(k) is constant (implying that k is
constant).

Theorem .4 For a twice differentiable utility function u(c) to be consistent with balanced
growth with any arbitrary growth rate γ, u(c) has to be a CRRA utility function:

u(c) = log(c)

or

u(c) =
c1−σ

1− σ ,

where σ > 0 and σ 6= 1.

Proof. We require, for consistency with balanced growth, that

u′((1 + γ)c)

u′(c)
=

1 + r

β
≡ #

holds for all c. The requirement must work for any γ—in which case r may end up depending
on γ. Therefore, we write #(γ).

So we have, for each c and γ, that

u′((1 + γ)c) = u′(c)#(γ).

Because the expression holds for all c, we obtain

(1 + γ)u′′((1 + γ)c) = u′′(c)#(γ)

so we can write, by dividing the second equation times c by the first,

(1 + γ)cu′′((1 + γ)c)

u′((1 + γ)c)
=
u′′(c)c

u′(c)
.

Given that we require the condition to hold for all γ, we know that the function u needs to
be on the CRRA form: u′′(c)c/u′(c) must equal a constant. We label it −σ.

To see what functional form is implied, we write

−σ
c

=
u′′(c)

u′(c)

and integrate so that we obtain

log(c−σ) = log u′(c).

682



This immediate implies

u′(c) = c−σ ⇒ u(c) =
c1−σ

1− σ
whenever σ 6= 1; when σ = 1, we obtain u(c) = log c.31

4.A.3 Proof to Proposition 4.4

Consider any alternative feasible and interior sequence x ≡ {xt+1}∞t=0, i.e., a sequence in the
interior of Γ(xt) ∀t. We want to show that for any such sequence,

lim
T→∞

T∑
t=0

βt
[
F
(
x∗t , x

∗
t+1

)
−F (xt, xt+1)

]
≥ 0.

Define

AT (x) ≡
T∑
t=0

βt
[
F
(
x∗t , x

∗
t+1

)
−F (xt, xt+1)

]
.

We will show that, as T goes to infinity, AT (x) is bounded below by zero.
By concavity of F ,

AT (x) ≥
T∑
t=0

βt
[
F1

(
x∗t , x

∗
t+1

)
(x∗t − xt) + F2

(
x∗t , x

∗
t+1

) (
x∗t+1 − xt+1

)]
.

Now notice that for each t, xt+1 shows up twice in the summation. Hence, we can rearrange
the expression to read

AT (x) ≥
T−1∑
t=0

βt
{(
x∗t+1 − xt+1

) [
F2

(
x∗t , x

∗
t+1

)
+ βF1

(
x∗t+1, x

∗
t+2

)]}
+

+F1 (x∗0, x
∗
1) (x∗0 − x0) + βTF2

(
x∗T , x

∗
T+1

) (
x∗T+1 − xT+1

)
.

Some information contained in the first-order conditions will now be useful:

F2

(
x∗t , x

∗
t+1

)
+ βF1

(
x∗t+1, x

∗
t+2

)
= 0,

together with x∗0 − x0 = 0 (x0 can only take on one feasible value), allows us to derive

AT (x) ≥ βTF2

(
x∗T , x

∗
T+1

) (
x∗T+1 − xT+1

)
.

31Because of l’Hôpital’s rule, we can summarize as

u(c) = lim
s→σ

c1−s − 1

1− s
for all σ ≥ 0.
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In addition, F2

(
x∗T , x

∗
T+1

)
= −βF1

(
x∗T+1, x

∗
T+2

)
, so we obtain

AT (x) ≥ βT+1F1

(
x∗T+1, x

∗
T+2

) (
xT+1 − x∗T+1

)
≥ −βT+1F1

(
x∗T+1, x

∗
T+2

)
x∗T+1.

In the finite horizon case, x∗T+1 would have been the level of capital left out for the day
after the (perfectly foreseen) end of the world; a requirement for an optimum in that case is
clearly x∗T+1 = 0.

As T goes to infinity, the right-hand side of the last inequality goes to zero by the
transversality condition. That is, we have shown that the utility implied by the candidate
path must be higher than that implied by the alternative.

4.A.4 Analyzing the NGM using the phase diagram

The dynamics of the social planner’s solution to the NGM can be summarized by the following
two difference equations: the resource constraint

kt+1 − kt = f(kt)− δkt − ct (4.A.8)

and the Euler equation
u′(ct) = βu′(ct+1)(f ′(kt+1) + 1− δ). (4.A.9)

The steady-state values of (kt, ct), denoted by (k̄, c̄), satisfy (from kt+1 = kt and ct+1 = ct)

0 = f(k̄)− δk̄ − c̄ (4.A.10)

and
1 = β(f ′(k̄) + 1− δ). (4.A.11)

From (4.A.8), we can see that kt+1 > kt if and only if f(kt)− δkt − ct > 0, or

ct < f(kt)− δkt.

Similarly, kt+1 < kt if and only if ct > f(kt)− δkt and kt+1 = kt if and only if

ct = f(kt)− δkt. (4.A.12)

Therefore, in the (kt, ct)-plane, the curve (4.A.12) divides the entire plane (in particular
the positive orthant that we care) into two regions: below the curve where kt increases over
time and above the curve where kt decreases over time. Figure .1 draws this relationship.
The arrows describe how kt moves over time in that region.

Note that it is straightforward to draw (4.A.12). The first term, f(kt), is an increasing
and concave production function and the second term, δkt, is a straight line through the
origin. The vertical difference is f(kt) − δkt, which is hump-shaped. Note that f(kt) − δkt
is maximized at the point kG where f ′(kG) = δ is satisfied. The capital stock kG is often
called the golden rule capital stock : it was considered as a “desirable” capital stock in earlier
economic growth literature, because, when the steady-state resource constraint (4.A.10) is
satisfied, this value of capital maximizes the consumption c = f(k)− δk.
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Figure .1: Drawing kt+1 > kt, kt+1 < kt, and kt+1 = kt

From (4.A.9), ct+1 > ct if and only if β(f ′(kt+1) + 1 − δ) > 1. Note that from (4.A.11)
and because f ′(k) is strictly decreasing in k, this condition is equivalent to kt+1 < k̄. Using
(4.A.8), the condition can be rewritten as

ct > f(kt)− δkt + (kt − k̄).

Similarly, ct+1 < ct if and only if ct < f(kt)− δkt + (kt − k̄) and ct+1 = ct if and only if

ct = f(kt)− δkt + (kt − k̄). (4.A.13)

In the (kt, ct) plane, the curve (4.A.13) divides the plane into two regions: above the
curve, ct increases over time, and below the curve, ct decreases over time. Figure .2 draws
this relationship. Once again, the arrows describe the movement over time. In this figure,
arrows are vertical because they signify the movement of ct.

Drawing the curve (4.A.13) is also straightforward. Because the first two terms on the
right-hand side are the same as the right-hand side in (4.A.12), we simply need to add (kt−k̄)
to the hump-shaped curve we have already drawn.

Figure .3 puts two curves together. This diagram is called the phase diagram. Note here
that the steady state (k̄, c̄), which corresponds to the crossing point of two curves (because
it is the point where kt+1 = kt and ct+1 = ct both hold), is placed to the left of the largest
point of the hump-shaped kt+1 = kt curve. This comparison follows from the facts that (i)
the largest point of the hump-shaped curve, kG, satisfies f ′(kG) = δ, (ii) from (4.A.11) the
steady state satisfies f ′(k̄) = δ+ 1− 1/β (and the right-hand side is larger than δ), and (iii)
f ′(k) is decreasing in k.
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Figure .2: Drawing ct+1 > ct, ct+1 < ct, and ct+1 = ct

Figure .3: The phase diagram

It turns out that the dynamics of (kt, ct) exhibit a saddle-path dynamics. The line with
arrows in the figure is called the “saddle path” or the “stable arm.” The (kt, ct) sequence
converges to the steady state if and only if it starts on the saddle path. The steady state,
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in this case, is called the “saddle point,” and the property of the dynamics is also referred
to as being saddle-path stable (or saddle-point stable). If (kt, ct) is not on the saddle path, it
will eventually diverge from the steady state.

To analyze the dynamics, recall how the economy evolves. First, for a given k0, the
social planner chooses c0. Once c0 is chosen, the conditions (4.A.8) and (4.A.9) determines
(k1, c1), and the sequence of (kt, ct) can be determined by these difference equations. The
only question is: which value of c0 should the social planner choose? It turns out that the
social planner has to choose c0 so that (k0, c0) is on the saddle path. Thus, the path of (kt, ct)
follows the saddle path and converges to the steady state.

To see why c0 on the saddle path has to be chosen for a given k0, first (counterfactually)
suppose that c0 is chosen above the saddle path. From the diagram, one can see that (kt, ct)
eventually goes into the region where kt keeps decreasing and ct keeps increasing. In a finite
time, kt becomes zero, and at that point, it becomes impossible to follow the differential
equations (4.A.8) and (4.A.9) while satisfying the constraints kt ≥ 0 and ct ≥ 0. Thus, this
choice of c0 is not consistent with the optimal conditions.

If c0 is chosen from below the saddle path, eventually (kt, ct) goes into the region where
both kt and ct keep decreasing. In particular, at a finite T , kt > kG (and therefore f ′(kt) < δ)
for all t > T . One can show that this sequence of (kt, ct) violates the TVC. First note that,
using (4.A.9) repeatedly,

βtu′(ct)(f
′(kt) + 1− δ)kt = βt−1u′(ct−1)kt = u′(c0)

1∏t−1
s=0(f ′(ks) + 1− δ)

kt

holds. The TVC requires

lim
t→∞

βtu′(ct)(f
′(kt) + 1− δ)kt = lim

t→∞
u′(c0)

1∏t−1
s=0(f ′(ks) + 1− δ)

kt

to be zero. However, both u′(c0) > 0 and kt is bounded from below by a strictly positive value
(in particular, kt > kG for all large t), and

∏t−1
s=0(f ′(ks)+1−δ)→ 0 because f ′(kt)+1−δ < 1

for all t > T . Thus, u′(ct)(f
′(kt) + 1 − δ)kt diverges to +∞, violating the TVC. And this

result is intuitive: along this path, ct is consistently low (the consumers are eating very
little), despite that kt keeps growing: a clear sign of oversaving. Eventually, the value of kt
becomes inefficiently high, to the extent that the net return from the capital at the margin
f ′(k)− δ is negative (this situation is often called as dynamic inefficiency). We discuss the
issues of dynamic inefficiency further in Chapter 6 (and its Appendix).

It is also straightforward to check that the saddle path satisfies the TVC. Because the
steady state k̄ < kG, f ′(k̄) > δ and therefore

∏t−1
s=0(f ′(ks) + 1− δ)→∞ as t→∞, implying

u′(ct)(f
′(kt) + 1− δ)kt → 0 as t→∞.

In sum, the optimal path of (kt, ct) converges to the steady state (k̄, c̄). This convergence
property is qualitatively the same as in the Solow model. The difference here is that the
saving rate is chosen by the social planner, and it can vary over time. The eventual steady
state is derived from the social planner’s optimizing behavior. One might wonder why the
social planner eventually chooses a k̄ below the golden rule kG, which maximizes the steady-
state consumption. The reason is that the consumer (and thus the social planner) discounts
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the future. Even though the consumption level is higher under kG than under k̄ after reaching
the steady state, the consumer has to save extra to reach from k̄ to kG, and she can consume
less during the transition. Because the consumer discounts the future, the cost from the
short-run reduction of consumption is higher than the benefit of the eventual increase in
consumption in the long run.

4.A.5 Continuous-time techniques

In most of the chapters in the book, we employ discrete-time models. The discrete-time
formulation has the advantage of being intuitive and also easier to work with computers (we
often discretize continuous variables in computation); for some types of research, there is an
advantage of using continuous-time formulation. In particular, some models are easier to
work with “pencil and paper” using continuous-time formulation, given the mathematical
tractability. This section describes particular techniques and formulations that are specific
to continuous-time models.

First, let us introduce a new notation. Instead of denoting time-dependent variable
indexing by time t as Xt (t = 0, 1, 2, ...) in the discrete-time case, we represent a variable as
a function of time in the continuous-time case: X(t) (t ∈ R+).

The time-derivative of X(t), dX(t)/dt, is denoted as Ẋ(t). This notation is sometimes
called the “dot notation” or “Newton’s notation.” In economics, it is especially kept for
expressing time derivatives.

We first start with a few mathematical tricks that are useful for analyzing continuous-
time variables. First, let us think about the growth rate of a variable X(t). In discrete-time
case, when the growth rate of Xt is constant at γ, that is,

Xt+1 −Xt

Xt

= γ, (4.A.14)

Xt = (1 + γ)tX0 (4.A.15)

holds. This result can be checked by plugging the expression (4.A.15) into (4.A.14). In
continuous-time context, “the growth rate of X(t) is γ” is expressed as

Ẋ(t)

X(t)
= γ, (4.A.16)

because the growth rate is “change divided by level” and the “change” in this context is the
time derivative Ẋ(t). This time, X(t) can be expressed using the exponential function:

X(t) = eγtX(0). (4.A.17)

where e is Euler’s number (2.71828...). This expression can be checked by plugging (4.A.17)
into (4.A.16). Note that in (4.A.17), Ẋ(t) = γeγtX(0) from the property of the exponential
function.32

32For the properties of exponential function and taking the derivative of composite functions, see Appen-
dices 4.A.9 and 4.A.10.
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Another useful trick is that when one wants to derive the growth rate of a variable X(t),
one can take natural log log(X(t)) and then take a derivative. That is,

Ẋ(t)

X(t)
=

d

dt
log(X(t)). (4.A.18)

This property can easily be derived from the property of the natural log and the formula
for the composite function derivative.33 The formula (4.A.18) has an important implication:
when log(X(t)) is a straight line, the growth rate of X(t) is constant. This fact is the main
reason why many time-series figures in macroeconomics, such as Figure 2.1, are drawn with
a log scale on the vertical axis.

The formula (4.A.18) is particularly powerful when dealing with power functions. For
example, consider a Cobb-Douglas production function

Y (t) = z(t)K(t)αL(t)1−α,

where Y (t) is output, z(t) is total factor productivity (TFP), K(t) is capital, and L(t) is
labor. The parameter α ∈ (0, 1). Taking natural logs on both sides,

log(Y (t)) = log(z(t)K(t)αL(t)1−α) = log(z(t)) + α log(K(t)) + (1− α) log(L(t)),

where the second equality uses properties of natural log.34 Taking time derivative on both
sides and using the formula (4.A.18), it is immediate to see that

Ẏ (t)

Y (t)
=
ż(t)

z(t)
+ α

K̇(t)

K(t)
+ (1− α)

L̇(t)

L(t)
,

which corresponds to the growth accounting equation (2.2) in Chapter 2.
The formula (4.A.18) can also be used to derive (4.A.16) from (4.A.17). Take a natural

log of both sides of (4.A.17). Then log(X(t)) = γt+log(X(0)) holds. Taking derivative with
respect to t, using the formula (4.A.18), we arrive at (4.A.16).

Optimization in continuous-time models: Maximum principle

In this section, we consider dynamic optimization in continuous-time formulation. We cover
the method often called the maximum principle, optimal control, or the Hamiltonian method.
To consider the continuous-time method heuristically, let us start from a finite-horizon
consumption-saving model similar to the one in Section 4.1.1.

The consumer solves the problem:

max
{ct,at+1}Tt=0

T∑
t=0

βtu(ct),

33Once again, see Appendices 4.A.9 and 4.A.10.
34See Section 4.A.9.
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subject to

at+1 = w + (1 + r)at − ct, (4.A.19)

a0 is given, and

aT+1 ≥ 0. (4.A.20)

Here, β ∈ (0, 1) is the discount factor, u(·) is the utility function that is strictly increasing,
strictly concave and satisfies Inada conditions, ct is consumption at period t, at is an asset at
the beginning of period t, and T > 0 is the final period. The labor earnings w and interest
rate r are given to the consumer.

Let us write a Lagrangian, slightly different from Section 4.1.1, as

L ≡
T∑
t=0

βtu(ct) +
T∑
t=0

µt((1 + r)at + w − ct − at+1) + λaT+1,

where µt (t = 0, 1, ..., T ) and λ are Lagrange multipliers. In this context, µt is also often
called the costate variable. As in Section 4.1.1, we can proceed by applying the Kuhn-Tucker
theorem to this directly, but here, we take a little bit of detour. Note that the expression
in the parenthesis in the second term can be obtained by rewriting the budget constraint
(4.A.19) as

at+1 − at = rat + w − ct. (4.A.21)

Using the Hamiltonian, the Lagrangian can be further rewritten as

L =
T∑
t=0

Ht −
T∑
t=0

µt(at+1 − at) + λaT+1.

Note that Ht is a function of ct and at.
Then the first-order conditions for ct, t = 0, 1, 2, ..., T is

∂Ht

∂ct
= 0. (4.A.22)

The first-order conditions for at+1, t = 0, 1, 2, ..., T − 1 is

∂Ht+1

∂at+1

+ µt+1 − µt = 0. (4.A.23)

Note that a variable that has the same characteristics as ct, that is, a t-period variable that
can be decided at period t, is often called the control variable. The first-order condition for
the control variable simply takes the form of “maximizing the Hamiltonian.” A variable that
has the characteristics of at is called the state variable. The concepts of the control variable
and the state variable are already introduced in Chapter 4, Section 4.1. The state variable
cannot be changed at time t. But some state variables at period t + 1 can be decided at
period t. In such a case, the first-order condition is different: it maximizes the Hamiltonian
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at period t+ 1, but the fact that µt can change over time has to be taken into account. This
consideration results in the extra term µt+1 − µt.

The first-order condition for aT+1 is

− µT + λ = 0. (4.A.24)

The Kuhn-Tucker condition for the inequality constraint is λ ≥ 0, aT+1 ≥ 0, and

λaT+1 = 0. (4.A.25)

The condition (4.A.22) for t = T is βTu′(cT ) = µT , and combining this relationship with
(4.A.24) and (4.A.25), we obtain

βTu′(cT )aT+1 = 0. (4.A.26)

This condition is often called the transversality condition (TVC). We have discussed this
concept in Chapter 4. In the finite horizon case, because βT > 0 and u′(cT ) > 0, this implies
that aT+1 = 0. This result does not necessarily apply when the planning horizon is infinite.

The condition (4.A.22) for time t is

βtu′(ct) = µt,

and the condition (4.A.23) for time t+ 1 is

µt = (1 + r)µt+1.

Combining these two, we obtain the Euler equation

u′(ct) = β(1 + r)u′(ct+1). (4.A.27)

This Euler equation, combined with the initial condition a0, the budget constraint (4.A.19),
and the TVC (4.A.26) characterize the dynamic paths of ct and at. Using the Euler equation
repeatedly from time 0 to T − 1,

βTu′(cT ) =
u′(c0)

(1 + r)T

holds, and therefore (together with the fact that u′(c0) a positive number) (4.A.26) is equiv-
alent to

aT+1

(1 + r)T
= 0.

Once again, in the finite-horizon case here, this condition is equivalent to aT+1 = 0.
With infinite horizon, the problem can be similarly written as

max
{ct,at+1}∞t=0

∞∑
t=0

βtu(ct),
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subject to
at+1 = w + (1 + r)at − ct,

a0 is given, and

lim
T→∞

aT+1

(1 + r)T
≥ 0. (4.A.28)

We assume that r is not too large so that the present value of utility is finite. Note that
the last constraint looks somewhat different from the finite-horizon case (4.A.20). In the
finite horizon, aT+1/(1 + r)T ≥ 0 is equivalent to aT+1 ≥ 0 because (1 + r)T > 0 for any T
so it does not make a difference. In the infinite horizon, limT→∞ aT+1/(1 + r)T ≥ 0 is not
equivalent to limT→∞ aT+1 ≥ 0 (consider the case where at = a > 0 for all t; this satisfies
the former inequality but not the latter inequality). See Section 4.3.1 for the discussion of
why (4.A.28), called the no-Ponzi game (nPg) condition, is the appropriate one in this case.

As in the finite-horizon case, rewrite the budget constraint as at+1 − at = rat + w − ct
and define the Hamiltonian

Ht ≡ βtu(ct) + µt(rat + w − ct),

where µt is the Lagrange multiplier.
Then, the first-order conditions are

∂Ht

∂ct
= 0

for t = 0, 1, ... and
∂Ht+1

∂at+1

+ µt+1 − µt = 0.

These two equations can be combined to obtain the same Euler equation as in the finite-
horizon case (4.A.27). The TVC is

lim
T→∞

βTu′(cT )aT+1 = 0.

This condition is analogous to the finite-horizon case (4.A.26). As in the finite-horizon case,
this condition can also be expressed as

lim
T→∞

aT+1

(1 + r)T
= 0.

See Section 4.3.1 for further discussions on this condition.
The continuous-time version of the same model can be solved analogously. After changing

the notation from Xt to X(t), first, let us set up the optimization problem:

max
c(t),a(t)

∫ ∞
0

e−ρtu(c(t))dt

subject to
ȧ(t) = w + ra(t)− c(t), (4.A.29)
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a(0) is given, and

lim
T→∞

e−rTa(T ) ≥ 0. (4.A.30)

First, let us take a look at the objective function. The period utility u(·) (often called the
“instantaneous utility” or “moment utility” in the continuous-time setting) is identical to
the one in discrete time. Instead of summation, we have an integral. The major difference
in appearance is the discounting. Here, ρ > 0 is called the discount rate. Since e−ρt = (e−ρ)t,
one can think of e−ρ as a number that corresponds to β (the discount factor) in the discrete-
time case. Be careful that a large discount rate means that the consumer cares about the
future less, whereas a large discount factor means that the consumer cares about the future
more. The reason ρ is called the discount rate is more properly explained in the box below.

The discount rate ρ

Suppose that, in a discrete-time setup, we discount the next period using the discount
factor β ∈ (0, 1). We define the discount rate ρ by the value that satisfies

β =
1

1 + ρ
. (4.A.31)

When we discount t periods ahead, we multiply βt, or equivalently, [1/(1 + ρ)]t. Now,
imagine that we split one period into many subperiods, each of which has a length ∆.
For example, when one period is one year, we can think of ∆ being one month and
1/∆ = 12. Let us discount one subperiod by the rate ρ∆. Thus, when we discount a
variable for t periods (which is equal to t/∆ subperiods), we multiply

f(∆, t) =

�
1

1 + ρ∆

� t
∆

.

When we take a limit ∆→ 0,

lim
∆→0

f(∆, t) = lim
∆→0

�
1

1 + ρ∆

� t
∆

= lim
∆→0

�
(1 + ρ∆)1/(ρ∆)

�−ρt
= e−ρt,

where we used the fact e = limx→0(1 + x)1/x. Thus, the continuous-time discount rate
ρ that shows up in e−ρt can be interpreted as analogous to ρ in (4.A.31) when a period
can be divided into many subperiods so that we can discount “continuously.”

The constraint (4.A.29) is similar to (4.A.21), except that the change in the asset is
expressed as ȧ(t) instead of at+1 − at. The nPg condition (4.A.30) is similar to (4.A.28),
except that the discounting is e−rT instead of 1/(1 + r)T . We can map these two with each
other using the same procedure as in the above box. When r varies over time (denote it rt
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or r(t)), we can generalize the nPg condition for the discrete-time case to

lim
T→∞

aT+1∏T
t=1(1 + rt)

≥ 0

and the continuous-time case to

lim
T→∞

e−
∫ T
0 r(t)a(T ) ≥ 0.

See Section 4.A.11 for detailed exposition.
Now, let us solve the problem. Steps are the same as in the discrete-time case. Define

the Hamiltonian
H(t) ≡ e−ρtu(c(t)) + µ(t)(ra(t) + w − c(t)). (4.A.32)

The first-order conditions:
∂H(t)

∂c(t)
= 0 (4.A.33)

∂H(t)

∂a(t)
+ µ̇(t) = 0. (4.A.34)

The TVC is
lim
T→∞

e−ρTu′(c(T ))a(T ) = 0.

The only differences from the discrete-time case are (i) the change in µ(t) is expressed as
µ̇(t) (instead of µt+1−µt) in (4.A.34), (ii) in (4.A.34) the relevant derivative of Hamiltonian
is ∂H(t)/∂a(t) instead of ∂Ht+1/∂at+1, because in the continuous-time setting there is no
“next period,” and (iii) the discounting for the TVC is now e−ρT .

One can heuristically derive (4.A.33) and (4.A.34) in a similar manner as in the discrete-
time case. Construct the Lagrangian

L =

∫ ∞
0

e−ρtu(c(t))dt+

∫ ∞
0

µ(t)(ra(t) + w − c(t)− ȧ(t))dt.

(We ignore the terminal condition issues here for the sake of exposition.) By rewriting
Hamiltonian as (4.A.32), the Lagrangian can be rewritten as

L =

∫ ∞
0

H(t)dt−
∫ ∞

0

µ(t)ȧ(t)dt.

Applying integration by parts to the second term;

L =

∫ ∞
0

H(t)dt−
[

lim
T→∞

µ(T )a(T )− µ(0)a(0)
]

+

∫ ∞
0

µ̇(t)a(t)dt.

Taking the first-order conditions on c(t) and a(t) leads to (4.A.33) and (4.A.34).
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Present-value Hamiltonian and current-value Hamiltonian

The Hamiltonian that is used in this chapter is often called the present-value Hamilto-
nian. An alternative formulation is called the current-value Hamiltonian. The current-
value Hamiltonian evaluates the utility at the current value, without discounting. In
the context of the above consumption-saving problem, the current-value Hamiltonian is

Ĥ(t) ≡ u(c(t)) + µ̂(t)(ra(t) + w − c(t)).

With the current-value Hamiltonian, the first-order conditions are modified to

∂Ĥ(t)

∂c(t)
= 0 (4.A.35)

and
∂Ĥ(t)

∂a(t)
+ ˙̂µ(t)− ρµ̂(t) = 0. (4.A.36)

The equation (4.A.35) corresponds to (4.A.33) and (4.A.36) corresponds to (4.A.34).
One can also see the relationship µ(t) = e−ρtµ̂(t).

Using (4.A.33) and (4.A.34), we can derive the continuous-time version of the Euler
equation. First, (4.A.33) can be written as

e−ρtu′(c(t)) = µ(t). (4.A.37)

The first-order condition for the state variable, (4.A.34), can be calculated as

rµ(t) + µ̇(t) = 0. (4.A.38)

To eliminate µ(t), first rewrite (4.A.38) as

µ̇(t)

µ(t)
= −r.

Applying the growth trick (4.A.18) to (4.A.37)

−ρ+
u′′(c(t))

u′(c(t))
ċ(t) =

µ̇(t)

µ(t)
.

Combining these two, we obtain

− u′′(c(t))c(t)

u′(c(t))

ċ(t)

c(t)
= r − ρ. (4.A.39)

This equation is the continuous-time version of the Euler equation. The coefficient of relative
risk aversion −u′′(c(t))c(t)/u′(c(t)) is called the coefficient of relative risk aversion and
because u′′(·) < 0, c(t) > 0, and u′(·) > 0, the coefficient is always positive. In a class
of utility function, called the CRRA utility (introduced in Section 4.2.4), where u(c) =
(c1−σ − 1)/(1− σ), the coefficient is constant: −u′′(c(t))c(t)/u′(c(t)) = σ.
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Discrete-time Euler equation versus continuous-time Euler equation

Although the appearance of the continuous-time Euler equation (4.A.39) and discrete-
time Euler equation (4.A.27) are somewhat different, the economic contents and intuition
are identical. In (4.A.39), whether consumption increases or decreases over time, that
is, the sign of the consumption growth ċ(t)/c(t), depends on the relative strength of
the benefit from saving r and discounting ρ. When the consumer discounts the future
strongly, that is, ρ is large, the consumption growth is small (it can even become nega-
tive). When discounting is small, the consumer prefers to consume more in the future,
and the consumption growth is large.

The same can be seen in (4.A.27). When the consumer discounts the future strongly,
that is, β is small, u′(ct) tends to be small compared to u′(ct+1), implying ct is relatively
large compared to ct+1. In fact, if we use the approximation u′(ct+1) = u′(ct+[ct+1−ct]) ≈
u′(ct) + u′′(ct)(ct+1 − ct) and the relationship β = 1/(1 + ρ), we can rewrite (4.A.27) as

−u
′′(ct)ct
u′(ct)

ct+1 − ct
ct

=
r − ρ
1 + r

,

which resembles (4.A.39).

4.A.6 Continuous-time Solow model

Let us work with the Solow model with a growing economy in Section 3.2. The aggregate
production function is

Y (t) = F (K(t), A(t)L(t)),

where Y (t) is aggregate output (GDP), K(t) is aggregate capital, A(t) is technology level,
and L(t) is aggregate labor. The assumptions on the aggregate production function F (·, ·)
are the same as in Chapter 3 (see Section 3.1). We assume that aggregate labor grows at
the rate n and technology grows at the rate γ. That is,

L̇(t)

L(t)
= n (4.A.40)

and
Ȧ(t)

A(t)
= γ. (4.A.41)

Capital stock accumulates following the transition equation

K̇(t) = I(t)− δK(t), (4.A.42)

where I(t) is aggregate investment and δ > 0 is depreciation rate. As in Chapter 3, we
assume that a constant fraction s ∈ (0, 1) of the aggregate income (which is the same as
Y (t)) is saved and therefore invested.

I(t) = sF (K(t), A(t)L(t)). (4.A.43)
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Let us define a new variable k̄(t) by

k̃(t) ≡ K(t)

A(t)L(t)
.

Using the technique we learned in Section 4.A.5, we can obtain the growth rate of k(t) as

˙̃k(t)

k̃(t)
=
K̇(t)

K(t)
− Ȧ(t)

A(t)
− L̇(t)

L(t)
. (4.A.44)

From (4.A.40), (4.A.41), (4.A.42), and (4.A.43), we can rewrite (4.A.44) as

˙̃k(t)

k̃(t)
=
sF (K(t), A(t)L(t))− δK(t)

K(t)
− γ − n.

In the first term of the right-hand side, dividing both denominator and numerator by A(t)L(t)
and using

F (K(t), A(t)L(t))

A(t)L(t)
= F

�
K(t)

A(t)L(t)
, 1

�
= f(k̃(t)),

where the first equality uses the constant-returns assumption on F (·, ·) (see Chapter 3), and
the second equality is from the definitions of f(·) (recall that f(k) ≡ F (k, 1) from Chapter
3) and the definition of k̃(t), we obtain

˙̃k(t)

k̃(t)
=
sf(k̃(t)

k̃(t)
− (δ + γ + n).

Multiplying k̃(t) to both sides, we obtain the differential equation that corresponds to (dif-
ference equations) (3.5) and (3.7) in Chapter 3:

˙̃k(t) = sf(k̃(t))− (δ + γ + n)k̃(t). (4.A.45)

The dynamics of the Solow model can easily be analyzed using a diagram. Figure .4 plots

the equation (4.A.45). The vertical axis is ˙̃k(t), that is, the change of k̃(t) over time. Thus,

when the curve intersects with the horizontal axis, ˙̃k(t) = 0 holds, that is, the economy is in

the steady state. Denote the steady state level of k̃(t) by ¯̃k. When k̃(t) is to the left of the

steady state, that is, k̃(t) < ¯̃k, ˙̃k(t) is positive, and thus k̃(t) increases over time. On the

opposite side, when k̃(t) > ¯̃k, ˙̃k(t) is negative, and thus k̃(t) decreases over time. Tracing the
change of k̃(t) in the graph, we can see that, from either direction, k̃(t) gradually approaches
¯̃k. In other words, the dynamics of the Solow model exhibit convergence property. In the
long run, the economy approaches the steady state, regardless of where it starts.
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Figure .4: Solow model in continuous time

The steady state is also called the balanced growth path. Along the balanced growth
path, various economic variables grow steadily over time. For example, because the per-
capita GDP, Y (t)/L(t) can be rewritten as

F (K(t), A(t)L(t))

L(t)
= f(k̃(t))A(t)

and f(k̃(t)) is constant in the steady state, the growth rate of Y (t)/L(t) in the long run is
identical to the growth rate of A(t), which is γ.

4.A.7 Continuous-time Neoclassical growth model

Now, let us consider the Neoclassical growth model (introduced in Section 4.1.2). We consider
a setting where there is no population growth and technological progress. Such elements can
be incorporated using the techniques in the previous section and also Section 4.3.3.

Consider the social planner’s problem in the continuous-time setting:

max
c(t),k(t)

∫ ∞
0

e−ρtu(c(t))dt,

subject to
k̇(t) = f(k(t))− δk(t)− c(t), (4.A.46)
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c(t), k(t) ≥ 0, ∀t,
and

k(0) given.

The no-Ponzi game condition is not relevant for the social planner because the planner
cannot borrow and is subject to the nonnegativity constraint of capital for all time. With
the same step as the above consumption-saving problem, we can construct a Hamiltonian

H(t) ≡ e−ρtu(c(t)) + µ(t)(f(k(t))− δk(t)− c(t)).

The first-order conditions are
∂H(t)

∂c(t)
= 0

∂H(t)

∂k(t)
+ µ̇(t) = 0.

The TVC is
lim
T→∞

e−ρTu′(c(T ))k(T ) = 0. (4.A.47)

Let us focus on the case of the CRRA utility: u(c) = (c1−σ − 1)/(1 − σ). With the same
steps as deriving the equation (4.A.39) above, we can derive the Euler equation

ċ(t)

c(t)
=

1

σ
(f ′(k(t))− (δ + ρ)) . (4.A.48)

The two differential equations (4.A.46) and (4.A.48), together with the initial condition k(0)
and the TVC (4.A.47) determine the dynamics of (k(t), c(t)). The dynamics of (k(t), c(t))
can be analyzed in a phase diagram as in the Section 4.A.4. The continuous-time version of
the analysis is in Section 4.A.12.

The above characterizes the Pareto-optimal allocation of the economy, where everyone
is treated symmetrically. Below we show that this allocation is equivalent to the allocation
under the market equilibrium. This result is not surprising given the first- and the second-
welfare theorem, but still it is instructive to demonstrate how they coincide with each other
in this economy.

The households are indexed by i ∈ [0, 1]. Assume that all households are symmetric,
that is, have the same preferences and start from the same capital ki(0). The household’s
problem is

max
ci(t),ki(t)

∫ ∞
0

e−ρtu(ci(t))dt,

subject to
k̇i(t) = r(t)ki(t) + w(t)− δki(t)− ci(t), (4.A.49)

ci(t), ki(t) ≥ 0, ∀t,
and

ki(0) given.
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Here, r(t) is the rental rate of capital, and w(t) is the wage rate. The same optimization
procedure as above leads to the consumer’s Euler equation

ċi(t)

ci(t)
=

1

σ
(r(t)− (δ + ρ)) . (4.A.50)

The representative firm maximizes the profit. The firm’s problem is static:

max
K(t),L(t)

F (K(t), L(t))− r(t)K(t)− w(t)L(t),

where K(t) is the factor demand for capital and L(t) is the labor demand. The first-order
conditions are

F1(K(t), L(t)) = r(t)

and
F2(K(t), L(t)) = w(t),

where Fi(K(t), L(t)) is the partial derivative with respect to the term i. As in Section 3.3,
we can shown that F1(K(t), L(t)) = f ′(k̃(t)) and F2(K(t), L(t)) = f(k̃(t)) − k̃(t)f ′(k̃(t)),
where f(k) ≡ F (k, 1) and k̃(t) ≡ K(t)/L(t).

Now, let us consider the market equilibrium. There are three markets: product market,
capital (rental) market, and labor market. Because of Walras’ law, we need to consider only
two markets. In the capital market, the market clearing condition is∫

ki(t)di = K(t).

The right-hand side is the labor demand, and the left-hand side is the capital demand. In
the labor market, because the aggregate supply of labor is 1,

1 = L(t).

Let the aggregate capital in this economy be denoted as

k(t) =

∫
ki(t)di.

Then, from the firm’s optimization, the equilibrium prices are

r(t) = f ′(k(t)) (4.A.51)

and
w(t) = f(k(t))− k(t)f ′(k(t)). (4.A.52)

Replacing (4.A.51) and (4.A.52) in (4.A.49) and (4.A.50) and using symmetry (ci(t) = c(t)
and ki(t) = k(t)), we obtain

k̇(t) = f(k(t))− δk(t)− c(t)
and

ċ(t)

c(t)
=

1

σ
(f ′(k(t))− (δ + ρ)) ,

which are identical to (4.A.46) and (4.A.48).
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4.A.8 Uncertainty in continuous-time settings: Poisson process

In this section, we consider how to introduce uncertainty in a continuous-time setting. In
a discrete-time setting, “one shock (potentially) occurring every period” is a natural way
of introducing uncertainty. In a continuous-time setting, there are no “periods” and thus a
natural unit of frequency that a shock happens. Overall, there are two ways of introducing
uncertainty: when we look at a variable X(t) as a function of t, shocks either (i) move
around X(t) continuously or (ii) induce X(t) to jump discretely (or combination of both).
The first is a kind of shock that is “small but frequent,” and the stochastic process is called
a diffusion process. An example of the diffusion process is Brownian motion, which has been
used in physics to describe the movement of particles. The second type of shock is “large
but infrequent.” Both the size and the frequency of shocks can be random. This type of
stochastic process is called a jump process.

Diffusion processes are frequently used in finance and also used in macroeconomics. Al-
though the popularity of the use of diffusion processes in macroeconomics is growing, the
treatment of diffusion processes is beyond the mathematical level of this book, and below,
we focus on a Poisson process, which is an example of the jump process.35

To consider a Poisson process, let us start with Bernoulli trials in discrete time. Consider
a Bernoulli trial that can result in a “success” or a “failure.” The situation can be finding
a job, losing a job, succeeding in innovation, etc. Suppose that the probability of success is
λ ∈ [0, 1] for one trial.

Suppose that during one unit of time (say, one year), one trial is made. From the above
assumptions, the expected number of successes during this one year is λ. Now, suppose that
we divide the period into two and have one trial every six months. Each trial is independent.
If we adjust the success probability of each trial to λ/2, the expected total number of successes
during the one year is still λ. In general, if we divide the period (one year) into n subperiods
and make the success probability λ/n in each subperiod, we still keep the expected total
number of success λ, although now we may have many successes during one year.

With n trials, the distribution of the number of successes follows a binomial distribution

b(k, n) =

�
n

k

��
λ

n

�k �
1− λ

n

�n−k
, (4.A.53)

where �
n

k

�
=

n!

k!(n− k)!

is the binomial coefficient (the number of different ways one can have k successes out of n
trials). b(k, n) represents the probability of k successes during this time period.

Note that, in (4.A.53),

b(0, n) =

�
1− λ

n

�n
(4.A.54)

35A part of the following exposition is based on Feller (1968).
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and
b(k, n)

b(k − 1, n)
=
n− (k − 1)

k

λ/n

1− λ/n =
λ− (k − 1)/n

k − λ/n (4.A.55)

for k ≥ 1 hold. Let us consider a situation where n → ∞. That is, the length of each
subperiod approaches zero. In (4.A.54),

p(0) ≡ lim
n→∞

b(0, n) = e−λ. (4.A.56)

The second inequality follows from the definition of e. Taking the limit of (4.A.55),

lim
n→∞

b(k, n)

b(k − 1, n)
=
λ

k

holds. Applying this formula for k = 1, 2, 3, ... sequentially, we obtain

p(k) = e−λ
λk

k!
.

This p(k) represents the probabilities for the Poisson distribution. The Poisson process
is a stochastic process where the distribution of the number of successes between any time
interval (t, t+T ] (for T > 0) follows a Poisson distribution. The expected number of successes
during the time interval (t, t+ T ] is λT , and we saw that the Poisson process in continuous
time can be understood as the limit of the discrete-time situation where repeated independent
Bernoulli trials are conducted in every small time interval ∆ = T/n, where ∆ → 0. Each
trial has the probability of success λ∆, and the total number of trials is n = T/∆, thus
keeping the expected number of successes as λT during the entire time period. Because the
probability of success in each trial λ∆→ 0 and the total number of trials n = T/∆→∞ as
∆→ 0, successes occur “infrequently” compared to the total number of trials.

A few notes are in order. First, from the construction, it can be seen that the outcomes
during (t, t+ T ] and during (t+ T + s, t+ T + s+ S] are independent of each other for any
s ≥ 0 and S ≥ 0. Thus, the Poisson process is a memoryless process. Second, the initial
restriction λ ≤ 1 is not necessary; we can always start from a small enough time interval
(a large enough n) such that λ/n ≤ 1 and proceed with the above construction. Third, the
probability that no success occurs during the time interval (t, t+ T ] is, from (4.A.56), e−λT .
If λ is time variant (denote it λ(s) for time s), then the same probability is expressed by

e−
∫ t+T
t λ(s)ds.

4.A.9 Natural log and exponential function

A natural log, often denoted as log(x) or ln(x), is the inverse operation of the exponential
function (ey or exp(y), where e = 2.71828...). That is,

elog(x) = x

and
log(ex) = x.
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The natural long function has the following properties:

log(xy) = log(x) + log(y),

log(xα) = α log(x).

The derivatives of the natural log function and the exponential function are:

d

dx
log(x) =

1

x

and
d

dx
ex = ex.

4.A.10 Composite functions

When y = f(x) and z = g(y), the relationship between z and x is expressed by a composite
function

z = g(f(x)).

The derivative of the composite function is

dz

dx
= g′(f(x))f ′(x),

where

g′(y) =
d

dy
g(y)

and

f ′(x) =
d

dx
f(x).

For example, X(t) = eγt is the composite function of g(y) = ey and y = f(t) = γt. Thus the
derivative

d

dt
X(t) = g′(f(t))f ′(t) =

d

dy
ey
d

dt
(γt) = eyγ = γeγt.

For another example, Z(t) = log(X(t)) is the composite function of g(y) = log(y) and
y = f(t) = X(t). Thus

d

dt
X(t) = g′(f(t))f ′(t) =

d

dy
log(y)

d

dt
X(t) =

1

y
Ẋ(t) =

Ẋ(t)

X(t)
.
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4.A.11 No-Ponzi-game condition for the case where the interest
rate varies over time

The logic of the no-Ponzi-game condition is the same as in Section 4.3.1: it prevents the
consumer from rolling over the debt every period to the extent that it is never possible to
repay. To see it from the lifetime budget constraint perspective, consider the period-by-
period budget constraint:

at+1 = wt + (1 + rt)at − ct,
where t = 0, 1, ..... Choose a period T > 1 and divide both sides by

∏T
t=1(1 + rt) for t = 1, ...

and add up all constraints from t = 0 to T . We obtain

aT+1∏T
t=1(1 + rt)

=
T∑
s=0

ws∏s
t=1(1 + rt)

+ (1 + r0)a0 −
T∑
s=0

cs∏s
t=1(1 + rt)

Then we can see that the nPg
aT+1∏T

t=1(1 + rt)
≥ 0

guarantees that
T∑
s=0

cs∏s
t=1(1 + rt)

≤
T∑
s=0

ws∏s
t=1(1 + rt)

+ (1 + r0)a0,

which is the lifetime budget constraint. The same logic applies to the limit T →∞:

lim
T→∞

aT+1∏T
t=1(1 + rt)

≥ 0

guarantees that
∞∑
s=0

cs∏s
t=1(1 + rt)

≤
∞∑
s=0

ws∏s
t=1(1 + rt)

+ (1 + r0)a0.

To interpret the continuous-time case, consider the case where we divide one period into
1/∆ number of intervals with time length ∆. Let per-period interest rate r be the function of
the calendar time r(v), where v = ∆, 2∆, 3∆, ..., T . The periods are still indexed by integers:
t = 1, ..., T/∆. The calendar time v of period t is therefore v = t∆. Now we discount the
T -period ahead asset by

a(T + ∆)∏T/∆
t=1 (1 + r(t∆)∆)

,

where we are now denoting the asset at calendar time t by a(t). To consider the limit ∆→ 0
of 1/(

∏T
t=∆(1 + rt∆)), instead of taking the limit directly, first consider the natural log

f(∆, T ) ≡ log

�
1∏T/∆

t=1 (1 + r(t∆)∆)

�
= − log

�
T/∆∏
t=1

(1 + r(t∆)∆)

�
.
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Then
1∏T/∆

t=1 (1 + r(t∆)∆)
= ef(∆,T ).

Now, because

− log

�
T/∆∏
t=1

(1 + r(t∆)∆)

�
= −

T/∆∑
t=1

log (1 + r(t∆)∆) ≈ −
T/∆∑
t=1

r(t∆)∆,

where the final approximation holds for ∆→ 0, and thus taking a limit:

lim
∆→0

f(∆, T ) = lim
∆→0
− log

�
T/∆∏
t=1

(1 + r(t∆)∆)

�
≈ lim

∆→0
−

T/∆∑
t=1

r(t∆)∆ = −
∫ T

0

r(t)dt.

Therefore, the continuous-time limit of nPg is:

lim
∆→0

a(T + ∆)∏T/∆
t=1 (1 + r(t∆)∆)

= e−
∫ T
0 r(t)dta(T ) ≥ 0.

With an infinite horizon, the condition becomes

lim
T→∞

e−
∫ T
0 r(t)dta(T ) ≥ 0,

as in the main text.

4.A.12 Phase diagram for the continuous-time Ramsey model

The two equations that characterize the dynamics of the Ramsey model are the resource
constraint

k̇(t) = f(k(t))− δk(t)− c(t) (4.A.57)

and the Euler equation
ċ(t)

c(t)
=

1

σ
(f ′(k(t))− (δ + ρ)) . (4.A.58)

In addition, we have the initial condition k(0) and the terminal condition (TVC)

lim
T→∞

e−ρT c(T )−θk(T ) = 0. (4.A.59)

As in Section 4.A.4, we use a phase diagram to analyze the dynamics. Figure .5 draws
the phase diagram.

From (4.A.57), k̇(t), that is, the change in k(t) over time, is positive if and only if
f(k(t))− δk(t)− c(t) > 0. This inequality can be rewritten as c(t) < f(k(t))− δk(t). In the
diagram, the curve c(t) = f(k(t))−δk(t) is drawn as the k̇(t) = 0 curve with a blue dash-dot
line. The inequality implies that k(t) increases over time below this line. This dynamics is

705



Figure .5: Phase diagram for Ramsey model in continuous time

represented by the rightward arrows in this region. Similarly, k(t) decreases over time above
this blue dash-dot curve.

From (4.A.58) (and that c(t) > 0 and θ > 0), ċ(t) > 0 only if f ′(k(t)) − (δ + ρ) > 0.
This condition only involves k(t). Because f ′(·) function is decreasing, this inequality implies
that ċ(t) > 0 if and only if k(t) < k∗∗, where k∗∗ satisfies f ′(k∗∗) = δ + ρ. The red dotted
line ċ(t) = 0 represents k(t) = k∗∗. To the left of this line, c(t) increases over time. This
dynamics is represented by the upward arrows. Similarly, c(t) decreases over time on the
right side of the red dotted line. The value k∗∗ is called the modified golden rule capital stock.
This value is smaller than the golden rule capital stock, which maximizes the steady-state
consumption.36

Starting from k(0), it turns out that the social planner has to choose the value of initial
consumption c(0) that is on the saddle path that is represented by the green line. On the
saddle path, (k(t), c(t)) gradually approaches the steady state (k̄, c̄) (here, k̄ = k∗∗) over
time. It is straightforward to see that this dynamics also satisfy the TVC 4.A.59, because
k(t) and c(t) become constant in the long run. Thus, once again, the Ramsey model exhibits

36In Figure .5, the golden rule capital stock corresponds to the value of k that maximizes the blue dash-
dot curve. This fact is because the golden rule capital stock maximizes the steady state consumption
c = f(k) − δk, and this right-hand side is exactly the same equation as the blue dash-dot line. The first-
order condition for maximization is f ′(k) = δ, and comparing this equation with the modified golden rule
equation f ′(k∗∗) = δ+ρ, we can see that the modified golden rule capital stock is smaller due to the existence
of ρ.
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convergence.
The social planner settles to the value of k(t), which is smaller than the golden rule captial

stock, because consumers discount the future. The consumer prefer to consume today rather
than saving more to reach the level of capital that provides more consumption in future.

To see that the other values of c(0) cannot be chosen, consider first the case when a
larger value of c(0) is chosen. One can see from the phase diagram that eventually (k(t), c(t))
reaches the situation that k(t) = 0. At that point, the economy cannot produce anything,
which implies that c(t) following the Euler equation is not feasible. Thus, this value of c(0)
does not satisfy the optimal conditions. If c(0) is smaller than the one on the saddle path,
eventually (k(0), c(0)) reaches the region where the value of k(t) is large and c(t)→ 0. Section
4.A.13 shows that this path does not satisfy the TVC. The consumers over-accumulate capital
and do not consume much, which is a waste. It can be seen from the fact that the path of
c(t) is lower than the one on the saddle path.

4.A.13 c(0) below the saddle path does not satisfy TVC

Let us go back to the social planner’s problem:

max
c(t)

∫ ∞
0

e−ρtu(c(t))dt

subject to
k̇(t) = f(k(t))− δk(t)− c(t).

Hamiltonian:
H(t) = e−ρtu(c(t)) + µ(t)(f(k(t))− δk(t)− c(t)).

First-order conditions:
e−ρtu′(c(t)) = µ(t) (4.A.60)

and
µ(t)[f ′(k(t))− δ] + µ̇(t) = 0. (4.A.61)

From (4.A.60),
∂

∂t
log(u′(c(t)))− ρ =

µ̇(t)

µ(t)
.

From (4.A.61),
µ̇(t)

µ(t)
= −[f ′(k(t))− δ].

Thus,
∂

∂t
log(u′(c(t))) = −[f ′(k(t))− (δ + ρ)].

Integrating both sides from t = 0 to T ,∫ T

0

∂

∂t
log(u′(c(t)))dt = −

∫ T

0

[f ′(k(t))− (δ + ρ)]dt. (4.A.62)
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The left-hand side of (4.A.62) can be rewritten as log(u′(c(T ))) − log(u′(c(0))). Here, c(0)
is given as an initial condition. Thus call a ≡ log(u′(c(0))). Therefore, (4.A.62) can be
rewritten as

log(u′(c(T ))) = a−
∫ T

0

[f ′(k(t))− (δ + ρ)]dt.

Taking exponential of both sides,

u′(c(T )) = exp(a) exp

�
−
∫ T

0

[f ′(k(t))− (δ + ρ)]dt

�
.

Renaming A ≡ exp(a),

u′(c(T )) = A exp

�
−
∫ T

0

[f ′(k(t))− (δ + ρ)]dt

�
. (4.A.63)

The TVC is:
lim
T→∞

e−ρTu′(c(T ))k(T ) = 0. (4.A.64)

Plugging (4.A.63) into this condition,

lim
T→∞

e−ρTA exp

�
−
∫ T

0

[f ′(k(t))− (δ + ρ)]dt

�
k(T ) = 0.

Since A > 0, A can be canceled out from here. Rearranging,

lim
T→∞

exp

�
−
∫ T

0

[f ′(k(t))− δ]dt
�
k(T ) = 0. (4.A.65)

Thus, we check (4.A.65) to see if the TVC is satisfied. If (k(0), c(0)) is on the saddle
path, from any k(0), k(t) monotonically approaches to the steady-state value k̄ which satisfies
f ′(k̄) − (δ + ρ) = 0. Notice that, since ρ > 0, f ′(k̄) − δ > 0 holds. Thus, with some finite
time t̂ ≥ 0, f(k(t))− δ > ε is satisfied for a (small) ε > 0 for all t > t̂. Therefore,∫ T

0
[f ′(k(t))− δ]dt =

∫ t̂
0
[f ′(k(t))− δ]dt+

∫ T
t̂

[f ′(k(t))− δ]dt
>

∫ t̂
0
[f ′(k(t))− δ]dt+ ε(T − t̂).

Because the first term on the right-hand side is finite, it is clear that
∫ T

0
[f ′(k(t))− δ]dt→∞

as T → ∞. This means that exp
�
−
∫ T

0
[f ′(k(t))− δ]dt

�
→ 0. Since k(T ) → k∗ as T → ∞,

(4.A.65) is satisfied.
Suppose that c(0) is below the value at the saddle path. Because (from the phase diagram)

k(T ) remains strictly positive,
∫ T

0
[f ′(k(t)) − δ]dt → ∞ as T → ∞ is necessary in order to

satisfy (4.A.65). However, from the phase diagram, we can see that after some finite time, t̄,
k(t) enters a region where f ′(k(t))− δ < 0 for all t > t̄. Therefore, it is impossible to achieve
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∫ T
0

[f ′(k(t)) − δ]dt → ∞. In this case, the TVC is not satisfied, and thus, the initial choice
of c(0) was not optimal.

Another way of looking at the TVC (4.A.64) is to focus on u′(c(T )). On the saddle path,
c(t) and k(T ) converge to the constant value, and thus u′(c(T ))k(T ) becomes constant. As
e−ρT → 0 as T → ∞, (4.A.64) is satisfied. When c(0) is below the saddle path, k(T ) stays
away from zero and remains finite, but u′(c(T )) increases over time as the Euler equation
requires ċ(t) < 0 for a sufficiently large t. It turns out that u′(c(T )) increases at a rate faster
than the speed that e−ρT approaches zero, and thus (4.A.64) is not satisfied.
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5.A Appendix to Chapter 5

To show that there is aggregation when u is a power function (with power 1 − σ), use the
functional form to obtain

((1− δ + r(K))k + w(K)− g(k,K))−σ =

β (g(k,K)(1− δ + r(G(K))) + w(G(K))− g(g(k,K), G(K)))−σ [1− δ + r(G(K))] .

Raising both sides to −(1/σ) we obtain

(1− δ + r(K))k + w(K)− g(k,K) =

(β [1− δ + r(G(K))])−
1
σ (g(k,K)(1− δ + r(G(K))) + w(G(K))− g(g(k,K), G(K))) .

By collecting terms and defining A(K), B(K), C(K), and D(K) appropriately, we see
that we need that, for all (k,K),

A(K) +B(K)k + C(K)g(k,K) +D(K)g(g(k,K), G(K)) = 0.

This makes clear that a solution that is linear in k given K, is available, i.e.,

g(k,K) = µ(K) + λ(K)k,

when, for all K, µ(K) and λ(K) solve

A(K) + C(K)µ(K) +D(K) (µ(G(K)) + λ(G(K))µ(K)) = 0

B(K) + C(K)λ(K) +D(K)λ(G(K))λ(K) = 0.

The first of these equations makes sure the object multiplying k is zero; the second makes
sure the remainder is zero too. Thus, the Euler equation is satisfied for all (k,K).

These last two functional equations in λ and µ need to be solved and the solution (their
functional forms) clearly depends on the functions taken as given here—r, w, and G—as well
as on the primitive constants. For the consumer’s problem, a solution can be sought indepen-
dently of the shape of G. An equilibrium furthermore involves the consistency requirement
that G(K) = µ(K) + λ(K)K for all K.

Aggregation obtains not only in this case. It also works for exponential utility and
quadratic utility. Moreover, in all these three functional-form cases, it works also when one
replaces consumption as an argument with an affine function of consumption, e.g., log(4c−3)
or −e−9c+7. You can see how applying these three functions, with their affine extensions,
will deliver the same kind of equation in g(k,K) as above. This class of preferences, in its
entirety, is sometimes referred to as HARA preferences.37

Let us finally consider our typical closed-form example: utility is logarithmic, the produc-
tion function is Cobb-Douglas, and there is full depreciation: δ = 1. Then r(K) = αAKα−1

37HARA stands for hyperbolic absolute risk aversion.
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and w(K) = (1− α)AKα. We know from before that the equilibrium law of motion will be
K ′ = G(K) = αβAKα. In this case, it is straightforward—but somewhat tedious—to verify
that

k′ = g(k,K) = βr(K)k,

i.e., µ(K) = 0 and λ(K) = βr(K). How does one find this solution? The best approach is
typically to solve a 2-period economy, starting in period 2 and working backwards. Then
functional forms appear and one can guess on decision rules of this sort. After substitution
of the guess into the Euler equation one can then verify that the guess works, which involves
finding the specific parameters of the adopted functional form as a final fixed-point problem.
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6.A Appendix to Chapter 6

Let us denote F (k, ωy + ωo) + 1− δ by f(k).

Theorem .5 A steady state k∗ is efficient if and only if R∗ ≡ f ′(k∗) ≥ 1.

Intuitively, the steady state consumption is c∗ = f(k∗)−k∗. Figure .1 shows the attainable
levels of steady state capital stock and consumption (k∗, c∗), given the assumptions on f . The(
kG, cG

)
locus corresponds to the “golden rule” level of steady state capital and consumption,

that maximize cG.

k 
G 

c 
G 

f (k ) − k * * 

f (k ) < 1 * 

Efficient Inefficient

c 

k * 

* 

f (k ) > 1 * 

Figure .1: Efficiency of the steady state

Proof.

(i) R∗ < 1: k∗ is inefficient.

Assume that k∗ is such that f ′(k∗) < 1. Let c∗ denote the corresponding level of
steady state consumption, let c0 = c∗. Now consider a change in the consumption
path, whereby k1 is set to k1 = k∗ − ε instead of k1 = k∗. Notice this implies an
increase in c0. Let kt = k1 ∀t ≥ 1. We have that

c1 − c∗ = f(k1)− k1 − f(k∗) + k∗

≡ f (k∗ − ε)− (k∗ − ε)− f(k∗) + k∗.

Notice that strict concavity of f implies that

f(k∗) < f(k∗ − ε) + [k∗ − (k∗ − ε)] f ′ (k∗ − ε)
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for ε ∈
(
0, k∗ − kG

)
, and we have that f ′ (k∗ − ε) < 1. Therefore,

f(k∗) < f(k∗ − ε) + k∗ − (k∗ − ε) .
This implies that

c1 − c∗ > 0,

which shows that a permanent increase in consumption is feasible.

(ii) R∗ ≥ 1: k∗ is efficient.

Suppose not, then we could decrease the capital stock at some point in time and
achieve a permanent increase in consumption (or at least increase consumption at
some date without decreasing consumption in the future). Let the initial situation be
a steady state level of capital k0 = k∗ such that f ′(k∗) ≥ 1. Let the initial c0 be the
corresponding steady state consumption: c0 = c∗ = f(k∗)− k∗. Since we suppose that
k∗ is inefficient, consider a decrease of capital accumulation at time 0: k1 = k∗ − ε1,
thereby increasing c0. We need to maintain the previous consumption profile c∗ for all
t ≥ 1: ct ≥ c∗. This requires that

c1 = f(k1)− k2 ≥ f(k∗)− k∗ = c∗,

k2 ≤ f(k1)− f(k∗) + k∗,

k2 − k∗︸ ︷︷ ︸
ε2

≤ f(k1)− f(k∗).

Concavity of f implies that

f(k1)− f(k∗) < f ′(k∗)[k1 − k∗]︸ ︷︷ ︸
−ε1

.

Notice that ε2 ≡ k2− k∗ < 0. Therefore, since f ′(k∗) ≥ 1 by assumption, we have that

|ε2| > |ε1| .

The size of the decrease in capital accumulation is increasing. By induction, {εt}∞t=0 is
a decreasing sequence (of negative terms). Since it is bounded below by −k∗, we know
from real analysis that it must have a limit point ε∞ ∈ [−k∗, 0). Consequently, the
consumption sequence converges as well:

c∞ = f (k∗ − ε∞)− (k∗ − ε∞) .

It is straightforward to show, using concavity of f , that

c∞ < c∗.

Then the initial increase in consumption is not feasible if the restriction is to maintain
at least c∗ as the consumption level for all the remaining periods of time.
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7.A Appendix to Chapter 7

7.A.1 Recursive equilibrium for the stochastic growth model

When defining a recursive equilibrium, the first challenge is to identify the aggregate state
variable(s). In the neoclassical growth model without uncertainty, we saw that the aggregate
state was the stock of capital. If there are stochastic shocks to productivity, and we consider
such shocks here, some aspect of the productivity process will need to be added to the
aggregate state. What precise aspect depends on the nature of the productivity process. If
we assume that it is first-order Markov in nature, so that nothing beyond the current value
of ω will matter either for productivity today or for the probabilities of different outcomes
of ω in the future, we can simply add ω; hence the aggregate state variable is (K,ω).

Definition 16 A recursive competitive equilibrium consists of functions r(K,ω), w(K,ω),
G?(K,ω), V ?(k,K, ω), and g?(k,K, ω) such that

1. V ?(k,K, ω) solves, for all (k,K, ω),

V (k,K, ω) = max
k′

u((1−δ+r(K,ω))k+w(K,ω)−k′)+βV (k′, G?(K,ω), ω′) ∀(k,K).

and k′ = g?(k,K, ω) attains the maximum in this problem

2. for all K, r(K,ω) = A(ω)FK(K, 1) and w(K,ω) = A(ω)FL(K, 1); and

3. G?(K,ω) = g?(K,K, ω) for all (K,ω).

7.A.2 Proof of the law of iterated expectations

For any τ ≥ t ≥ 0

E0

{
Et
[
xτ (ω

t)
]}

= E0 [xτ (ω
τ )] .

This is an application law of iterated expectations, which is more general in that it does not
just apply to stochastic processes. To prove this, note

E0 {Et [xτ (ω
τ )]} =

∑
ωt

π
(
ωt
)
Eτ [xτ (ω

τ )] .

Now replace the conditional expectation Eτ

E0 {Et [xτ (ω
τ )]} =

∑
ωt

π
(
ωt
)∑
ωτ

xτ (ω
τ )π(ωτ |ωt).

Now notice that π (ωt) π(ωτ |ωt) = π(ωt∪ωτ ) = π(ωt|ωτ )π(ωτ ). Because t < τ , once we know
ωτ we already have observed ωt. This means that the probability distribution π(ωt|ωτ ) is
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degenerate—it places all the probability mass on a single ωt. Continuing, we have

E0 {Et [xτ (ω
τ )]} =

∑
ωt

∑
ωτ

xτ (ω
τ )π (ωτ ) π(ωt|ωτ )

=
∑
ωτ

xτ (ω
τ )π (ωτ )

∑
ωt

π(ωt|ωτ ),

where the second line follows from changing the order of summation and noting that xτ (ω
τ )π (ωτ )

does not depend on t. Finally, we use the fact that the probability distribution π(ωt|ωτ )
sums to one so we have

E0 {Et [xτ (ω
τ )]} =

∑
ωτ

xτ (ω
τ )π (ωτ ) = E0 [xτ (ω

τ )] .
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8.A Appendix to Chapter 8

8.A.1 Steady state of the model

The stochastic processes give us Ā = η̄ = 1. The Euler equation gives us r̄ = β−1 − 1 + δ.
The rental rate is equal to the marginal product of capital so we have ȳ/k̄ = r̄/α. We now
divide the production function by k̄ to obtain k̄/¯̀= (ȳ/k̄)1/(α−1). Taking the product of the
last two equations we have

ȳ
¯̀ =

ȳ

k̄
× k̄

¯̀ =
( r̄
α

)α/(α−1)

.

As the marginal product of labor is equal to the wage we have w̄ = (1− α)ȳ/¯̀. We can now
reformulate the labor supply condition, government spending rule, and resource constraint
into a system of three equations in the unknowns c̄, ¯̀, and Ḡ

c̄ = w̄ ¯̀−ψ

Ḡ = (η̄c̄γ)−γ1

ȳ
¯̀

¯̀= c̄+ δ
k̄
¯̀

¯̀+ Ḡ.

To solve this system, we can substitute the first two equations into the third to obtain one
equation in ¯̀.

8.A.2 The fiscal multiplier in the static model

In steady state, η̄ = 1 so (8.3) becomes Ḡ/ȳ = γ/(1 + γ). The total derivative of (8.2)
evaluate at steady state is

dyt =
ȳ

Ā
dAt +

1

1 + ψ

�
1− Ḡ

ȳ

�−1
Ḡ

ȳ

[ ȳ
Ḡ
dGt − dyt

]
.

We then solve for dyt

dyt = (1 + χ)−1
( ȳ
Ā
dAt + χ

ȳ

Ḡ
dGt

)
,

where χ ≡ 1
1+ψ

�
1− Ḡ

ȳ

�−1
Ḡ
ȳ

. The fiscal multiplier is dyt/dGt, which is equal to (1 + χ)−1 χ ȳ
Ḡ

.

This is the coefficient on Ĝ in (8.5) scaled by ȳ/Ḡ.
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11.A Appendix to Chapter 11

11.A.1 Solving for the equilibrium dynamics in the model of Sec-
tion 11.3

The firm problem implies the first-order conditions

R(t) = α

�
Aye

(γy+n)th

K(t)

�1−α

, ∀t, (11.A.1)

and

w(t) = (1− α)Aye
γyt

�
K(t)

Aye(γy+n)th

�α
, ∀t, (11.A.2)

where we already replaced L(t) by enth (see labor market clearing). Substituting the return
equalization condition in (11.A.1) gives for the interest rate

r(t) = Axe
γxtα

�
Aye

(γy+n)th

K(t)

�1−α

− δ − γx. (11.A.3)

Solving the household problem gives the standard Euler equation

ċ(t)

c(t)
=
Axe

γxtα
(
Aye

(γy+n)th

K(t)

)1−α
− δ − γx − ρ

σ
, (11.A.4)

(where we already substituted the interest rate by the expression in (11.A.3)) and the budget
constraint

K̇(t) = Axe
γxt
(
K(t)α

�
Aye

(γy+n)th
�1−α − entc(t)

)
− δK(t), (11.A.5)

where we already used the asset market clearing condition and substituted in the expression
of the rental and wage rate from (11.A.1) and (11.A.2). Finally, the no-Ponzi game condition
and the transversality condition can be combined to a terminal condition

lim
T→∞

K(T )

Ax
e−(γx+ρ)T c(T )−σ = 0, (11.A.6)

where we used (11.A.4) and the asset market clearing condition to arrive at the expression.
The condition (11.A.5) can be interpreted as the economy’s resource constraint. We have
the standard law of motion of the capital stock

K̇(t) = X(t)− δK(t), (11.A.7)

where X denotes investment. As consumption and investment are one to Axe
γxt substitutes

goods market clearing reads

Y (t) = entc(t) +X(t)e−γxt/Ax. (11.A.8)
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Combining these two condition (11.A.7) and (11.A.8)—which were not directly mentioned
in the equilibrium definition—indeed results in (11.A.5). This is a manifestation of Walras’s
law. The household budget together with asset market clearing ensures that clearing of the
(intermediate) good market too.38

11.A.2 Planner’s problem of the model of Section 11.3

The planner problem can be states as follows:

max
{c(t),K(t)}∞t=0

∫ ∞
t=0

e−(ρ−n)t c(t)
1−σ − 1

1− σ , s.t. (11.A.5),∀t, with K(0) given, (11.A.9)

plus some non-negativity constraints c(t) ≥ 0 and K(t) ≥ 0, ∀t.

11.A.3 Linearizing transitional dynamics around BGP in the model
of Section 11.3

We can characterize the differences in detrended consumption and capital from the steady-
state values as

ẋ = Ax, x =

�
c̃− ¯̃c

k̃ − ¯̃k

�
, (11.A.10)

where the matrix A is the Jacobian evaluated at the steady-state values. Formally, we have

A =

�
∂ ˙̃c/∂c̃ ∂ ˙̃c/∂k̃

∂ ˙̃k/∂c̃ ∂ ˙̃k/∂k̃

�
=

�
0 −(1− α)αAx(Ayh)1−α¯̃kα−2¯̃c/σ

−Ax ρ− n− γxα(1− σ)/(1− α)− γy(1− σ)

�
, (11.A.11)

where the partial derivatives are evaluated at ¯̃c and ¯̃k. In order to examine the local dynamics
we are interested in the two eigenvalues of the Jacobian A. As the model has one prede-
termined state variable, k̃, and one control variable c̃ we expect to see local non-oscillating
saddle path stability. Therefore, according to the Blanchard-Kahn condition both eigenval-
ues should be real and one negative and one positive. The polynomial that gives the two
eigenvectors can be written as the implicitly defined zs that solve

− z
�
ρ− n− γx

α(1− σ)

1− α − γy(1− σ)− z
�

= (1− α)α
A2
x(Ayh)1−α¯̃kα−2¯̃c

σ
. (11.A.12)

The right-hand side of this equation is a positive constant. The left-hand side is an upward
sloping quadratic polynomial with zeros at 0 and ρ − n − γx α(1−σ)

1−α − γy(1 − σ). Condition
(11.8) guarantees that the second zero of the left-hand side is at a strictly positive value of z.
Graphically, it then follows immediately that both roots are real and one is strictly positive

38See also the discussion on this point after Definition 6 in Section 5.3.2.
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whereas the other is strictly negative. Solving the quadratic polynomial gives for the stable

root z = 1
2

�
ρ− n− γx α(1−σ)

1−α − γy(1− σ)
� �

1−
É

1 + 4 (1−α)α(A2
x(Ayh)1−α ¯̃

kα−2 ¯̃c)

σ(ρ−n−γx α(1−σ)
1−α −γy(1−σ))

2

�
. As we can

associate this with the dynamics in capital it gives us the local speed of convergence.

The speed of convergence is given by −z and the half-life x is ln(1/2)/z based on the
solution to exp(z · x) = 1/2. A simple calibration with n = 0.01, γx = 0.013, γy = 0.014
α = 1/3, σ = 1, and ρ = 0.03 yields a half-life of about 5.5 years. We can also use the
linearized system to determine the local slope of the saddle path and to simulate the local
transitional dynamics.

11.A.4 Generalizations of the AK theory

The AK model can be generalized to allow for labor to play a role like in the theory dis-
cussed in the main text with physical and human capital which both can be accumulated at
steady rates. Also, if Inada conditions do not hold, an economy with a reasonable looking
production function where labor does play a significant role may converge asymptotically
to the AK model, as in Jones and Manuelli (1990). For instance, under CES production

Y (t) =
�
(AK(t))

ε−1
ε + L

ε−1
ε

� ε
ε−1 with ε > 1 and a large enough saving rate, the economy

will asymptote to an AK model with an output elasticity of 1. Also multi-sector versions
of such models can allow for consumption sector(s) that feature factors that cannot be ac-
cumulated and can therefore give a role to labor. For example, Rebelo (1991) generates
endogenous growth in a model with a consumption sector with the production function
YC(t) = KC(t)αLC(t)1−α and an investment sector which is AK, i.e., YI(t) = AKI(t).This
model is reminiscent of the model with investment-specific technical change in the previ-
ous section, as the relative price of investment will decline along a decentralized balanced
growth path. Here the decline in the relative price comes from factor intensity differences
(and growing wages relative to the rental rate) as opposed to exogenous differences in the
rate of technical change. So what matters in order to generate an endogenous balanced
growth path in this class of models is that the investment sector only relies on factors that
can be accumulated.

11.A.5 Equilibrium definition in the expanding variety model

In this economy a decentralized equilibrium is defined as a path of prices and quantities that
jointly

1. solves the final producer problem (11.23) and for each machine producer the monop-
olistically competitive profit maximization (11.26) as well as the household problem
(11.31).

2. clears labor and assets markets, i.e., L = Ly(t)+Lr(t) and (11.30) where the firm value
is given by (11.28).
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3. solves the problem of the R&D firm (11.29) and is in line with the law of motion of
machine varieties (11.27).

4. clears the final good market, i.e., Y (t) = c(t) +
∫ N(t)

0
ψx(ν, t)dν.

One of the equations above, such as final goods market clearing, can be viewed as redundant
as it follows from the household budget and the other equilibrium conditions by Walras’s
law.

11.A.6 Planner solution in the expanding variety model

The planner solves:

max
{Ly(t),c(t),{x(ν,t)}Nν=0(t),N(t)}∞t=0

∫ ∞
0

e−ρt
c(t)1−σ − 1

1− σ dt, (11.A.13)

subject to the resource constraint

A

1− φLy(t)
φ

∫ N(t)

0

x(ν, t)1−φdν = c(t) +

∫ N(t)

0

ψx(ν, t)dν (11.A.14)

and the ideas production function (11.43) (note that there we already used the labor con-
straint to substitute out Lr(t)). As {x(ν, t)}Nν=0(t) only show up in the constraint (11.A.14)
we can solve this problem in two steps. First solve for the optimal {x(ν, t)}Nν=0(t) in a given
point in time and then solve the dynamic problem. The first-order condition with respect to
each x(ν, t) implies

ALy(t)
φx(ν, t)−φ − ψ = 0, ∀ν, t (11.A.15)

and we therefore have x(ν, t) =
�
A
ψ

� 1
φ Ly(t). Substituting this optimal solution for the x(ν, t)s

in we can collapse the constraints and express them as

Ly(t) =
c(t)

ψ
�
A
ψ

� 1
φ φ

1−φ

N(t)−1. (11.A.16)

Hamiltonian of the dynamic planner problem as

H(N, c, λ) =
c(t)1−σ − 1

1− σ

+λ(t)η

�
N(t)L− c(t)

ψ
�
A
ψ

� 1
φ φ

1−φ

�
. (11.A.17)

The first-order conditions are then

c(t)−σ =
η

ψ
�
A
ψ

� 1
φ φ

1−φ

λ(t), (11.A.18)
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and
HN(·) = λ(t)ηL = ρλ(t)− λ̇(t), (11.A.19)

and a standard transversality condition. This implies

gSP =
ηL− ρ
σ

. (11.A.20)

LSPy =
(σ − 1)L+ ρ/η

σ
. (11.A.21)

11.A.7 Additional figures
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Figure .1: Global Real GDP per Capita

Notes: The data comes from the Maddison Project Database (2010).

721



1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2
PPP GDP per capita

0

10

20

30

40

50

%
of

w
or

ld
po

pu
la

ti
on

1960
1980
2019

Figure .2: PPP GDP per capita in 1960, 1980 and 2019 (U.S. = 1)

Source: Penn World Table 10.0. PPP GDP per capita is calculated as the ratio of the
“rgdpo” and “pop” variables relative to the U.S. in all years.

Table .1: Nominal Development Accounting in 2019

Contributions from

Statistic PY Y/PCL PKK/PY Y H/L A

Variance of log 0.98 0.11 0.08 0.69

Elasticity wrt Y/L 0.07 0.22 0.72

90/10 ratio 11.77 1.18 1.73 5.92

Note: The data comes from the Penn World Table 10.0. Output per worker is constructed
using the “rgdpo”, “emp”, “pl gdpo” and “pl c” variables. The capital to output ratio is
constructed using the “cn”, “rgdpo”, “labsh”, “pl gdpo” and “pl n” variables. The human
capital index corresponds to the “hc” variable. We use the population-weighted average
labor share of 0.53 across countries in 2019, which implies an α = 0.47.
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Figure .3: PPP GDP per capita in 1960, 1980 and 2019 (U.S. = 1)

Notes: The data comes from the Penn World Table 10.0. PPP GDP per capita is calculated
as the ratio of the “rgdpo” and “pop” variables relative to the U.S. in all years.
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Figure .4: PPP GDP per capita in 2019 (U.S. = 1)

Source: Penn World Table 10.0. PPP GDP per capita is the ratio of the “rgdpo” and “pop”
variables relative to the U.S. in 2019. We choose the largest 20 countries by population that
the PWT does not classify as an outlier in terms of data quality.
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Figure .5: Capital-output ratio in 1960 vs. 2019

Notes: The data comes from the Penn World Table 10.0.
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1950 1960 1970 1980 1990 2000 2010 2020
Year

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

PP
P

G
D

P
pe

r
ca

pi
ta

Japan

China

India

(b) Disasters

1950 1960 1970 1980 1990 2000 2010 2020
Year

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1

2

PP
P

G
D

P
pe

r
ca

pi
ta

Nigeria

Ethiopia

Congo (D.R.)

Figure .6: PPP GDP per capita for Growth Miracles and Disasters

Notes: The data comes from the Penn World Table 10.0. PPP GDP per capita is calculated
as the ratio of the “rgdpo” and “pop” variables relative to the U.S. in all years.
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Notes: The data comes from the Penn World Table 10.0. Output per worker is constructed
using the “rgdpo” and “emp” variables. The capital to output ratio is constructed using
the “cn”, “rgdpo” and “labsh” variables. The human capital index corresponds to the “hc”
variable.
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Table .2: Nominal Growth Accounting for the U.S.

Contributions from

Period PY Y/PCL PKK/PY Y H/L A

1948-2020 2.07 0.09 0.38 1.60

1948-1973 3.12 -0.05 0.27 2.90

1973-1995 1.06 0.29 0.36 0.40

1995-2007 2.43 0.03 0.40 2.00

2007-2020 1.45 0.09 0.59 0.77

Note: The data comes from the U.S. Bureau of Labor Statistics. Y/L denotes real output
per hour, K/Y the real capital-output ratio, H/L human capital per worker (which grows
predominantly from rising years of schooling), and A is residual labor-augmenting TFP
inclusive of contributions from R&D and intellectual property. The contribution of physical
capital is scaled by α/(1 − α), where α is the average cost share for physical capital over
the sample, equal to 0.34. See equation (11.18).
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11.A.8 Incremental innovations with quality ladders

About the assumption that innovations are “drastic”:

λ ≥
�

1

1− β

� 1−β
β

Why needed? Otherwise previous quality (q̃) with zero
markup will be preferred to frontier quality
(q) at the monopoly markup.

Let Y (v, t) =
1

1− β
�
q(v, t)

1
1−β x(v, t) + q̃(v, t)

1
1−β x̃(v, t)

�1−β
Lβ

q̃(v, t) =
q(v, t)

λ
p̃x(v, t) = ψq̃(v, t) marginal cost pricing

For FGP’s to prefer x(v, t) > 0 and x̃(v, t) = 0, must be that

px(v, t)

p̃x(v, t)
≤ q(v, t)

1
1−β

q̃(v, t)
1

1−β

Or

q(v, t)

ψ
q(v, t)

λ

≤ q(v, t)
1

1−β�
q(v, t)

λ

� 1
1−β
→ λ

1− β ≤ λ
1

1−β

→ λ
β

1−β ≥ 1

1− β → λ ≥
�

1

1− β

� 1−β
β
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So must have
px(v, t)

Ψq(v, t)
= markup ≤ λ

β
1−β

Or
1

1− β ≤ λ
β

1−β for monopolists to be unconstrained.

→ λ ≥
�

1

1− β

� 1−β
β

we will assume this.

So need λ to be sufficiently large that intermediate

good producers can charge the monopoly markup
1

1− β
uncostrained by competition from previous quality.

 Innovation

is
“drastic”

What if, instead, λ <

�
1

1− β

� 1−β
β

?

Then limit pricing:

px(v, t) = λ
β

1−βψq(v, t)
Or

px(v, t) = λ
β

1−β (1− β)q(v, t) < q(v, t)

Markup is constrained to be below
1

1− β Drastic:

Incremental:

Limit pricing

markup =
px(v, t)

ψq(v, t)
= λ

β
1−β <

1

1− β = Monopoly markup
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Background on subproblem with two rungs on the quality ladder

Suppose previous quality q̃(v, t) =
q(v, t)

λ
is available and priced at marginal cost p̃x(v, t) =

ψq̃(v, t).

Y (v, t) =
1

1− β
�
q(v, t)

1
1−β x(v, t) + q̃(v, t)

1
1−β x̃(v, t)

�1−β
Lβ

min L = px(v, t)x(v, t) + p̃x(v, t)x̃(v, t) + µ

�
Y (v, t)− 1

1− β
( )

Lβ
�

FOC px(v, t)− µ
( )β

Lβq(v, t)
1

1−β = 0 if x(v, t) > 0

p̃x(v, t)− µ
( )β

Lβ q̃(v, t)
1

1−β = 0 if x̃(v, t) > 0

→ px(v, t)

p̃x(v, t)
=
q(v, t)

1
1−β

q̃(v, t)
1

1−β
if indifferent b/w using x and x̃

< if prefer x to x̃

px(v, t)

ψq̃(v, t)
= λ

1
1−β (< if prefer x to x̃)

→ px(v, t) = λ
1

1−β q̃(v, t)ψ

px(v, t)

ψq(v, t)
= λ

1
1−β

q̃(v, t)

q(v, t)
= λ

1
1−βλ−1 = λ

1−(1−β)
1−β = λ

β
1−β
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Free entry and the impact of ↑ L

Figure .8

Free Entry → η
λV (v, t)

q(v, t)
= η

λβ L

r∗ + z∗
∀ v, t

↑ z∗ → ↓ λV
q

↓
↑ g∗ →↑ r∗ ↗

 Hence downward slope

Comparative static WRT L:

↑ L → ↑ z∗ →↑ g∗
↘ ↓
↑ V ↗ ↑ r∗ →↑ r∗ + z∗ →↓ λV

q
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DE BGP TVC Aside

For positive growth need ληβ L > ρ

For TVC need

lim
t→∞

 1∫
0

V (v, t) exp (−r∗t) dv

 = 0

= lim
t→∞

 1∫
0

1

λη
q(v, t) e−r

∗tdv


= lim

t→∞

�
1

λη
Q(t)e−r

∗t

�
= lim

t→∞

�
1

λη
eg
∗tQ(0)e−r

∗t

�
= 0

So require r∗ > g∗ → γg∗ + ρ > g∗

ρ > (1− γ)g∗

Or

ρ > (1− γ)
ληβ L− ρ
γ +

1

λ− 1

11.A.9 The planner’s solution with quality ladders

SP Quality Ladders

Subproblem for x’s

max
x(v,t)

Y (t)−X(t) =
1

1− β

 1∫
0

q(v, t)x(v, t)1−βdv

Lβ
−

1∫
0

ψq(v, t)x(v, t)dv
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→ FOCs cancelq(v, t)x(v, t)−βLβ − ψcancelq(v, t) = 0

→ xSP(v, t) = (1− β)−1/βL

> xDE(v, t) = L b/c 0 < β < 1

SP uses x’s more intensively b/c faces social marginal cost ψq = (1− β)q < px = q.

∴ Y SP(t) =
1

1− β

 1∫
0

q(v, t)(1− β)
β−1
β L1−βdv

Lβ
= (1− β)−

1/β

1∫
0

q(v, t)dv

︸ ︷︷ ︸
Q(t)

L

Y SP(t) = (1− β)−1/βQ(t)L Aside

Y DE(t) =
1

1− βQ(t)L

And X(t) =
1∫
0

ψq(v, t)x(v, t)dv =
1∫
0

(1− β)q(v, t)(1− β)−1/βLdv

XSP(t) = (1− β)Y SP(t)→ Y (t)SP −X(t)SP = βY SP(t)
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SP Quality Ladders (continued)

So the resource constraint becomes

βY SP(t) = C(t) + Z(t) Under symmetry z(v, t) = z(t) ∀ v so we still get

Q̇(t) = (λ− 1)z(t)Q(t)

Or

Q̇(t) = (λ− 1)η Z(t) b/c Z(t) ,
1∫
0

Z(v, t)dv =
1∫
0

z(v, t)q(v, t)

η
dv

=
z(t)

η

1∫
0

q(v, t)dv =
z(t)

η
Q(t)

→ z(t)Q(t) = ηZ(t)

→ Q̇(t) = (λ− 1)η
[
βY SP(t)− C(t)

]
Or

Q̇(t) = (λ− 1)η
[
β(1− β)−1/βQ(t)L− C(t)

]
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SP Quality Ladders (continued)

H(C,Q, µ) =
c1−γ − 1

1− γ + µ
{

(λ− 1)η
[
β(1− β)−1/βQL− C

]}
HC = 0→ C−γ − µ(λ− 1)η = 0→ µ̇

µ
= −γ Ċ

C

HQ = µ(λ− 1)ηβ(1− β)−1/βL

→ ρ =
HQ

µ
+
µ̇

µ
= (λ− 1)ηβ(1− β)−1/βL− γ Ċ

C

→ gSP =
Ċ

C
=

(λ− 1)ηβ(1− β)−1/βL− ρ
γ

↑ in λ, η, L ↓
in ρ, γ

Recall

gDE =
ληβ L− ρ
γ +

1

λ− 1

gSP 6= gDE for 3 reasons:

1. Business Stealing. SP sees gain (λ − 1) to innovation whereas DE innovators see λ. A
force for gSP < gDE.

2. Markup distortion. SP use intermediates more intensively (1− β)−1/β > 1, ↑ the value
of innovation. A force for gSP > gDE.

3. Knowledge externalities. SP sees ↑ q lasting into future (innovators build on it), whereas

profits ↓ in future z. This is the

�
1

λ− 1

�
term in the denominator of gDE. It is a force

for gSP > gDE.

Most empirical research comes down on the side of gSP > gDE. This provides support for
R&D tax credits and subsidies.

Lots of empirical work on firms, products, patents, and R&D tries to shed light on the role
of quality improvements vs. expanding varieties in growth. Some findings:
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� Quality improvements appear to contribute much more to growth than expanding
varieties.

� There is lots of simultaneous job creation and job destruction across firms within
narrow industries, suggesting creative destruction is important, not just incumbents
improving the quality of their own products.

� Still, incumbents persist and dominate R&D and patenting, so incumbent quality im-
provements are important contributors to growth as well.

A key open question is why TFP growth has slowed in the last few decades in the OECD.
As rates of entry and job reallocation have fallen, and firm concentration has risen, perhaps
incumbents have gotten too dominant and cozy and entrants are less able to challenge them.
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Quality Ladders with an R&D tax

Free entry condition for research becomes

η

q(r, t)
λV (v, t) = 1 + τ → V (q) =

1 + τ

η λ
q ↑ in τ

π(q)
still
= βqL

V (q) =
βqL

r∗(τ) + z∗(τ)
To ↑ V (q), need ↓ [r∗(τ) + z∗(τ)].

So need ↓ z∗ → ↓ g∗ → ↓ r∗ →↓ (r∗ + z∗)

|| ||
(λ− 1)z∗ γg∗ + p

βqL

r∗ + z∗
=

1 + τ

ηλ
q

ª
→ r∗ + z∗ =

ληβ L

1 + τ

→ γ + ρ+
g∗

λ− 1
=
ληβ L

1 + τ

→ g∗ =

ληβ L

1 + τ
− ρ

γ +
1

λ− 1

↑ τ →↓ g∗

Incumbents might lobby for this tax as it would increase V (t).

737



Q(t) ,
1∫
0

q(v, t)dv

→ Q̇(t) =
1∫
0

q̇(v, t)dv

→ Q̇(t)

Q(t)
=

1∫
0

q̇(v, t)

Q(t)
dv =

1∫
0

q̇(v, t)

q(v, t)
· q(v, t)
Q(t)

dv

=

1∫
0

q̇(v, t)

q(v, t)
dv ·

∫ 1

0

q(v, t)

Q(t)
dv︸ ︷︷ ︸

=1
↗

by independence

= E

�
q̇(v, t)

q(v, t)

�
= (λ− 1)z∗

↗
Uhlig 1996 ET

So Q(t) grows at a constant, deterministic rate despite stochastic evolution of q(v, t)’s

→ g∗ = (λ− 1)z∗
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Figure .1: Sine waves with different frequencies

12.A Appendix to Chapter 12

Spectral decomposition and the band-pass filter

Spectrum of a process The spectrum of a time series process provides a decomposition
of its variance across different frequencies. It is a fundamental tool in time series analysis,
especially when studying cyclical patterns in the data. Given a stationary process Yt, its
spectrum, denoted as s(ω), is defined for each frequency ω in the interval [0, π] as:

s(ω) =
1

2π

∞∑
k=−∞

γke
−ikω

where γk is the autocovariance function of the process at lag k (that is, γk = Cov(Yt, Yt−k) for
all integers k). You may recognize that the spectrum is thus given by the Fourier transform
of the autocovariance series {γk}.39 Thus, we can recover the auto-covariance function by
applying the inverse Fourier transform to the spectrum:∫ π

−π
s(ω)eikωdω = γk

In order to derive this result we can substitute in the definitions of the spectrum:∫ π

−π

1

2π

∞∑
j=−∞

γje
−ijωeikωdω =

1

2π

∞∑
j=−∞

γj

∫ π

−π
e−ijωeikωdω

39For a series {xt}, the Fourier transform is dx(ω) =
∑∞
k=−∞ xte

−ikω.
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Now, when j = k, e−ikωeijω = 1, thus 1
2π

∫ π
−π e

−ikωeijωdω = 1 and we obtain γk. For

j 6= k, e−ikωeijω = eiω(k−j). Recall from Euler’s Theorem that eix = cos(x) + i sin(x). Thus,
we can re-write the integral as ek−j

∫ π
−π (cos(ω) + i sin(ω)) dω. That integral is equal to 0

for all j 6= k, since the integral of cosine and sine from −π to π is zero. Thus, the entire
expression collapses to γk.

Variance Decomposition using the Spectrum We can compute the variance by eval-
uating the above expression when k = 0, since the γ0 is the variance of the process. The
expression then simply becomes:

Var(Yt) =

∫ π

−π
s(ω) dω

The total variance of the process can be decomposed into the contributions from different
frequencies. This is achieved by integrating the spectrum over different frequency intervals.
For a given frequency band [ω1, ω2], the contribution to the variance is:

Varω2
ω1

(Xt) =

∫ ω2

ω1

f(ω) dω

For a given frequency ω, the spectral density s(ω) gives the contribution to the variance of the
process from cycles with frequency ω. Peaks in the spectral density indicate the presence
of cycles at those frequencies. By examining the spectral density, one can identify the
dominant frequencies or cycles present in the data. Peaks in the spectral density correspond
to prominent cycles. The height of the peak indicates the strength or power of that particular
cyclical component. For instance, a peak in the spectral density at a frequency corresponding
to 40 quarters (or 10 years) would suggest a 10-year business cycle. One of the challenges of
using the spectrum to try to identify cycles is that it requires stationary time series. Most of
the aggregate data series (e.g. GDP, employment, investment) all exhibit strong trends. In
order to perform the analysis requires removal of the trend, the process by which can change
the underlying spectrum, making the interpretation of the results difficult.

Linear filters and band-pass filter A linear filter applies a linear transformation to the
data, in the context of this chapter the aim of the filter is to separate out the cyclical vs
trend components. Linear filters operate by combining present and past values of the time
series. The filtered series Yc can be written using a general lead-lag polynomial C(L), where
Yc = C(L). The HP filter is a linear filter where:

C(L) =
λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
.

One useful tool for understanding and constructing linear filters is the gain function. The gain
function of a linear filter quantifies how the filter amplifies or attenuates different frequency
components of the time series. By analyzing how a linear filter affects different frequencies (as
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shown by its gain function), one can design a filter to achieve specific objectives, such as em-
phasizing or suppressing certain frequency ranges of the time series. Mathematically we can
write the gain function of a particular linear filter as G(ω) = |C (e−iω) | ≡

√
C (e−iω)C (eiω).

One can show that the spectrum of the filtered series (after applying the gain function) is
given by:

sYc = G(ω)2sY (ω).

Thus, if |G(ω)| > 1 for some ω it amplifies that frequency, and if |G(ω)| < 1 it attenuates
it. To understand the gain function a bit better, let’s consider a simple example. The first-
differencing filter, C(L) = (1 − L), is very commonly used for removing trends or to make
series stationary (as discussed earlier). It yields Yc = (1 − L)Y . The gain function is thus
given by G(ω) = |C (e−iω) | =

√
(1− e−iω)(1− eiω) =

√
2(1− cos(ω)). The spectrum is

fully attenuated at ω = 0, and very low for other frequencies close to zero. The gain function
for the HP filter is a bit more complicated, but can be computed as

4λ(1− cos(ω))2

1 + 4λ(1− cos(ω))2

At very low frequencies or very long-term trends (when ω ≈ 0), cos(ω) ≈ 1 implying that
the gain function G(ω) ≈ 0. So long-term trends are attenuated and only cyclical frequencies
are transmitted through. As λ gets large there is less smoothing, and the spectrum of the
filtered series converges to that of the original time series.

Finally, the band-pass filter aims to extract cyclical components of a time series that lie
within a specific frequency range. In particular, the gain function is 1 for the interval of
frequencies selected, and 0 otherwise. Thus, the band-pass filter removes frequencies in a
discrete way. The researcher selects to “window” of desired frequencies that should be kept
(which can be of arbitrary size). As compared to the band-pass filter, both the HP filter and
first difference filter remove frequencies smoothly and remove low frequencies more than high
frequencies. A band-pass filter can be beneficial in studying business cycles if we thing that
there is meaningful variation at higher than business-cycle frequencies, for example seasonal
variation or a political process. In practice, however, most data are seasonally adjusted first,
and then something like the HP filter is used to extract the cyclical component at business
cycle frequencies.

Like the HP filter, the band-pass filter also has some limitations to be aware of. The
choice of frequency range can influence the resulting decomposition. Different applications
may require different frequency ranges. Like the HP filter, the band-pass filter may produce
spurious results towards the beginning and end of the sample. Finally, like the HP filter, it
doesn’t rely on underlying economic theory.

Some examples of how the HP-filter and band-pass filter work are plotted in Figures
(.2) and (.3). In both figures the time series yt = sin(t) + 0.5 sin(5t) is plotted as the solid
line. Notice that this is the mix of a low-frequency, high amplitude component (sin(t)) and
a high-frequency, lower-amplitude component (0.5 sin(5t)). The latter is higher frequency
since it completes 5 cycles for every one cycle of the low-frequency component. In Figure
(.2), I applied the band-pass filter first to target the low-frequency component and then to

741



Figure .2: Band-pass filter example

the high-frequency one. Because of the periodic nature of this time series, we are able to
recover the underlying components almost perfectly (except at the boundaries). In Figure
(.3) I instead apply the HP filter. The HP-filter is unable to perfectly separate the low- and
high-frequency components as in the band-pass filter, but gets them approximately correct.
You can still observe some low frequency variation in the cycle component.

Appendix Tables
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Table .1: Business cycle moments U.S. Data 1949-2022 (Baxter-King Filter)

Standard Relative Auto- Cross correlation of x with

Variable x Deviation Std to σy correlation y(t− 1) y(t) y(t+ 1)

Output (y) 0.014 1.000 0.910 0.910 1.000 0.910

Consumption 0.011 0.791 0.922 0.763 0.898 0.887

Gov. Consumption 0.022 1.551 0.961 0.140 0.098 0.007

Investment 0.061 4.263 0.909 0.787 0.892 0.839

Employment 0.013 0.926 0.935 0.897 0.798 0.579

Hours 0.018 1.253 0.929 0.893 0.869 0.707

Unemployment 0.129 8.999 0.916 -0.890 -0.862 -0.683

Labor Productivity 0.010 0.676 0.896 0.104 0.357 0.512

Wages 0.009 0.657 0.917 0.148 0.216 0.269

Price Level 0.008 0.554 0.964 -0.299 -0.382 -0.460

Fed Funds Rate 0.036 2.493 0.971 0.225 0.158 0.062

Notes: The particular band-pass filter is a linear approximation to a true band-pass filter developed by
Baxter and King (1999). Per the suggestions of the paper, we focus on frequencies from 1.5-8 years.
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Table .2: Business cycle moments U.S. Data 1949-2022 (First-difference Filter)

Standard Relative Auto- Cross correlation of x with

Variable x Deviation Std to σy correlation y(t− 1) y(t) y(t+ 1)

Output (y) 0.011 1.000 0.136 0.136 1.000 0.136

Consumption 0.011 0.962 -0.100 0.022 0.763 0.099

Gov. Consumption 0.017 1.459 0.567 0.190 0.158 0.055

Investment 0.046 4.013 0.165 0.145 0.765 0.170

Employment 0.010 0.902 0.116 0.275 0.766 -0.081

Hours 0.013 1.169 0.127 0.219 0.817 0.017

Unemployment 0.102 8.987 0.175 -0.316 -0.768 0.037

Labor Productivity 0.009 0.767 0.024 -0.137 0.404 0.223

Wages 0.009 0.833 -0.024 0.142 -0.143 0.217

Price Level 0.006 0.534 0.786 -0.036 -0.054 -0.114

Fed Funds Rate 0.009 0.753 0.259 0.223 0.284 0.056
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Figure .3: HP filter example
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13.A Appendix to Chapter 13

13.A.1 Data Appendix

The data on revenues, expenditures, and deficits is obtained from the Bureau of Economic
Statistics (BEA), Table 3.1 “Government Current Receipts and Expenditures,” which is
part of the NIPA tables40. The series, expressed in current billion dollars, span the interval
1929-2021. They include Federal, State, and Local government budget measures (sometimes
referred to as General Government or National Government statistics). In the plots, the
series are expressed as percentages of “GDP,” corresponding to Gross Domestic Product
(line 1 of Table 1.5.5).

Figure 13.1: Data is obtained from the OECD Dataset: National Accounts at a Glance,
and the variable corresponds to Total expenditure of general government, percentage of GDP.

Figure 13.2: “Revenues” correspond to Total Receipts (line 34 of Table 3.1) and “Ex-
penditures” to Total Expenditures (line 37 of Table 3.1). We use total rather than current
measures because these include public investment.

Figure 13.3: All series are obtained from Table 3.1 “Government Current Receipts and
Expenditures,” constructed by the BEA. “Income Taxes” corresponds to Personal current
taxes (line 3), “Sales and Import Taxes” to Taxes on production and imports (line 4), “Corpo-
rate Taxes” to Taxes on corporate income (line 12), and “Social Ins. Taxes” to Contributions
for government social insurance (line 7).

Figure 13.4 - Left Panel: “Total Deficit or Surplus,” in Figure 13.4, is constructed as
the difference between Revenues and Expenditures (defined above),

Total Deficit=Revenues-Expenditures.

“Net Interest” is the difference between Interest and Miscellaneous Receipts (line 11 of Table
3.1) and Interest Payments (line 27 of Table 3.1). The government simultaneously owns
assets that yield interest and owes debt for which it has to pay interest. In the figure, we
plot net interest payments. The “Primary Deficit” is defined as

Primary Deficit= Total Deficit - Net Interest.

Figure 13.4 - Right Panel: FRED provides debt series for Federal and State governments
between 1946 and 2021. “Federal Debt” corresponds to Federal Government; Debt Securities
and Loans; Liability, Level (or FGSDODNS), while “State and Local Debt” corresponds to
State and Local Governments; Debt Securities and Loans; Liability, Level (or SLGSDODNS).

40See https://apps.bea.gov/iTable
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Both series are obtained from the Flow of Funds tables constructed by the Board of Governors
of the Federal Reserve Bank System. It is worth noticing that the Federal Debt series does
not correspond exactly to the one provided by the White House historical series due to
differences in accounting methods (i.e. which items are included and timing in which certain
transactions are incorporated when computing the flow of funds). The series between 1916
and 1945 are obtained from the Survey of Current Business, September 1946 page 13, Table
5. They correspond to Net Public Debt, end of calendar year.

Figure 13.5 - Left Panel: All series are obtained from Table 3.1 (described above). “Govt
Consumption (+ Investment)” is the sum of Consumption expenditures (line 20) and Gross
government investment (line 39). “Transfers” is the sum of Current transfer payments (line
22) and Subsidies (line 30). “Interest Payments” are gross, obtained from line 27 (i.e. we are
not including interest receipts). The sum of these is equal to Expenditures, defined above.

Expenditures= Govt Consumption (+ Investment) + Transfers + Interest Payments.

Figure 13.5 - Right Panel: All series are obtained from Table 3.16 “Government Current
Expenditures by Function” constructed by the BEA. “Defense” corresponds to National
Defense (line 7), “Healthcare” corresponds to Health (line 28), and “Education” is obtained
directly form line 30. “Income Security” is obtained from line 36. It includes Disability (line
37), Welfare and social services (line 39), Unemployment (line 40), Retirement (line 38) and
other income insurance programs (line 41). “Other” is constructed as the sum of General
public service (line 2), Public order and safety (line 8), Economic affairs (line 13), Housing
and community services (line 27), Recreation and culture (line 29), minus Interest payments
(line 5).

13.A.2 Tax reform with wealth effects

In this section, we re-compute the tax reform from Section 13.3.3, but assuming that utility
takes the form

u (c, `) = ln c− `1+ 1
φ

1 + 1
φ

.

The first order condition with respect to labor implies

`1/φ =

�
1− τ lt
1 + τ ct

�
w

1

cw
with cw =

�
1− τ lt
1 + τ ct

�
w.

The labor supply is independent of taxes in this case, ` = 1. This happens because the
substitution effect, that would make ` decline when after-tax labor income goes down is
exactly offset by the income effect, caused by a decline in cw that results in lower after-tax
income.

The main difference between Figure 22.4 and Figure .1 is that now labor supply remains
constant when labor taxes are increased. As a result, we do not observe a decline in output,
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Figure .1: Eliminating capital income taxes (with wealth effects)

which allows the government to have higher G (recall that the exercise is constructed such
that G/Y = 0.2 throughout the simulation). In the long-run, because labor does not go
down, there is higher GDP and aggregate consumption is slightly higher. The tax reform is
more effective in this scenario because the costs of replacing capital taxes with labor taxes
are smaller when wealth effects are present.
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16.A Appendix to Chapter 16

16.A.1 Derivation of the New Keynesian Phillips curve

The envelope condition of the intermediate goods producer’s Bellman equation is

Vp(p,S) = u′(C(S))Y (S)

�
p−ε − εp−ε−1

�
p− w(S)

A(S)

��
+βE

�
θVp

�
p

1 + π(S ′) ,S
′
�

1

1 + π(S ′)

�
and the first-order condition of the price-setting problem is

Vp(p,S) = 0.

Vp gives the benefit to the firm of having a higher price. Notice that the first term on the
right-hand side of the envelope condition is the marginal increase in profit this period from
setting a higher price (multiplying by u′(C) values this change in profit in terms of utility).
The envelope condition then has the form of an expected discounted sum of marginal changes
in profits today and, if prices are sticky (θ > 0), in the future.

Combining the envelope condition and first order condition, the solution to the price-
setting problem at date t, pRt , must satisfy

0 = Et
∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτ

�
pRt,τ
−ε − εpRt,τ

−ε−1
�
pRt,τ −

wτ
Aτ

��
,

where pRt,τ ≡ PR
t /Pτ = pRt /

∏τ
s=t+1(1 + πs), is the relative price at date τ of a firm that last

updated its price at date t. Rearranging we obtain

Et
∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτp
R
t,τ

−ε
=

ε

ε− 1
Et

∞∑
τ=t

(βθ)τ−tu′(Cτ )Yτp
R
t,τ

−ε−1wτ
Aτ
.

We now log-linearize both sides of this equation around a zero-inflation steady state in which
pRt,τ = 1 for all τ to obtain

Et
∞∑
τ=t

(βθ)τ−tp̂Rt,τ = Et
∞∑
τ=t

(βθ)τ−t
�
ŵτ − Âτ

�
, (16.A.1)

where hats denote log deviations from steady state. From the definition of pRt,τ we have41

p̂Rt,τ = P̂R
t − P̂τ = P̂R

t − P̂t − (P̂τ − P̂t) = p̂Rt − (P̂τ − P̂t).
Eq. (16.A.1) then becomes

p̂Rt = (1− βθ)Et
∞∑
τ=t

(βθ)τ−t
�
ŵτ − Âτ + P̂τ − P̂t

�
,

= (1− βθ)
�
ŵt − Ât

�
+ (1− βθ)Et

∞∑
τ=t+1

(βθ)τ−t
�
ŵτ − Âτ + P̂τ − P̂t

�
= (1− βθ)

�
ŵt − Ât

�
+ βθEt

�
p̂Rt+1 + P̂t+1 − P̂t

�
. (16.A.2)

41Here we use Ø�(1 + πs) = πs.
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Note that πt+1 ≈ log(1 + πt+1) = P̂t+1 − P̂t. Log-linearizing eq. (16.10) yields

πt =
1− θ
θ

p̂Rt (16.A.3)

and combining this with eq. (16.A.2) yields

πt =
(1− θ)(1− βθ)

θ

�
ŵt − Ât

�
+ βEtπt+1. (16.A.4)

This equation has the form of a New Keynesian Phillips curve in which the term ŵt − Ât is
the (log-linearized) real marginal cost of producing goods. The last step is to express this
marginal cost in terms of the output gap. We do that using the production function, the
aggregate resource constraint, and the household’s labor supply condition.

Log-linearizing the aggregate production function, eq. (16.11), yields

Ŷt = Ât − D̂t + L̂t

and log-linearizing eq. (16.12) around the steady state values D̄ = p̄R = 1 + π̄ = 1 yields

D̂t = −ε(1− θ)p̂Rt + θεπt + θD̂t−1

and using (16.A.3) this simplifies to D̂t = θD̂t−1. As there is no price dispersion in steady
state, D̂t = θD̂t−1 implies that D̂t = 0 for all t. That is, price dispersion does not affect the
first-order approximation to the dynamics of the economy.

Log-linearizing the labor supply condition,(16.6), we obtain

−σĈt + ŵt = ψL̂t.

Now using the resource constraint Yt = Ct and the log-linearized production function we
have

ŵt = (σ + ψ)Ŷt − ψAt. (16.A.5)

Log-linearizing (16.13) we obtain

Y n
t =

1 + ψ

ψ + σ
Ât. (16.A.6)

Finally, we can combine (16.A.5) and (16.A.6) to obtain

ŵt − Ât = (σ + ψ)(Ŷt − Ŷ n
t ).

We then plug this into (16.A.4) to obtain equation (16.16).
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16.A.2 Taylor Principle

This explanations draws on Bullard and Mitra (2002). We are interested in the stability
of the dynamic system defined by the IS curve (16.15), the Phillips curve (16.16), and the
interest rate rule (16.17). Here we substitute out for the nominal interest rate using the
interest rate rule. We will study a deterministic economy, which is without loss of generality
given the certainty equivalent property of first-order accurate economies. The system can
then be expressed as

βσŶt+1 = βσŶt + βφππt + βφxŶt − πt + κŶt

βπt+1 = πt − κŶt,

where the first equation is the IS curve with πt+1 substituted out using the Phillips curve.
For simplicity, we are assuming π∗ = 0. We can then write this system as�

βσ 0

0 β

��
Ŷt+1

πt+1

�
=

�
βσ + βφx + κ βφπ − 1

−κ 1

��
Ŷt

πt

�
.

Inverting the coefficient matrix on the right-hand side we have

1

σ + φx + κφπ

�
σ 1− βφπ
κσ βσ + βφx + κ

��
Ŷt+1

πt+1

�
=

�
Ŷt

πt

�
.

This model has no state variables and two forward-looking variables. For a unique equilib-
rium, we need both eigenvalues of the coefficient matrix that multiplies (Ŷt+1, πt+1) to be
inside the unit circle. The characteristic polynomial of this matrix is p(λ) ≡ λ2 + a1λ + a0

where

a1 = −
�
σ + βσ + βφx + κ

σ + φx + κφπ

�
a0 =

βσ

σ + φx + κφπ
.

When are the roots of this polynomial inside the unit circle? We can answer this using the
Jury Stability Criterion,42 which in this specific case (a quadratic polynomial with a unit
coefficient on λ2) requires that |a0| < 1 and |a1| < 1 + a0. The former condition can be
expressed as −(1− β)σ < φx + κφπ, which holds as we assume β ∈ [0, 1], all the parameters
are weakly positive and σ is strictly positive. Turning to the condition |a1| < 1 + a0, this
can be expressed as condition (16.18).

42See the discussion of the related Schur-Cohn Criterion in on p. 27 of LaSalle (1986).
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16.A.3 A model with nominal wage and price rigidities

The representative household has the same preferences as in the sticky-price model except
we now denote hours worked by Nt while Lt will refer to effective labor as we explain below.
So preferences are

U0 = E0

∞∑
t=0

βt
�
C1−σ
t

1− σ −
N1+ψ
t

1 + ψ

�
. (16.A.7)

This labor is supplied to a continuum of labor unions that differentiate it. Let ni,t be the
amount of labor used by union i ∈ [0, 1].

The technology for producing goods is the same as in eqs. (16.2) and (16.3). In particular,
`j,t remains the amount of labor used in producing good j. The labor used in producing the
final good is a composite of the various types supplied by the unions. Specifically, the total
effective labor supply is

Lt =

�∫ 1

0

n
ε−1
ε

i,t di

� ε
ε−1

, (16.A.8)

and market clearing requires
∫ 1

0
`j,tdj = Lt. Here we have assumed the elasticity of substitu-

tion between labor varieties is the same as that between intermediate goods. This assumption
is not necessary and we make it only for the sake of highlighting the similarity between the
sticky-wage and sticky-price models.

Let Wi,t be the nominal wage of type-i labor—that is, the labor supplied by union i.
The cost-minimization problem of intermediate firm j implies firm j’s demand for type-i
labor is (Wi,t/Wt)

−ε`j,t, where Wt is the cost of producing one unit of labor aggregate. This
aggregate wage index is

Wt =

�∫ 1

0

W 1−ε
i,t di

�1/(1−ε)

, (16.A.9)

Total labor income across all unions is∫ 1

0

∫ 1

0

Wi,t(Wi,t/Wt)
−ε`j,tdjdi =

∫ 1

0

Wi,t(Wi,t/Wt)
−εdiLt = WtLt.

Effective labor supply, Lt, is related to hours worked as follows. Total hours worked must
equal the total usage by the unions Nt =

∫ 1

0
ni,tdi. In turn, total labor usage by union i

must equal the total supplied to each firm

ni,t =

∫ 1

0

(Wit/Wt)
−ε`jtdj = (Wit/Wt)

−εLt.

Putting the two together we have

Nt =

∫ 1

0

(Wit/Wt)
−εdi︸ ︷︷ ︸

≡DWt

Lt.
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The term DW
t ≥ reflects wage dispersion, which results in hours worked exceeding the

effective labor supply as work effort is inefficiently allocated across types of labor.
We introduce a nominal rigidity for wages that is analogous to the one we assumed for

prices. Each period, union i is able to update the wage for i-type labor with probability
1−θw ∈ [0, 1]. As in the intermediate goods firm’s problem, the union must supply whatever
quantity of labor is demanded at the prevailing price. By participating in the union, the
household agrees to work the amount of hours the union needs in exchange for the wage the
union sets.

The household takes aggregate labor income and hours worked as given as determined
by the labor union. Their Euler equation is unchanged from the sticky-price model. By the
envelope theorem, the marginal value of funds at date t is u′(Ct) and the marginal disutility
of labor supply is Nψ

t .
We now turn to the union’s wage-setting problem, which is quite similar to the firm’s

price-setting problem. When raising the wage, the firm raises labor income but this comes
at a disutility cost. As the wage is sticky, the union makes a forward-looking choice. The
objective of the union that sets its wage at date t is

Et
∞∑
τ=t

(βθw)τ−t
�
u′(Cτ )

WR
t

Pτ
−Nψ

τ

��
WR
t

Wτ

�−ε
Lτ ,

where WR
t is the wage chosen at date t. In this objective, we assume that real labor income

is valued at βτ−tu′(Cτ ). Each union takes this marginal utility as given because each union
contributes an infinitesimal part of the total income of the household. Similarly, the union
takes the disutility of βτ−tNψ

τ of work effort as given. The first order condition w.r.t. WR
t is

Et
∞∑
τ=t

(βθw)τ−t u′(Cτ )wτ
(
wRt,τ

)−(ε−1)
Lτ =

ε

ε− 1
Et

∞∑
τ=t

(βθw)τ−tNψ
τ

(
wRt,τ

)−ε
Lτ ,

where wt ≡ Wt/Pt and wRt,τ ≡ WR
t /Wτ . Log-linearizing around a zeros inflation steady state

we obtain

Et
∞∑
τ=t

(βθw)τ−t ŵRt,τ = Et
∞∑
τ=t

(βθw)τ−t
�
σĈτ + ψN̂τ − ŵτ

�
. (16.A.10)

Notice this is analogous to (16.A.1) with the main difference being that log marginal cost,
ŵτ−Âτ , is replaced with the difference between the log marginal rate of substitution between
consumption and leisure, σĈτ +ψN̂τ and the log real wage, ŵτ . The rest of the derivation of
the wage Phillips curve follows steps similar to those for the price Phillips curve so we will
omit many of the details here. Defining ŵRt ≡ ŴR

t − Ŵt we have

ŵRt,τ = ŴR
t − Ŵt − (Ŵτ − Ŵt) = ŵRt − (Ŵτ − Ŵt)

and using this, (16.A.10) becomes

wRt = (1− βθw)
�
σĈt + ψN̂t − ŵt

�
+ βθwEt

(
ŵRt+1 + πwt+1

)
.
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As in the sticky-price model we have

πwt ≡
Wt

Wt−1

− 1 ≈ 1− θw
θw

ŵRt

so we have

πwt = ξw
�
σĈt + ψN̂t − ŵt

�
+ βEt

[
πwt+1

]
,

where

ξw ≡ (1− βθw) (1− θw)

θw
.

The log-linearized aggregate production function is now Ŷt = Ât + L̂t = Ât + N̂t and the
log-linearized aggregate resource constraint remains Ŷt = Ĉt. These lead to

σĈt + ψN̂t = (σ + ψ)Ŷt − ψÂt.

As the flexible-price economy is unaffected relative to the sticky-price model, we still have
Ŷ n
t = (1 + ψ)/(σ + ψ)Ât. The wage Phillips curve then becomes

πwt = κwxt + ξwÂt − ξwŵt + βEt
[
πwt+1

]
,

where κw ≡ ξw(σ + ψ).
Turning to the price Phillips curve, the derivation is the same as in Appendix 16.A.1 up

to eq. (16.A.4). We therefore have

πt = ξpŵt − ξpÂt + βEt [πt+1] ,

where ξp ≡ (1− βθ)(1− θ)/θ.
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17.A Appendix to Chapter 17

17.A.1 Derivation of firm’s first order conditions

Denote by λ the Lagrange multiplier associated with the budget constraint and µλ the
Lagrange multiplier associated with the borrowing constraint. The first order conditions for
Problem (17.3) are

1 = λϕd(d),

Fl(z, k, l) = w,

Em′Ωk′(S
′; k′, b′)− λp+ µλξp = 0,

Em′Ωb′(S
′; k′, b′) +

λ

R̃
− µλ

R̃
= 0,

where a subscript on a function denotes the derivative with respect to the particular variable.
As observed earlier, the firm is atomistic and, therefore, the impact of its policies on the
discount factor m′ and, more generally, on the next period aggregate states, is negligible.
Therefore, in the derivation of the first order conditions we took m′ as given.

Next we differentiate the value function with respect to k′ and b′, which returns the
envelope conditions,

Ωk(S; k, b) = λ
[
(1− δ)p+ Fk(z, k, l)

]
,

Ωb(S; k, b) = −λ.
We use envelope conditions, updated by one period, in the first order conditions to

eliminate the next period derivatives of the value function Ωk′(S
′; k′, b′) and Ωb′(S

′; k′, b′).
Furthermore, eliminating the multiplier λ using the first order condition for d, we can rewrite
the first order conditions of the firm as in (17.4), (17.5) and (17.6).

17.A.2 Derivation of household’s first order conditions

We derive the first order conditions for Problem (17.7) with respect consumption, c, labor,
`, new holding of bonds, b′, and new holding of firms’ shares, a′. Denoting by γ the Lagrange
multiplier associated with the budget constraint, the first order conditions are

uc(c, `) = γ,

u`(c, `) + γw = 0,

βEVb(S ′; a′, b′)− γ
1

R
= 0,

βEVa(S ′; a′, b′)− γq = 0.

The envelope conditions are derived by differentiating the value function with respect to
b′ and a′,

Vb(S; a, b) = γ,

Va(S; a, b) = γ(d+ q).
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We use the envelope conditions, updated by one period, to eliminate Vb(S
′; a′, b′) and

Va(S
′; a′, b′) in the first order conditions. We then eliminate the multiplier γ using the first

order condition for c to obtain equations (17.8), (17.9) and (17.10).
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18.A Appendix to Chapter 18

18.A.1 Detailed derivation of the Generalized Nash Bargaining
solution

Consider the problem

max
w

(W̃ (w, z)− U(z))γ(J̃(w, z)− V (z))1−γ,

where
W̃ (w, z) = w + βE[(1− σ)W (z′) + σU(z′)],

J̃(w, z) = z − w + βE[(1− σ)J(z′) + σV (z′)],

and U(z) and V (z) are defined in (18.12) and (18.8). Note that these definitions imply
∂W̃ (w, z)/∂w = 1 and ∂J̃(w, z)/∂w = −1.

The first-order condition for the maximization problem above is

∂W̃ (w, z)

∂w
γ(W̃ (w, z)−U(z))γ−1(J̃(w, z)−V (z))1−γ =

∂J̃(w, z)

∂w
(1−γ)(W̃ (w, z)−U(z))γ(J̃(w, z)−V (z))−γ.

Using ∂W̃ (w, z)/∂w = 1 and ∂J̃(w, z)/∂w = −1 and reorganizing, we obtain (18.13).

18.A.2 Analysis of wages in the basic DMP model in Section 18.4

From the six equations (18.7), (18.8), (18.9), (18.11), (18.12), and (18.13), we can derive the
equilibrium wages. In the DMP model, the worker’s marginal product z and the opportunity
cost of working b are different, and the surplus z − b is divided between firms and workers.
A simplistic wage rule could then be giving the workers b + γ(z − b), where γ ∈ (0, 1) is
the parameter that governs the workers’ bargaining power. The actual solution in the basic
DMP model is more complex because the Nash bargaining solution is over the present value
of surpluses. Even though the ultimate source of the surplus is z − b, how it is divided
between w − b (workers) and z − w (firms) is affected by the future possibilities.

Using (18.9) on (18.7) and multiplying γ,

γJ(z) = γ(z − w) + βE[γ(1− σ)J(z′)]

holds, and subtracting (18.12) from (18.11) and multiplying (1− γ),

(1− γ)(W (z)− U(z)) = (1− γ)(w − b) + βE[(1− γ)(1− σ − λw(θ))(W (z′)− U(z′))]

holds. Combining these two and using (18.13),

w = b+ γ(z − b) + βE[(1− γ)λw(θ)(W (z′)− U(z′))].

Thus, the wage is equal to the static share of the surplus b + γ(z − b) plus the term that
involves λw(θ). The latter term arises because the worker loses the opportunity of searching
for a new job by being matched, and the worker is compensated for this loss. Using (18.13)
and (18.10), the expression for the wage can alternatively be rewritten as

w = b+ γ(z − b) + γθκ.
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18.A.3 Method of log-linearization

One method of analyzing macroeconomic models (especially business cycle models) is to
first approximate the model by a system of linear equations. One popular method is to
log-linearize the equilibrium condition. The advantage of the log-linearization is that the
outcome is in terms of percentage deviations and therefore easy to interpret.

There are many methods of log-linearization. One method of carrying out the log-
linearization of equations is following the next steps:

Step 1. Rewrite variable Xt as Xt = X̄ext , where xt ≡ log(Xt/X̄) and X̄ is the steady-state
value of X. xt is the percent deviation of Xt from its steady-state level.

Step 2. After simplifying, use the approximation X̄ext ≈ X̄(1 + xt) to (log-)linearize the
equation.

Step 3. Further simplify the equation using the steady-state relationship. Note that ex-
pected value for the future can easily be dealt with because the expectation operator
is linear.

As an example, consider the evolution of capital stock in the neoclassical growth model:
Kt+1 = Kα

t N
1−α
t +(1−δ)Kt−Ct. The steady-state relationship is K̄ = K̄αN̄1−α+(1−δ)K̄−

C̄. The first step is to rewrite the equation as K̄ekt+1 = (K̄ekt)α(N̄ent)1−α+(1−δ)K̄ekt−C̄ect .
Simplifying, K̄ekt+1 = K̄αN̄1−αeαkt+(1−α)nt + (1− δ)K̄ekt − C̄ect . Following the step 2 yields,
K̄(1 + kt+1) = K̄αN̄1−α(1 + αkt + (1− α)nt) + (1− δ)K̄(1 + kt)− C̄(1 + ct). In step 3, we
obtain K̄kt+1 = K̄αN̄1−α(αkt + (1− α)nt) + (1− δ)K̄kt − C̄ct.

As we saw above, if the equilibrium conditions are power functions, log-linearization is
fairly straightforward. When they involve more complex functions, it may be useful to first
Taylor approximate the original function f(Xt) by

f(Xt) ≈ f(X̄) + f ′(X̄)(Xt − X̄)

and then apply the above method. Because the approximated function is linear in Xt, it is
straightforward to apply the above method.

18.A.4 Log-linarization of Section 18.7.2

This Appendix derives the log-linearized system in Section 18.7.2. With the Cobb-Douglas
matching function, we can rewrite (18.31) as

κ

(1− γ)βχ
θηt = βE

�
zt+1 − c(zt+1)− b+

κθηt+1

(1− γ)χ
− κσ(zt+1)θηt+1

(1− γ)χ
− γκθt+1

1− γ

�
.

In (18.33) and (18.34), we saw that σ̂(zt) and ĉ(zt) can be approximated as

σ̂(zt) = E ẑt
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and
ĉ(zt) = F ẑt.

Then, the above equation can further be rewritten as

κ

(1− γ)βχ
θ̄ηeηθ̂t = βE

�
z̄eẑt+1 − c̄eF ẑt+1 − b+

κθ̄ηeηθ̂t+1

(1− γ)χ
− κσ̄eE ẑt+1 θ̄ηeηθ̂t+1

(1− γ)χ
− γκθ̄eθ̂t+1

1− γ

�
.

Using the approximation 1 + x ≈ ex and the steady-state relationship,

κ

(1− γ)βχ
θ̄ηηθ̂t = βE

�
z̄ẑt+1 − c̄F ẑt+1 +

κθ̄ηηθ̂t+1

(1− γ)χ
− κσ̄θ̄η(E ẑt+1 + ηθ̂t+1)

(1− γ)χ
− γκθ̄θ̂t+1

1− γ

�
.

With the same procedure as in the exogenous separation case, we obtain

θ̂t = Gẑt.

where

G = (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

�
+ κγθ̄

�−1 �
z̄ − c̄F − κσ̄θ̄ηE

(1− γ)χ

�
. (18.A.1)

We can solve for G from (18.A.1) after plugging in E and F from (18.33) and (18.34).
The solution is

G =
Θ

Γ
,

where

Θ ≡ (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

�
+ κγθ̄

�−1

z̄

and

Γ ≡ 1 + (1− γ)

�
κθ̄ηη

χ

�
1

ρβ
− (1− σ̄)

�
+ κγθ̄

�−1

c̄
ξη

ξ + 1

�
1− 1

1− γ

�
.

18.A.5 Derivation of equation (18.38)

First, modify the model so that the families can issue and sell/buy Arrow securities (con-
tingency claims) for the next period state. Because the Arrow securities’ net supply is zero
and the families are identical (similar to the Lucas “tree” model), the existence of the Arrow
securities does not affect the equilibrium allocation. Consider the problem

max
{ct,kt+1,at+1(zt+1)}∞t=0

E0

[
∞∑
t=0

U(ct)

]
,

ct + kt+1 +

∫
Qt(zt+1)at+1(zt+1)dzt+1 = (1 + rt − δ)kt + (1− ut)wt + utb+ dt + at(zt),
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where Qt(zt+1) is the price of an Arrow security that is issued (and traded) in period t and
pays one unit of consumption goods if the next period state turns out to be zt+1. at+1(zt+1)
is the quantity the family purchases at period t. Note that because the sum of at is zero
and because the families are homogeneous, the equilibrium values of at are going to be zero.
Therefore, existence of the Arrow securities do not alter the equilibrium allocation of goods.

With the recursive formulation,

V(k, a(z), X) = max
c,k′,{a′(z′)}

U(c) + β

∫
V(k′, a(z′), X ′)f(z′|z)dz′

subject to

c+ k′ +

∫
Q(z′, X)a′(z′)dz′ = (1 + r(X)− δ)k + (1− u)w(X) + ub+ d(X) + a(z),

K ′ = Ω(X),

and

u′ = (1− λw(θ(X))) + σ(1− u).

Letting the Lagrange multiplier on the budget constraint when the stochastic state is z be
µ(z), the first-order conditions for c, k′, and a′(z′) are

U′(c) = µ(z), (18.A.2)

β

∫
V1(k′, a(z′), X ′)f(z′|z)dz′ = µ(z), (18.A.3)

and

βV2(k′, a(z′), X ′)f(z′|z) = µ(z)Q(z′, X). (18.A.4)

The envelope conditions are

V1(k, a(z), X) = µ(z)(1 + r(X)− δ) (18.A.5)

and

V2(k, a(z), X) = µ(z). (18.A.6)

Combining (18.A.2), (18.A.4), and (18.A.6), we obtain

Q(z′, X) = βf(z′|z)
U′(c′)

U′(c)
, (18.A.7)

which is (18.38).
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18.A.6 Derivation of J(X), V (X), W (X), and U(X) equations in
Section 18.8.1

To derive the values of jobs and workers, we explicitly allow the trade of the claims to profits
and wages. Let the quantity of the claim for the profit at the beginning of period t be qJt .
In the beginning of the period t, the asset (claims) trading occurs with the price J(X), and
the new level of asset is q̂Jt . The profit is distributed proportional to q̂Jt . In the next period,
some jobs stay matched and some jobs become vacant. Similar notations are used for V (X),
W (X), and U(X). Note that qJt , q̂Jt , qWt , and q̂Wt each sum up to (1 − ut), qUt and q̂Ut each
sum up to ut, and qUt and q̂Ut each sum up to vt = θtut. Because the consumers (families) are
homogeneous and total number of families is one, the equilibrium values of asset holdings
are equal to the corresponding sum.

The budget constraint now becomes (also incorporating the Arrow securities, as in Ap-
pendix 18.A.5)

ct+kt+1 +

∫
Qt(zt+1)at+1(zt+1)dzt+1 +(q̂Jt −qJt )Jt+(q̂Vt −qVt )Vt+(q̂Wt −qWt )Wt+(q̂Ut −qUt )Ut

= (1 + rt − δ)kt + q̂Wt wt + q̂Ut b+ q̂Jt (yt − wt)− q̂Vt κ+ at(zt).

Considering the definition of dt (see (18.47)), we can show that the budget constraint in
equilibrium is identical to the baseline model and therefore the equilibrium allocation is not
altered by the possibility of trading claims.

The transition equations for the asset holdings are

qJt+1 = λf (θt)q̂
V
t + (1− σ)q̂Jt ,

qVt+1 = (1− λf (θt))q̂Vt + σq̂Jt ,

qWt+1 = λw(θt)q̂
U
t + (1− σ)q̂Wt ,

and
qUt+1 = (1− λw(θt))q̂

U
t + σq̂Wt .

As in Appendix 18.A.5, we can write down the dynamic programming problem, now with
new state variables (which includes the claim holdings) and new constraints above. The
value function is now V(qJ , qV , qW , qU , k, a(z), X). The problem is

V(qJ , qV , qW , qU , k, a(z), X) = max
c,k′,{a′(z′)},{qi′,q̂i}i=J,V,W,U

U(c)+β

∫
V(qJ ′, qV ′, qW ′, qU ′, k′, a(z′), X ′)f(z′|z)dz′

subject to

c+k′+

∫
Q(z′, X)a′(z′)dz′+(q̂J−qJ)J(X)+(q̂V−qV )V (X)+(q̂W−qW )W (X)+(q̂U−qU)U(X)

= (1 + r(X)− δ)k + q̂Ww(X) + q̂Ub+ q̂J(y(X)− w(X))− q̂V κ+ a(z),
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qJ ′ = λf (θ(X))q̂V + (1− σ)q̂J ,

qV ′ = (1− λf (θ(X)))q̂V + σq̂J ,

qW ′ = λw(θ(X)))q̂U + (1− σ)q̂W ,

qU ′ = (1− λw(θ(X)))q̂U + σq̂W .

K ′ = Ω(X),

and
u′ = (1− λw(θ(X)) + σ(1− u).

Let the Lagrange multiplier of the budget constraint be µ and the transition equations be
νJ , νV , νW , and νU . The first-order conditions on c, k′, a′(z′), and the envelope conditions
on k and a(z) are the same as in Appendix 18.A.5 (i.e., (18.A.2) to (18.A.6)). As a result,
we obtain (18.A.7).

The first-order conditions for q̂J , q̂V , q̂W , and q̂U are:

µJ(X) = µ(y(X)− w(X)) + νJ(1− σ) + νV σ, (18.A.8)

µV (X) = −µκ+ νJλf (θ(X)) + νV (1− λf (θ(X))), (18.A.9)

µW (X) = µw(X) + νW (1− σ) + νUσ, (18.A.10)

and
µU(X) = µb+ νWλw(θ(X)) + νU(1− λw(θ(X))). (18.A.11)

The first-order conditions for qJ ′, qV ′, qW ′, and qU ′ are:

νJ = β

∫
V1(qJ ′, qV ′, qW ′, qU ′, k′, a(z′), X ′)f(z′|z)dz′. (18.A.12)

νV = β

∫
V2(qJ ′, qV ′, qW ′, qU ′, k′, a(z′), X ′)f(z′|z)dz′. (18.A.13)

νW = β

∫
V3(qJ ′, qV ′, qW ′, qU ′, k′, a(z′), X ′)f(z′|z)dz′. (18.A.14)

νU = β

∫
V4(qJ ′, qV ′, qW ′, qU ′, k′, a(z′), X ′)f(z′|z)dz′. (18.A.15)

Envelope conditions for qJ , qV , qW , and qU are:

V1(qJ , qV , qW , qU , k, a(z), X) = µJ(X) (18.A.16)

V2(qJ , qV , qW , qU , k, a(z), X) = µV (X) (18.A.17)

V3(qJ , qV , qW , qU , k, a(z), X) = µW (X) (18.A.18)

V4(qJ , qV , qW , qU , k, a(z), X) = µU(X) (18.A.19)
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Combining (18.A.8), (18.A.12), (18.A.13), (18.A.16), and (18.A.17) and utilizing (18.A.2)
and (18.A.7), we can obtain

J(X) = y(X)− w(X) +

∫
Q(z′, X)[(1− σ)J(X ′) + σV (X ′)]dz′,

which is (18.39) in the main text. We can similarly obtain (using equations (18.A.8) to
(18.A.19))

V (X) = −κ+

∫
Q(z′, X)[λf (θ(X))J(X ′) + (1− λf (θ(X))V (X ′)]dz′,

W (X) = w(X) +

∫
Q(z′, X)[(1− σ)W (X ′) + σU(X ′)]dz′,

and

U(X) = b+

∫
Q(z′, X)[λw(θ(X))W (X ′) + (1− λw(θ(X)))U(X ′)]dz′.

18.A.7 Calibration and computation of Section 18.8

The parameter values in Table 18.1 apply in this model, except for b. Below, parameters b
and κ are endogenously calibrated. First, with θ̄ = 1, the steady-state unemployment rate

ū =
σ

χ+ σ
.

From the Euler equation of the family’s consumption-saving problem,

r̄ =
1

β
− 1 + δ.

Because

r̄ = α

�
K̄

1− ū

�α−1

can be solved for K̄:

K̄ =
( r
α

) 1
1−α

(1− ū).

Once we know K̄, we can compute

ȳ = (1− α)

�
K

1− u

�α
.

The parameter b is set by
b = 0.4ȳ.

From the job creation condition, κ is calibrated as

κ = βχ(ȳ − b)
�

1− β 1− σ − γχ
1− γ

�−1

.
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Now we can compute the steady-state values of wage and dividend:

w̄ = γ(ȳ − b) + b+ γκ

d̄ = (1− ū)(y − w̄)− κū.
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20.A Appendix to Chapter 20

20.A.1 Derivation of Equation (20.8)

As a preparation, note two facts about the normal distribution and the lognormal distri-
bution. First, when X is normally distributed X ∼ N(µ, σ2), The random variable αX
also follows a normal distribution N(αµ, α2σ2). Second, when X is normally distributed
X ∼ N(µ, σ2), exp(X) is lognormally distributed, and E[exp(X)] = exp(µ+ σ2/2).

From (20.6),

ln(A) = (1− γ) ln

�∫
a

1
1−γ
i di

�
.

Because ln(ai) is normally distributed with N(ν − σ2/2, σ2), ln(ai)/(1− γ) is also normally
distributed (with mean (ν − σ2/2)/(1− γ) and variance σ2/(1− γ)2) and

a
1

1−γ
i = exp

�
1

1− γ ln(ai)

�
is lognormally distributed, with mean

exp

�
1

1− γ

�
ν − σ2

2

�
+

1

2

σ2

(1− γ)2

�
= exp

�
1

1− γ

�
ν +

γ

1− γ
1

2
σ2

��
.

Because ai is i.i.d., from the law of large numbers,∫
a

1
1−γ
i di = E

�
a

1
1−γ
i

�
= exp

�
1

1− γ

�
ν +

γ

1− γ
1

2
σ2

��
,

where E[·] represents expected value. Going back to the first equation, this outcome implies

ln(A) = ν +
γ

1− γ
1

2
σ2,

and thus (20.8) follows.

20.A.2 Firms versus establishments in the size statistics

Figure 20.7 shows that the fraction of workers working in large firms has increased since
the 1990s. The same pattern does not hold for large establishments. Therefore, making a
distinction between a firm and an establishment is important in this context.

The BDS dataset does not provide the 10,000+ category for establishments. First, we
confirm that the same pattern as Figure 20.7 holds when the threshold moves to 1,000.
Figure .1 plots the fraction of employees working at 1,000+ employee firms. One can see
that the graph is (aside from the shift in level) almost identical to Figure 20.7.

Figure .2 computes the same statistics for 1,000+ employee establishments. Although
we see some increase after the mid-2000s, overall the profile has been relatively flat. Thus,
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Figure .1: Fraction of employees working at 1,000+ employee firms. Source: Business Dy-
namics Statistics

the concentration of employment at the top is a firm phenomenon and not an establishment
phenomenon.

The contrast between Figures .1 and .2 leads us to suspect that it is the number of
establishments that is contributing the concentration of employees at very large firms. Figure
.3 confirms this to be the case. It shows that the fraction of establishments that belong to
very big firms (10,000+ employees) has steadily increased.

20.A.3 Derivation of Equation (20.11)

As in Appendix 20.A.1, let us first prepare with a basic property of the normal distribution.
When X and Y are jointly normally distributed with N(µ,Σ), where

µ = (µx, µy)

and

Σ =

 σ2
x ρσxσy

ρσxσy σ2
y

 .
Then αX+βY also follows a normal distribution with mean αµx+βµy and variance α2σ2

x+
β2σ2

y + 2αβρσxσy.
From (20.10),

ln(A) = ln

�∫
a

1
1−γ
i (1− τi)

γ
1−γ di

�
− γ ln

�∫
a

1
1−γ
i (1− τi)

1
1−γ di

�
.
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Figure .2: Fraction of employees working at 1,000+ employee establishments. Source: Busi-
ness Dynamics Statistics
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Figure .3: Fraction of establishments that belong to 10,000+ employee firms. Source: Busi-
ness Dynamics Statistics
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Because ln(ai) and ln(1− τi) follow a bivariate normal distribution,

1

1− γ ln(ai) +
γ

1− γ ln(1− τi)

follow a normal distribution with mean

1

1− γ

�
νa −

σ2
a

2

�
+

γ

1− γ

�
ντ −

σ2
τ

2

�
and variance

1

(1− γ)2
σ2
a +

γ2

(1− γ)2
σ2
τ + 2ρ

γ

(1− γ)2
σaστ .

From the law of large numbers,∫
a

1
1−γ
i (1− τi)

γ
1−γ di = E

�
a

1
1−γ
i (1− τi)

γ
1−γ

�
= E

�
exp

�
1

1− γ ln(ai) +
γ

1− γ ln(1− τi)
��

holds, and it can be computed as

exp

�
1

1− γ

�
νa −

σ2
a

2

�
+

γ

1− γ

�
ντ −

σ2
τ

2

�
+

1

2

�
1

(1− γ)2
σ2
a +

γ2

(1− γ)2
σ2
τ + 2ρ

γ

(1− γ)2
σaστ

��
.

We can similarly compute ∫
a

1
1−γ
i (1− τi)

1
1−γ di

and after some algebra, we obtain

ln(A) = νa +
γ

1− γ
1

2
(σ2

a − σ2
τ ),

implying (20.11).

20.A.4 Derivation of the Bertrand competition result in Section
20.6.2

First, as in the monopolistic competition case, consider the cost-minimization problem for
the final-good producer. Within a sector, it has to solve

min
{qij}

J∑
j=1

p̂ijqij

subject to

yi =

[
J∑
j=1

q
η−1
η

ij

] η
η−1
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for given yi. The first-order condition is

p̂ij = λiq
− 1
η

ij y
1
η

ij .

Similarly to the monopolistic competition case, we can think of λi as the price of the combined
good for sector i (call it pi) and

pi =

[
J∑
j=1

p̂1−η
ij

] 1
1−η

.

An intermediate-good producer with Bertrand competition therefore solves

max
p̂ij

p̂ijqij − cmij,

given

qij = aijm
γ
ij (20.A.1)

and

p̂ij = piq
− 1
η

ij y
1
η

ij . (20.A.2)

Now, in addition to these, the producer is aware that its price p̂ij affects the sectoral price
pi and thus the sectoral demand. Thus

pi = y
− 1
σ

i Y
1
σ (20.A.3)

(which is the solution of the cost-minimization problem across sectors, with the price index
normalized to one) and

pi =

[
J∑
j=1

p̂1−η
ij

] 1
1−η

(20.A.4)

are also given to the producer (in addition to Y ).
The first-order condition is

p̂ij
∂qij
∂p̂ij

+ qij =
∂(cmij)

∂qij

∂qij
∂p̂ij

and thus �
1− qij/p̂ij

∂qij/∂p̂ij

�
p̂ij =M.

Here, the marginal cost is

M =
∂(cmij)

∂qij
=
cm1−γ

ij

γaij
,
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as in the case with the Cournot competition, computed using (20.A.1). Using (20.A.2),
(20.A.3), and (20.A.4),

qij/p̂ij
∂qij/∂p̂ij

=
1

ε(sij)
,

where

ε(sij) = η(1− sij) + σsij.

Thus

p̂ij =
ε(sij)

ε(sij)− 1
M.

20.A.5 Proof of Hulten’s theorem

This Appendix outlines the proof of Hulten’s (1978) theorem, partly following Baqaee and
Farhi (2019). The theorem to prove is

dY

Y
=
∑
i

Di
dai
ai
,

where Di is the Domar weight:

Di =
piyi∑
i pici

.

Below we show the theorem in a relatively simple static economy. The only input is
labor, and labor is inelastically supplied. Suppose that there are N goods. Assume that all
markets are competitive. The representative consumer’s utility takes the form

U(c1, ..., cN)

and the budget constraint is
N∑
i=1

pici = w ¯̀+
N∑
i=1

πi,

where w is the wage rate and ¯̀ is the fixed amount of labor supply, which is the only input
for production. ci is the consumption of good i, and πi is profit from sector i. Assume that
the preferences are homothetic so that U(c1, ..., cN) is linearly homogeneous.

The production function for sector i is

yi = aiFi(`i, xi1, xi2, ..., xiN),

where `i is labor input at sector i and xij is the quantity of product j used in sector i. The
profit is

πi = piyi − w`i −
N∑
j=1

pjxij.
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The market-clearing conditions are

yi =
N∑
j=1

xji + ci

for all i and

¯̀=
N∑
i=1

`i.

First, consider the consumer’s expenditure minimization problem for a given utility level

min
c1,...cN

N∑
i=1

pici

subject to
U(c1, ..., cN) = u.

The Lagrangian is

L =
N∑
i=1

pici − λ(U(c1, ..., cN)− u).

The first-order condition for this problem is

pi = λ
∂U(c1, ..., cN)

∂ci
. (20.A.5)

Let us normalize the prices (i.e., choose the numeraire) pi so that λ = 1 in equilibrium. Let

Y ≡
N∑
i=1

pici

be the GDP (and TFP) of this economy. From (20.A.5) and linear homogeneity, it can be
rewritten as

Y =
N∑
i=1

∂U(c1, ..., cN)

∂ci
ci = U(c1, ..., cN). (20.A.6)

Therefore, in equilibrium, the level of utility also represents GDP.
Because the first welfare theorem holds, the competitive equilibrium is Pareto optimal,

and solves the social planner’s problem

max
ci,xij ,`i

U(c1, ..., cN)

subject to

ci +
N∑
j=1

xji = aiFi(`i, xi1, xi2, ..., xiN)
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and
N∑
i=1

`i = ¯̀.

The Lagrangian for the social planner is

L = U(c1, ..., cN) +
N∑
i=1

µi

(
aiFi(`i, xi1, xi2, ..., xiN)− ci −

N∑
j=1

xji

)
+ ν

(
¯̀−

N∑
i=1

`i

)
.

From the first-order condition,
∂U(c1, ..., cN)

∂ci
= µi. (20.A.7)

The envelope theorem implies

dU

dai
= µiFi(`i, xi1, xi2, ..., xiN) = µiyi

1

ai
.

From (20.A.6), this equation implies

dY

dai
= µiyi

1

ai
. (20.A.8)

From (20.A.5) and (20.A.7), together with our normalization of λ = 1,

µi = pi

holds. Using this relationship and dividing both sides of (20.A.8) by Y =
∑N

i=1 pici yields

dY

Y
=

piyi∑N
i=1 pici

dai
ai
.

Repeating the same procedure for all ai, we obtain the theorem.

20.A.6 Firm size distribution in Section 20.8

Let the mass of firms with k product lines at time t be Mkt. The transition equations for
Mkt are as follows.

First, for M1t, there are three kinds of firms in M1,t+1 next period. First is the entrants,
second is the one-product firms that remain with one product, and third is the multi-product
firms who had more than one product but lost some product lines and became one-product
firms.

M1,t+1 = νt +M1,t

1∑
i=0

Pµ(1, i)Pη(1, i) +
∞∑
h=1

(
M1+h,t

1+h∑
i=h

Pµ(1 + h, i)Pη(1 + h, i− h)

)
,
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where

Pµ(a, b) =

�
a

b

�
µb(1− µ)a−b

is the probability of losing i product lines when starting from k lines, and

Pη(a, b) =

�
a

b

�
ηb(1− η)a−b

is the probability of gaining i product lines when starting from k lines.
Second, for Mkt for k > 1, there are three different types in Mk,t+1. First is the firms

starting from k − h products, with a net gain of h products and getting to k. The second
is the k-product firms that remain with k products. The third is firms with k + h products,
where h > 0 and that have a net loss of h products and get to k products.

Mk,t+1 =

bk/2c∑
h=1

�
Mk−h,t

bk/2−hc∑
i=0

Pµ(k − h, i)Pη(k − h, i+ h)

�
Mk,t

k∑
i=0

Pµ(k, i)Pη(k, i) +
∞∑
h=1

(
Mk+h,t

k+h∑
i=h

Pµ(k + h, i)Pη(k + h, i− h)

)
.

Here, bxc represents the integer not exceeding x. To find the stationary distribution of firm
size, we can look for {M1,M2, ...} such that M1,t+1 = M1,t, M2,t+1 = M2,t, ... hold.
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22.A Appendix to Chapter 22

We begin with the numerical computation and then discuss calibration.

22.A.1 Computation

The endogenous bond price q introduces computational challenges absent in the neoclassical
growth model. We first describe the simplest computation strategy to solve the model but
two computational challenges that arise with these strategy. We then present alternative
computational strategies.

The simplest computational strategy is to define a grid for debt levels B =
{
B1, ..., BM

}
,

income levels Y =
{
Y 1, ..., Y N

}
, and transition probabilities πi,j = Pr (Yt+1 = Y j | Yt = Y i).

Then, an equilibrium is found by:

1. Starting with an initial guess for
¦
V R

0 , V
D

0 , V0, q0, B̂0, D̂0

©
.

2. Updating V R and B̂ in iteration I by solving

V R
I+1(Bh, Y i) = max

B′∈B

{
u (C) + β

N∑
j=1

VI(B
′, Y j)πi,j

}
(22.A.1)

s.t. C = Y i − δBh + qI(B
′, Y i)

(
B′ − (1− δ)Bh

)
∀h = 1, ...,M, i = 1, ..., N.

Updating V D in iteration I by computing

V D
I+1(Y i) = u

(
Y i − φ

(
Y i
))

+ β
N∑
j=1

πi,j
[
ψVI(0, Y

′) + (1− ψ)V D
I (Y ′)

]
∀i = 1, ..., N.

Updating V and D̂ in iteration I by computing

VI+1

(
Bh, Y i

)
= max

d∈{0,1}
{DV D

I+1(Y i) + (1−D)V R
I+1(Bh, Y i)} ∀h = 1, ...,M, i = 1, ..., N.

Updating q in iteration I by computing

qI+1(B′, Y i) =
1

1 + r

N∑
j=1

�
1− D̂I

(
B′, Y j

)� �
δ + (1− δ)qI(B̂I(B

′, Y j), Y j)
�
πi,j ∀B′ ∈ B, i = 1, ..., N.

(22.A.2)

3. Verifying convergence for a convergence criterion ε. That is, verifying that for all
Bh ∈ B and Y i ∈ Y ,
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� Max
{
| VI+1(Bh, Y i)− VI(Bh, Y i) |

}
< ε and

� Max
{
| qI+1(Bh, Y i)− qI(Bh, Y i) |

}
< ε .

If both conditions are satisfied, we approximate the equilibrium with¦
V R
I+1, V

D
I+1, VI+1, qI+1, B̂I+1, D̂I+1

©
.

If one of the above conditions is not satisfied, we return to step 2.

Problem (22.A.1) is of straightforward implementation: We just need to find the debt
B′ that yields the highest value in a vector of possible continuation values. However, it can
generate significant approximation errors if the number of grid points M and N are not
sufficiently large (Hatchondo, Martinez, and Sapriza, 2010).

Assuming that the true functions are differentiable, the total derivative of the equilibrium
price with respect to aggregate income is represented by

dq(B̂(B, Y ), Y )

dY
= q1(B̂(B, Y ), Y )

B̂(B, Y )

∂Y
+ q2(B̂(B, Y ), Y ), (22.A.3)

where q1(q2) denotes the derivative of the bond price schedule with respect to the first
(second) argument. If the number of grid points for debt choices is not large enough, the
solution of problem (22.A.1) could generate the same debt choice B′ for two consecutive
income realizations (Y n, Y n+1), thus “shutting down” the effect represented by the first
term on the right-hand side of equation (22.A.3). This approximation error is important
because it distorts the volatility of the spread and the co-movement between the spread and
income implied by the model (Hatchondo et al., 2010).

The second computational challenge involves the approximation of the bond price sched-
ule itself. First, if there is a point on the grid (Bm, Y n) such that the sovereign is nearly
indifferent between repaying and defaulting, numerical approximation could generate that
the default decision D̂ (Bm, Y n) jumps from 0 to 1 (or vice versa) from one iteration to next.
Those jumps in the default decision would have a sizable effect on the bond price schedule
for income realizations i with high transition probabilities πi,n. This could prevent the bond
price from converging. This problem is more severe when the number of grid points for
income realizations is not large enough.

Second, the objective function in problem (22.11) may not be concave and may have
multiple local maxima. If there is a state (Bh, Y i) with two local maxima B and B̄ that yield
a similar value of repaying V R, approximation error could induce the code to cycle between
those two local maxima from one iteration to the next. Since both local maxima generate
nearly the same continuation value under repaying, these jumps may not compromise the
convergence of V R. However, these jumps would typically compromise convergence of the
bond price q as the higher local maximum implies a higher future default probability.

In sum, a large number of grid points for income realizations is necessary for avoiding
convergence problems, and for the model to capture more accurately the direct and indirect
effects of income on the bond prices in equation (22.A.2). Below, we summarize computa-
tional alternatives to deal with the above challenges.
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Method 1. Instead of solving for B′ ∈ B in equation (22.A.1), we could use numerical op-
timization routines to solve for B′ ≥ 0. In addition, instead of approximating the probability
distribution for Yt with a discrete process, we could use quadrature methods to approximate

the expected values E [VI(B
′, Y ′) | Y ] and E

�
(1− D̂I(B

′, Y ′))
�
δ + (1− δ)qI(B̂i(B

′, Y ′), Y ′)
�
| Y
�
.

The first expectation is necessary to compute the value of repaying V R
I+1, while the second

expectation is necessary to evaluate the bond price qI(B
′, Y i) on debt choices that are not

on the grid.43 Both computational strategies require using interpolation methods to evaluate
VI(B

′, Y ′) and qI(B
′, Y ′) on states (B′, Y ′) that lie outside the grid B × Y .

The results presented in this chapter were computed by approximating the value func-
tions V R and V D, and the bond price function q using linear interpolation over income (Y )
and cubic spline interpolation over debt (B). We use 30 grid points for debt and income.
Expectations are computed using 100 quadrature points for the income shock. A large num-
ber of quadrature points minimizes the effects of potential cycles in the default or borrowing
decisions. We solve for the optimal borrowing problem in each state by i) searching over
a grid of debt levels B′ and ii) using the optimal B′ on that grid as an initial guess in a
nonlinear optimization routine. The initial guess corresponds to the solution in the final
period of a finite horizon model:

V R
0 (B, Y ) = u(Y − δB),

V D
0 (Y ) = u(Y − φ(Y )),

q0(B′, Y ) = 0,

B̂0(B, Y ) = 0, and

D̂0(B, Y ) =

 1 if V D
0 (Y ) and > V R

0 (B, Y )

0 otherwise.

In the last period of the finite horizon game, the sovereign has no access to credit markets
and consumes all available resources.44 We iterate using a convergence criterion of ε = 10−6.

Method 2. Chatterjee and Eyigungor (2012) assume that the economy lives on the space
B × Y and that aggregate income is also affected by a purely temporary income shock m
with a continuous distribution. Formally, the value of defaulting has the following recursive
formulation

43We can approximate the default rule D̂I(B
′, Y ′) = 1V DI (Y ′)>V RI (B′,Y ′), where 1 denotes the indicator

function. Quadrature methods approximate∫ b

a

f(x)dx '
L∑
i=1

ωif(xi).

44Hatchondo et al. (2010) discuss the advantages of using interpolation and solving for the equilibrium of
a finite-horizon economy.
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V D(Y i,m) = u
(
Y i − φ

(
Y i
)
−m

)
+ βEm′

N∑
j=1

[
ψV (0, Y j,m′) + (1− ψ)V D(Y j,m′)

]
πi,j,

where Em′ denotes the expectation over temporary next-period shocks. The value of repaying
has the following formulation

V R(Bh, Y i,m) = max
B′∈B

{
u (C) + βEm′

N∑
j=1

V (B′, Y j,m′)πi,j

}
(22.A.4)

s.t. C = Y i − δBh + q(B′, Y i)
[
B′ − (1− δ)Bh

]
.

The advantage of this approach is that the continuous income shock smoothes out the
problem: Any jump in the default or borrowing decisions in state (Bm, Y n,m) has zero
probability mass and, consequently, does not affect the bond price.45

Method 3. Dvorkin, Sanchez, Sapriza, and Yurdagul (2021) present an alternative strat-
egy to smooth out the problem by resorting to extreme value shocks. They assume that
the continuation values under repayment and default are subject to shocks. Formally, they
assume that each period, the economy is hit with M + 1 shocks encapsulated in the vector
ε = (ε1, ...., εM , εM+1). The ε shocks follow an i.i.d. process and are drawn from a multi-
variate distribution with continuous support. The shock εM+1 affects the continuation value
after defaulting:

V D(Y i, εM+1) = u
(
Y i − φ

(
Y i
))

+ β
N∑
j=1

[
ψV (0, Y j, ε′) + (1− ψ)V D(Y j, ε′M+1)

]
πi,j + εM+1.

The shocks (ε1, ...., εM) affect the continuation value of repayment conditional on the bond
position chosen by the sovereign, i.e.,

V R(Bh, Y i, ε) = max
h′=1,...,N

{
u (C) + β

N∑
j=1

V
(
B′, Y j, ε′

)
πi,j

}
+ εh′ (22.A.5)

s.t. C = Y i − δBh + q(Bh′ , Y i)
�
Bh′ − (1− δ)Bh

�
.

The sovereign decides whether to default and how much to borrow after observing ε.46

However, ex-ante default and borrowing decisions are stochastic. In effect, the probability
that a sovereign defaults after entering a period with initial debt Bh and income Y i is

45Gordon and Qiu (2018) propose an algorithm that enables to solve problem (22.A.4) without evaluating
B′ on all the points of the space B and can significantly speed up convergence.

46Our exposition simplifies the setup in Dvorkin et al. (2021). They allow the sovereign to choose a richer
portfolio problem and to negotiate with investors after a default (resulting in a positive recovery value of
debt in default).
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D(Bh, Y i) = EεD̂(Bh, Y i, ε). The probability that the sovereign chooses debt B′ = Bm in
a period with debt and income (Bh, Y i) is denoted by B(Bm | Bh, Y i). That probability
depends on εm taking a sufficiently larger value relative to the other shocks.

Dvorkin et al. (2021) show that the equilibrium bond price satisfies

q(Bm, Y i) =
1

1 + r

N∑
j=1

[
1−D

(
Bm, Y j

)] [
δ +

M∑
h=1

(1− δ)q(Bh, Y j)B(Bh | Bm, Y j)

]
πi,j.

(22.A.6)
Notably, relative to equation (22.A.2), the above formulation replaces the default decision
D̂(Bm, Y j) with the default probability D, and the portfolio decision B̂(Bm, Y j) with a prob-
ability distribution of possible debt choices. Both features minimize the effects of potential
cycles in the default or borrowing rules from one iteration to the next.

Uniqueness. Auclert and Rognlie (2016) and Aguiar and Amador (2019) show that in
versions of the model with one-period bonds (i.e., when δ = 1), a unique equilibrium exists.
Furthermore, Aguiar and Amador (2019) show that the model can be recast in a formulation
that satisfies Blackwell’s sufficient conditions. However, Aguiar and Amador (2020) show
that there can be multiple Markov equilibria in the model with long-term debt (δ ∈ (0, 1)),
implying that the initial guess plays a non-trivial role in the computation of the equilibrium.
By using as initial guesses the equilibrium functions in the last period (T ) of a finite-horizon
economy, we are finding the equilibrium that is the limit of the finite horizon game as T →∞.

22.A.2 Calibration

Functional forms. We need to specify functional forms to solve the model numerically.
We assume that the utility function displays a constant coefficient of relative risk aversion,
i.e.,

u (C) =
c1−σ − 1

1− σ , with σ 6= 1.

The endowment follows a first-order Markov process:

log(Yt) = (1− ρ)µ+ ρ log(Yt−1) + εt, (22.A.7)

with εt ∼ N (0, σ2
ε ).

Finally, as in Chatterjee and Eyigungor (2012), we assume a nonlinear income cost of
defaulting φ:

φ(Y ) = max {Y [λ0Y + λ1 [Y − E(Y )]] , 0} , (22.A.8)

where E(Y ) denotes the unconditional mean income. Equation (22.A.8) assumes a non-
negative income cost of defaulting. The parameter λ0 determines the average fraction of
income lost during defaults. The parameter λ1 determines how sensitive the fraction of
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Table .1: Benchmark parameter values.

Income autocorrelation coefficient ρ 0.91 Mexican data

Standard deviation of innovations σε 1.3% Mexican data

Mean log income µ (-1/2)σ2
ε Assumption

Variable Parameter Value Source

Debt duration δ 0.033 Mexican data

Risk aversion σ 2 Literature

Risk-free rate r 1% Literature

Discount factor β 0.975 Literature

Probability exclusion ends ψ 0.083 Cross-country data

Income cost of defaulting λ0 0.184 Debt and spread targets

Income cost of defaulting λ1 2.059 Debt and spread targets

income lost during defaults is to the income level. Henceforth, we refer to λ0 and λ1 as the
average and the slope parameters of the income cost of defaulting, respectively.47

Parameters chosen outside the model. We use data from Mexico for choosing the
parameters that govern the endowment process, the level and duration of debt, and the
mean spread. Mexico is a standard reference in studies of emerging economies and displays
the same properties that are observed in other emerging economies (Aguiar and Gopinath,
2007; Neumeyer and Perri, 2005; Uribe and Yue, 2006). A period in the model refers to one
quarter. When available, we use quarterly data from 1993 to 2018. Table .1 presents the
benchmark values given to all parameters in the model.

We estimate the parameter values that govern the income process (ρ and σε) by estimating
equation (22.A.7) using the logarithm of detrended GDP per capita in Mexico. The value
for µ is chosen so that the unconditional income expectation E(Y ) = 1.

The bonds assumed in this chapter do not have a maturity date. Therefore, we choose to
parameterize δ to target average duration instead of a maturity measure. We set δ = 3.3%

47Note that when defaults tend to be declared at low-income realizations, the fraction of income lost during
defaults observed along the equilibrium path is below λ0.
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to generate an average debt duration 5 years in the simulations.48 We use the Macaulay
definition of duration: the duration of an asset that pays xt in period t consists of

Duration =

∑∞
t=0 txt

(1+i)t∑∞
t=0 xt

(1+i)t

,

where i is the rate used to discount future payoffs. For the bonds assumed in this paper, the
duration in period t equals 1+it

δ+it
, where it denotes the bond yield. Given the target for the

average bond yield (risk-free rate plus spread), the duration target pins down the value for
δ.

The coefficient of relative risk aversion is set equal to 2, a standard value in real business
cycle studies. In the standard neoclassical model without uncertainty, the real interest rate is
endogenous and determined by the discount factor β. In this model, the small-open economy
assumption manifests in the economy taking as given international prices, such as the global
risk-free interest rate. The quarterly risk-free interest rate (r) is set to 1 percent, which is
standard in real business cycle studies. Following other quantitative studies, the discount
factor β is set to 0.975. A key property of the calibration is that β(1+r) < 1. Our objective of
targeting a negative average asset position can only be attained with a sufficiently impatient
sovereign.49

Finally, we assume an average duration of post-default exclusion periods of three years,
based on the estimations in Dias and Richmond (2009). This implies that the probability of
regaining access to debt markets is ψ = 0.083.

Parameters chosen using the model. The parameters λ0 and λ1 are jointly calibrated,
targeting an average debt-to-GDP ratio and yield spread. For spread data, we use the J.P.
Morgan EMBI+ spread from 1994 to 2018. In the model simulations, the bond yield it is
the return an investor would earn if it holds the bond to maturity (forever) and no default
is declared. This yield satisfies

qt =
∞∑
j=1

δ(1− δ)j−1

(1 + it)j
.

The annualized sovereign spread, rst , is then computed as

rst =

�
1 + it
1 + r

�4

− 1.

How to choose the target for debt is less clear-cut and there is more variation in the
debt level targeted in the literature. Some studies target external public debt. Other studies
target the unsecured fraction of external public debt, i.e., the fraction of debt that sovereigns

48The data for duration corresponds to the average Modified Duration for Mexican government bonds
computed by J.P. Morgan between January 2002 and March 2018.

49Using a model without defaults, Aiyagari (1994b) shows that due to self-insurance incentives, the demand
for assets would be unlimited if β(1 + r) = 1.
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do not pay after a default. We target Mexico’s average gross public debt ratio from 1996
to 2019, which is 43 percent according to the IMF WEO dataset. To a great extent, what
is the appropriate choice of the debt target depends on the application at hand (and may
be inconsequential for some applications, including the issues underscored in this chapter).
For example, focusing on the total public debt ratios may offer a more palatable laboratory
when one wants to emphasize the sovereign’s rollover needs. Debt levels in the simulations
are calculated as the present value of future payment obligations discounted at the risk-free
rate, that is, δ

δ+r
Bt, and we report debt levels as a percentage of annualized income.

Table .1 shows that we match the calibration targets. The next section explains how we
do so.

22.A.3 Matching targeted moments

This section explains how choosing the values for the cost of default parameters allows us to
match the calibration targets. The left panel of Figure .1 shows that the average debt level
in the simulations increases with the value of the average cost parameter λ0 and decreases
with the slope parameter λ1. The right panel of Figure .1 shows that the average spread in
the simulations displays the opposite behavior: It decreases with λ0 and it increases with λ1.
Therefore, as illustrated in Figure .2, curves with positive slope can be used to represent both
(i) the combination of values of λ0 and λ1 that allows the model to generate the targeted
debt level, and (ii) the combination of values of λ0 and λ1 that allows the model to generate
the targeted spread level.50 Figure .2 shows a unique combination of parameter values that
allows the model to match both targets. Next, we explain that this is a natural outcome in
models of equilibrium default because the average cost parameter λ0 affects more the debt
level and the slope cost parameter λ1 affects more the spread level.

Role of the parameter λ0. Figure .3 illustrates how the average cost parameter λ0 affects
the equilibrium levels of debt and spread (reflected in the equilibrium price at which the
sovereign sells bonds). The left panel presents the income threshold at which the sovereign is
indifferent between defaulting and repaying.51 As is standard in equilibrium default models,
this threshold is unique. Since the cost of defaulting is an increasing function of income, the
sovereign defaults for income realizations below the threshold. The left panel of Figure .3
shows that an increase in the value of the average cost parameter λ0 expands the repayment
region—i.e., the combination of debt and income levels for which the sovereign would choose
to repay its debt. Naturally, there are states where the sovereign chooses to default when

50Let X denote the function that determines the value of moment x in the simulations as a function of
the parameters that determine the income cost of defaulting (λ0, λ1). The implicit function theorem implies
that the combination of parameters (λ0, λ1) for which the model simulations replicates the target value for
x, denoted by X̄, satisfies:

∂λ1

∂λ0

∣∣∣∣
X(λ0,λ1)=X̄

= −∂X(λ0, λ1)/∂λ0

∂X(λ0, λ1)/∂λ1
.

51Formally, the left panel of Figure .3 plots the function Y ∗ that satisfies V R(B, Y ∗(B)) = V D(Y ∗(B)).
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Mean debt in simulations Mean spread in simulations

Figure .1: Average ratio of debt to annual income and annual spread as functions of the income
cost parameters. The horizontal planes correspond to the target values for debt and spread.

the cost is lower and chooses not to default when the cost is higher.

The right panel of Figure .3 presents the bond price function q in a period in which
income is equal to its unconditional mean. That is, the panel presents the menu of debt
and bond prices available to the sovereign when it chooses the next period debt level, and
in turn, the spread it pays. A higher value of the average cost parameter λ0 relaxes the
sovereign’s borrowing constraint. Since it is more costly for the sovereign to default on all
debt levels, lenders are willing to pay a higher price for sovereign bonds.

The right panel of Figure .3 also illustrates how the value of the average cost parameter
λ0 has a significant effect on the debt level chosen by the sovereign in the simulations. For
each value of λ0, the panel presents the debt level chosen by the sovereign and the implied
bond price when the sovereign enters the period with the mean debt level observed in the
simulations. The panel shows that when λ0 is higher, the sovereign chooses higher debt levels,
exploiting the improved borrowing opportunities implied by the higher cost of defaulting.52

In addition, the panel shows that the debt level chosen by the sovereign when λ0 is higher
implies a higher bond price. This is consistent with the lower spreads in the simulations for
higher values of λ0 presented in Figure .1.

52The sovereign is eager to borrow more. In the benchmark calibration (of this and other quantitative
studies of sovereign default), the sovereign is assumed to discount the future more than lenders. Therefore,
without a borrowing constraint, the sovereign would choose debt levels significantly larger than the ones
observed in the data. The inability to commit to repaying imposes an endogenous borrowing constraint on
the sovereign. Increasing the cost of defaulting relaxes this constraint.
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Figure .2: Combinations of parameters values (λ0, λ1) that match the target values for the debt-
to-income ratio and spread.

Role of the parameter λ1. Figure .4 illustrates how in comparison with the average cost
parameter λ0, the slope parameter λ1 has a milder effect on the debt level chosen by the
sovereign and a stronger effect on the spread paid by the sovereign. Everything else equal,
an increase in the value of the slope parameter λ1 makes defaulting less costly when income
is below the mean and more costly when income is above the mean. This explains the shift of
the income threshold at which the sovereign is indifferent between defaulting and repaying,
depicted in the left panel of Figure .4. With a higher value of λ1, for lower income levels, the
cost of defaulting is lower and therefore, the income threshold (i.e., the maximum income for
which the sovereign would choose to default) is higher. Consequently, with a higher value
of λ1, for lower debt levels, the set of income levels for which the sovereign would choose
to default is larger (left panel of Figure .4). This implies that for these lower debt levels,
lenders are willing to pay less for sovereign bonds, as illustrated in the right panel of Figure
.4. In particular, the right panel of Figure .4 shows that an increase in the value of the
slope parameter λ1 lowers bond prices for the debt levels chosen by the sovereign in the
simulations. This is natural because defaults occur in periods of low income and, therefore,
the cost of defaulting for low-income levels tends to be more relevant for bond prices.53

The right panel of Figure .4 also shows that equilibrium debt levels are very similar for
different values of the slope parameter λ1. However, with a higher value of λ1, bond prices
are significantly lower and promising to pay the same amount (i.e., the same debt level)
allows the sovereign to borrow significantly less.

Overall, the equilibrium choices presented in the right panel of Figure .4 show that

53The cost of defaulting for high-income levels only becomes relevant for very high debt levels, for which
bond prices would be too low (right panel of Figure .4), implying spread levels inconsistent with those
observed in the data.
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Figure .3: Default regions and bond price menus for different values of λ0. Dashed lines assume
λ0 = 0.19 (λ0 = 0.184 in the benchmark calibration). All other parameter values are the ones in
the benchmark calibration. The left panel presents the income threshold at which the sovereign
is indifferent between defaulting and repaying. The sovereign defaults for income levels below this
threshold. The right panel assumes income is equal to the unconditional mean and presents the
maximum price q lenders would be willing to pay for sovereign bonds. The solid dots in the right
panel correspond to the optimal choices when the sovereign enters the period with the mean debt
level observed in the simulations for each value of λ0.

changing the value of the slope parameter λ1 produces a large effect on the sovereign spread
paid in equilibrium (and thus on the bond price) with a mild effect on the debt level. This
contrasts with the effect on the equilibrium levels of debt and spread obtained by changing
the value of the average cost parameter λ0, which produces smaller changes in spread and
larger changes in debt (right panel of Figure .3). This illustrates how the value of λ1 is key for
determining the spread level in the simulations, and the value of λ0 is key for determining the
debt level in the simulations, which is consistent with the existence of a unique combination
of values of these parameters that allows us to match the calibration targets.
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Figure .4: Default regions and bond price menus for different values of λ1. Dashed lines assume
λ1 = 2.2 (λ1 = 2.059 in the benchmark calibration). All other parameter values are the ones in
the benchmark calibration. The left panel presents the income threshold at which the sovereign
is indifferent between defaulting and repaying. The sovereign defaults for income levels below this
threshold. The right panel assumes income is equal to the unconditional mean and presents the
maximum price q lenders would be willing to pay for sovereign bonds. The solid dots in the right
panel correspond to the optimal choices when the sovereign enters the period with the mean debt
level observed in the simulations for each value of λ1.
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23.A Appendix to Chapter 23

One period is considered to be ten years. We set α = 0.3 and ν = 0.05 so that the shares of
income that are allocated to capital and energy are 0.3 and 0.05, respectively. The discount
factor is set to 0.98510 and the elasticity of substitution between the different energy inputs
in (23.22) is set to 2 (which implies ρ = 0.5). In the same equation, λo, λc, and λg are set to
0.543, 0.187λo, and 0.655λo, respectively. TFP (i.e., z) is assumed to grow at 1.5%/year. K0

and A0 are set to 190 and 143, respectively. To calibrate the λs , prices and quantities of the
three energy inputs are needed. Following Hassler et al. (2021a), we combine the demand
equations (23.27) to derive the following relationships

λo
λκ

=

�
eo,t
eκ,t

�1−ρ p1,t

pκ,t
, κ = c, g.

Using world market prices from Golosov et al. (2014), the coal price is set to (USD) $74/ton.
The oil price is calibrated to be about $70/barrel. The relative price between oil and coal
in units of carbon is then 5.87. Using the same source for the ratio of global oil to coal use
in carbon units, we have λo/λc = 5.348. Turning to green energy, we employ data for the
sum of nuclear, hydro, wind, waste, and other renewables from Golosov et al. (2014) and
adopt their assumption of a unitary relative price between oil and green energy. This gives
λo/λg = 1.527. Together with the normalization λo + λc + λg = 1, we arrive at the following
values: λo = 0.543, λc = 0.102, and λg = 0.356.

Equation (23.10) is calibrated with φL = 0.2, φ0 = 0.393, and φ = 0.0228. The initial
stock of carbon dioxide in the atmosphere, S0, is set to 581 GtC. Finally, the parameters in
equations (23.4)–(23.5) are calibrated as follows. Parameter σ1 = 0.22, σ2 = 0.3, σ3 = 0.05,
η = 3.7. The initial temperatures are set to T0 = 0.85 and TL,0 = 0.01.
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